
Copyright © 2010 - 2012, Brett L. Schuchert – All Rights ReservedVersion 2.3.4.3

C++ & Object Design
Using Test Driven Development

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Introductions
• Form groups of approximately 3 – 5 people 
 
 
 

• In your groups:

• Create a list of what you’d like to learn in this class

• Pick your group’s “top 3”

• For each group member, get a name and one interesting fact

• Prepare to write your group’s “top 3”

• Prepare to present your group member’s name & fact

 2

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Schedule
• Start/Stop

• Breaks

• Exercises

 3

Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Save your fingers
• Do the research yourself...

• You will learn/retain/understand more if you pair

• Your productivity will increase

• But...

• Consider physical configuration

• Alternate who types

• Both must be capable of work

• Don’t mix “expert” with “beginner”

 4

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Getting Setup

 5

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Obligatory Hello World
• Well, not exactly ...

• Get the environment setup

• Mechanics

• Getting your first test running

• Include directories

• Library directories and libs

• Building libs

 6

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Your environment
• Your environment should be setup

• You’ll be opening one of two different workspaces 
 
 

• Details for environment setup are:  
http://schuchert.wikispaces.com/cpptraining

 7

http://schuchert.wikispaces.com/cpptraining

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Mechanics: Files...
• We’ll need a main (RunAllTests.cpp)

• We’ll need a test (FooShould.cpp)

#include <CppUTest/CommandLineTestRunner.h>

int main() {
 const char *args[] = { "", "-v" };
 return CommandLineTestRunner::RunAllTests(2, args);
}

#include <CppUTest/TestHarness.h>

TEST_GROUP(FooShould) {
};

TEST(FooShould, Pass) {
 LONGS_EQUAL(1, 1);
}

 8

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Mechanics: Include & Lib
• The compiler needs to see this include

• The compiler needs to see this library directory

• The compiler needs to see this library

• A more typical main:  

CppUTestBase/include

CppUTestBase/lib

CppUTest

 9

#include <CppUTest/CommandLineTestRunner.h>

int main(int argc, char **argv) {
return CommandLineTestRunner::RunAllTests(argc, argv);

}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Finally. Run it. Debug It.
• When you run it:

• Now, run in debug, make sure it breaks just before
main

.
OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)

Press any key to continue . . .

 10

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Recap
Auto Test Discovery

Class

CommandLineTestRunner

CommandLineTestRunner.h

Compilation Unit

Ctrl-B

Ctrl-F11

Include Directory

libCppUTest.a

Library Directory

LONGS_EQUAL

 11

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Recap
Object Module

Order of Includes

RunAllTests

standard library

std

struct

template class

TEST

TEST_GROUP

TestHarness.h

vector

 12

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

The Dice Game

 13

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

What’s ahead?
• Creating classes (source and header files)

• Subclassing

• Interfaces

• Guts of C++

• Unit testing

• Test driven development

 14

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Project 0: Simple Dice Game
• Simple dice game...

• Rules

• You win 1 if the roll is > 7

• You push if the roll is 7

• You lose 1 if the roll is < 7

 15

DiceGame Cup Die
1 2

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

A Test: DieShould.cpp
01: Must include the class(es) you’re using in
the test

03: Order of includes might be important here,
CppUTest overrides new and delete, which
causes problems with classes in the standard
library if you use a version prior to 2.3. Include
it last.

05 – 06: Define a struct for a test fixture. This
creates a base struct (class) with “Die” in its
name.

06: You are creating a struct, don’t forget the ;
at the end

08: Create a test. This is a class that inherits
from the struct created on lines 05 - 06. The
class name includes “InitialValueInRange1to6” in
its name.

10: Test assertion, the expression must evaluate
to true or the test will fail. In C/C++ this means
0 or not 0.

01: #include "Die.h"
02:
03: #include <CppUTest/TestHarness.h>
04:
05: TEST_GROUP(DieShould) {
06: };
07:
08: TEST(DieShould, InitiallyBeBetween1And6) {
09: Die d;
10: CHECK(
 d.faceValue() >=1 &&
 d.faceValue() <= 6
)
11: }

 16

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Terms & Concepts

#include with “”

CHECK

CppUTest

struct versus class

TEST

TEST_GROUP

TestHarness.h

 17

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Basics of a Class: Header
01 – 03, 21: Guard against multiple include
01:: If compiler supports, really only include once
02 – 03, 21: When include 2x, only process once

05: Begin class definition – you can because it is
followed by { instead of ;

06: Accessible to all clients

07: Declare a method
07: Method is const, meaning it does not change
object’s state

08: Finish class definition.

08: Don’t forget that closing ; – modern compilers
can often give you a good error. Or, you might get
100 errors and then the compiler will just give up.

10: Finish off #ifndef at top

01: #pragma once
02: #ifndef DIE_H_
03: #define DIE_H_
04:
05: class Die {
06: public:
07: int faceValue() const;
08: };
09:
10: #endif

 18

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Terms & Concepts
#define

#endif

#ifndef

#pragma once

class

const member function

Declaration

Definition

member function

public:

 19

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Basics of a Class: Source
01: Include class’ header file first (by convention)

03: Define the Die::faceValue method. You know
this is a definition because it has a { instead of a ;

03: The test only requires a value between 1 and 6,
so this will do for now.

01: #include "Die.h"
02:
02: int Die::faceValue() const {
03: return 1;
04: }

 20

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Terms & Concepts

Member function definition

Scope ::

 21

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Create It
• Create a new project: DiceGame

• Add each of the source files: DieShould.cpp, Die.h, Die.cpp,
RunAllTests.cpp

• Run your program a few times.

• Unit tests should produce no output. Why?

• Feel free to remove:

• FooShould.cpp

• VectorShould.cpp

 22

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Growing Behavior
• Our Die is hard-coded. We need it to do more. How

can we get this to happen?

• Write tests that force more behavior.

• Production code should become more general as the
tests become more specific.

 23

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Update DieShould
13: Introduce a new test

14: Notice the duplication?

16: Call a new method, roll.

17 – 18: Make sure the faceValue is between 1 and 6.
Do you prefer this over the single-line version on line
10?

14, 17 – 18: Notice the duplication?

Before refactoring this test to remove the duplication
(violation of the DRY principle), we should get back
to “green”.

01: #include "Die.h"
02:
03: #include <CppUTest/TestHarness.h>
04:
05: TEST_GROUP(DieShould) {
06: };
07:
08: TEST(DieShould, InitiallyBeBetween1And6) {
09: Die d;
10: CHECK(
 d.faceValue() >=1 &&
 d.faceValue() <= 6
);
11: }
12:
13: TEST(DieShould, RollBetween1And6) {
14: Die d;
15: for(int i = 0; i < 10000; ++i) {
16: d.roll();
17: CHECK(d.faceValue() >= 1);
18: CHECK(d.faceValue() <= 6);
19: }
20: }

 24

TEST_GROUP
(DieShould)

TEST(Initially
BeBetween1And6)

TEST(Roll
Between1And6)

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Add Roll to Die
07: Declare a new method. Simply adding this will get
the code to compile but not link.

02: Define the roll method. Nobody is using the
return value. Should this even return a value?
(Command-query separation.)

01: #pragma once
02: #ifndef DIE_H_
03: #define DIE_H_
04:
05: class Die {
06: public:
07: int roll();
08: int faceValue() const;
09: };
10:
11: #endif

01: #include "Die.h"
02: int Die::roll() {
03: return 9999;
04: }
05:
06: int Die::faceValue() const {
07: return 1;
08: }

 25

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Update The Die
• Add the test

• Build it to see the failure.

• Update Die’s header file

• Build to see the linking failure

• Update Die’s source file

• Run it to see the tests pass

• Experiment

• Remove the ; at the end of class Die{} & build

• Fix that and then do the same thing with TEST_GROUP

 26

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

DRY Violation
• DRY – Don’t Repeat Yourself

• There’s a bit of duplication in DieTest

• We are now going to refactor the test

• Refactoring definition:  
Changing the structure of the code (hopefully
improving it) without changing its behavior.

 27

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

DieShould
06: Add a member field to the TEST_GROUP. This
object will be available to each TEST method. Each
test method will get a fresh instance of one of these.

07 – 10: Declare a member function that will verify
the range of the die. This method will also be available
to each TEST method.

Note: How do TEST methods access member fields
and member functions? The TEST macro creates a
sub-struct of the struct created by TEST_GROUP.
Inheritance makes them available.

14, 20: Call the method to verify the die’s value.

01: #include "Die.h"
02:
03: #include <CppUTest/TestHarness.h>
04:
05: TEST_GROUP(DieShould) {
06: Die d;
07: void verifyDieValue() {
08: CHECK(d.faceValue() >= 1);
09: CHECK(d.faceValue() <= 6);
10: }
11: };
12:
13: TEST(DieShould, InitiallyBeBetween1And6) {
14: verifyDieValue();
15: }
16:
17: TEST(DieShould, RollBetween1And6) {
18: for(int i = 0; i < 10000; ++i) {
19: d.roll();
20: verifyDieValue();
21: }
22: }

 28

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Update DieTest
• Remove the duplication in DieTest.

• Make sure your tests all pass.

• It is worth keeping the tests clean?

 29

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Terms & Concepts
As # tests increases,
production code should

DRY

Initialization Before Tests

Keeping Tests Clean

Order of Tests

Test Fixture

Test Fixture Fields

Test Fixture Methods

 30

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Roll Didn’t Do Much
• The roll() method didn’t do anything.

• Is that so bad? We did extend the class’ interface

• We need something to improve the implementation.

• What could we do to accomplish that?

• Write another test!

 31

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Value Distribution
02: Use the standard library class array. It holds int
and it has 6 elements.
02: Note, this class is in <array>. You’ll need to
include that header file. This header file can be
included anywhere, what is order unimportant?

03: Initialize the contents of the array to 0.

04: Roll the die 600,000 times, each time
incrementing the count in the values array with an
index equal to the faceValue (-1) by one.

09: Iterate over the entire array.
09: std::array<int, 6>::iterator is long, we’ll fix that
in a second. In any case, iter is that type. It turns
out that it is just a pointer to an int, so it is an
index into the array.
10: Initialize iter to the first element in the array
11: So long as you are not at the end of the array,
keep going on.
12: Increment the counter. Using pre-increment
on iterators is important. It has to do with r-values
versus l-values. For now, just always do this.

13 – 14: Make sure the range for each value
rolled is within the range 95,000 and 105,000. Can
we make this range any tighter?

01: TEST(DieShould, DistributeValuesWell) {
02: std::array<int, 6> values;
03: values.fill(0);
04: for(int i = 0; i < 600000; ++i) {
05: d.roll();
06: ++values[d.faceValue() - 1];
07: }
08:
09: for(std::array<int, 6>::iterator
10: iter = values.begin();
11: iter != values.end();
12: ++iter) {
13: CHECK(*iter > 95000);
14: CHECK(*iter < 105000);
15: }
16: }

 32

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Wait, that’s a lot...
• Here’s an improved version we should instead use.

• The typedef creates synonyms.

#include <array> // <tr1/array>
typedef std::array<int, 6> RollArray; // std::tr1::array
typedef RollArray::iterator iterator;

TEST(DieShould, DistributeValuesWell) {
RollArray values;
values.fill(0); // values.assign(0);
for (int i = 0; i < 600000; ++i) {

d.roll();
++values[d.faceValue() - 1];

}

for (iterator iter = values.begin(); iter != values.end(); ++iter) {
CHECK(*iter > 95000);
CHECK(*iter < 105000);

}
}

 33

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Almost Final Header File
07: Introduce a constructor (ctor). This will be called
when creating an instance of Die. We’ll use it to
initialize the member field value.

12: Introduce a member field. This is a primitive so
by default it will not be initialized.

01: #pragma once
02: #ifndef DIE_H_
03: #define DIE_H_
04:
05: class Die {
06: public:
07: Die();
08: int roll();
09: int faceValue() const;
10:
11: private:
12: int value;
13: };
14:
15: #endif

 34

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Almost Final Source File
01: Include class’ header file first (by convention)
03: Include other headers used by the
implementation. In this case, we are using the new
random number generation featured in tr1.
05: Define ctor, using member-wise initialization list

Note: Generally, define constructors (and
destructors). Not doing so can lead to larger .o’s
and longer linking times as the compiler will
generate them, probably inline.
08: Using things in the tr1 namespace,. Bring those
into the top level scope for this method only.
09: mt19937 – engine producing random numbers.
10: uniform_int<int> attempts to produce an even
distribution over the range provided (1, 6) given an
engine.
09 – 10: Static on these lines cause a single variable
to be created the first time the method is called.
Line 9 creates an instance of an engine using the no-
arg ctor. Line 10 creates an instance of
uniform_int<int> passing in the range 1 – 6. This is a
c-style way of getting a single instance.

12: Produce the next random value and store it.
12: Return that value. What about calling faceValue
here? Violation of DRY? Command-query
separation?

01: #include "Die.h"
02:
03: #include <tr1/random>
04:
05: Die::Die() : value(1) {}
06:
07: int Die::roll() {
08: using namespace std::tr1;
09: static mt19937 engine;
10: static uniform_int<int> uniform(1, 6);
11:
12: return value = uniform(engine);
13: }
14:
15: int Die::faceValue() const {
16: return value;
17: }

 35

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Get it all updated
• Update the test source file

• Update the Die header file

• Update the Die source file

• Was this a big leap?

 36

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Terms and Concepts
<tr1/random>

array

begin

command-query separation

Constructor(ctor)

end

iterator

l-value

Member field

mt19937

namespace
 37

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Terms and Concepts
no-arg ctor

operator()

pre-increment

private:

r-value

std::tr1

template class

tr1

typedef

uniform_int<int>

using
 38

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Final Header File
08: Dtor, make virtual by default (the tool does).

17: Part of canonical form: hide copy ctor by default
18: Part of canonical form: hide assignment operator
by default

Note: “Part of canonical form” – suggests doing
something explicit rather than letting the compiler do
the work. This can mean making them private and
unimplemented OR implementing them.

17, 18: Take in and return Die by reference. A
reference cannot be null. In this case, the reference is
const, can only call const methods.

18: Die reference is passed in. You can only call
const methods (e.g., faceValue).

17 – 18: The limits on the passed in Die are
theoretical. We won’t be writing code for these
methods anyway.

01: #pragma once
02: #ifndef DIE_H_
03: #define DIE_H_
04:
05: class Die {
06: public:
07: Die();
08: virtual ~Die();
09:
10: int roll();
11: int faceValue() const;
12:
13: private:
14: int value;
15:
16: private:
17: Die(const Die&);
18: Die& operator=(const Die&);
19: };
20:
21: #endif

 39

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Final Version of Source
06: Define dtor — not doing may lead to larger .o’s

Generally: Define ctor’s and the dtor. Not doing so
can lead to larger .o’s and longer linking times.

Notice: There are no definitions of the Copy
Constructor and the Assignment Operator. That’s
OK. So long as those methods are never called, the
linker will not complain.

If we had not added them to the definition of the
class, then those methods would exist and be
available.

01: #include "Die.h"
02:
03: #include <tr1/random>
04:
05: Die::Die() : value(1) {}
06: Die::~Die() {}
07:
08: int Die::roll() {
09: using namespace std::tr1;
10: static mt19937 engine;
11: static uniform_int<int>
 uniform(1, 6);
12:
13: return value = uniform(engine);
14: }
15:
16: int Die::faceValue() const {
17: return value;
18: }

 40

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Final Die Version
• Make these final updates. While you are at it, add one

more test:

• What do you think of this test?

• What do you think of all the Die tests?

TEST(DieShould, RollDoublesOftenEnough) {
int doubles = 0;
int lastValue = -1;
for(int i = 0; i < 6000; ++i) {

d.roll();
if(d.faceValue() == lastValue)

++doubles;
lastValue = d.faceValue();

}

CHECK(doubles > 950);
}

 41

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Terms & Concepts

Assignment Operator

Copy Constructor

Destructor (dtor)

Operator Overloading

reference

virtual

Virtual dtor

 42

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

What’s Coming Up?
• Dependency Injection/Inversion of Control

• Test Doubles

• Mechanics of dynamic binding in C++

• (Light)Pointers and references

• Subclassing & command-query separation

• (More On)Standard library iterators

 43

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

The Game
• What of the game’s rules? How to control it?

• Write tests confirming the boundary conditions

• < 7 – lose

• =7 – push

• >7 – win

• Dice game uses 2 die objects

 44

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Controlling Test
• What about this?

• Even so, how can you get DiceGame to use
LoadedDie?

Die

LoadedDie

DiceGame 2TestClass

 45

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Dependency Injection
• Create DiceGame, allow its Die objects to be

provided...

• What does this allow?

• How fundamental is this principle?

:DiceGame
Test

d2:
LoadedDie

d1:
LoadedDie

1: create(3)

2: create(3)

:DiceGame3: create(d1, d2)

TestScenario()

4: play()
5: getBalance()

 46

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

What are the moving parts?
• For this to work

• Die should have a virtual dtor

• Die must have at least one other virtual method

• That virtual method must be overridden by LoadedDie

• That virtual method must be called by DiceGame

• DiceGame must hold either pointers or references to Die

 47

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

LoadedDieShould
• Let’s start with a simple test:

• Create this test and the LoadedDie class.

#include "LoadedDie.h"

#include <CppUTest/TestHarness.h>

TEST_GROUP(LoadedDieShould) {
};

TEST(LoadedDieShould, ReturnValueProvided) {
LoadedDie die(5);
CHECK(die.faceValue() == 5);

}

 48

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Create LoadedDie
• We have 2 options (we’ll eventually use both)...

• Extract Interface

• Subclass concrete class

• Subclass concrete class:

• What about

• Copy ctor

• Assignment op?

#pragma once
#ifndef LOADEDDIE_H_
#define LOADEDDIE_H_

#include "Die.h"

class LoadedDie: public Die {
public:
 LoadedDie(int loadedValue);
 int faceValue() const;

private:
 int loadedValue;
};

#endif

 49

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Write LoadedDie

#include "LoadedDie.h"

LoadedDie::LoadedDie(int loadedValue)
 : loadedValue(loadedValue) {
}

int LoadedDie::faceValue() const {
 return loadedValue;
}

 50

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Experiment
• Why does this fail?

#include "LoadedDie.h"

#include <CppUTest/TestHarness.h>

TEST_GROUP(LoadedDieShould) {
};

TEST(LoadedDieShould, ReturnValueProvided) {
LoadedDie die(5);
CHECK(die.faceValue() == 5);

Die &d = die;
CHECK(d.faceValue() == 5);

}

 51

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Get it working
• To fix this, simply add “virtual”
class Die {
public:
 Die();

 virtual ~Die();
 int roll();

 virtual int faceValue() const;

 52

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

LoadedDie...
• What of overriding faceValue versus roll?

• How can derived class access value in Die?

• Issues with subclassing concrete class

• Command Query Separation – roll returns an int

 53

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Review Die Update
• We allowed for polymorphism – dynamic binding:  

• Other things to consider

• Why virtual dtor?

• Why not virtual roll?

• What’s the danger of one versus the other?

• How fragile is subclassing a concrete class in general?

• Command-query separation helps, we’ll fix Die accordingly.

class Die {
public:
 Die();

 virtual ~Die();
 int roll();

 virtual int faceValue() const;

 54

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Bite the Bullet: Fix Die
• Update roll to have a void return

• Do you need to update LoadedDie

• Header files and source files

• Get the code compiling

• Get the tests passing

 55

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

What’s on Deck?
• Test Driven Development

• Creating DiceGame from scratch

• Moving from hard-coded to coded with unit tests

• Refactoring by extracting classes

• Making test setup easier by changing API’s

• Inversion of Control/Dependency Injection

 56

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Test-Driven Walkthrough
• Create a failing test (DiceGameShould.cpp):  
 

• This does not compile:

• No DiceGame

• Several methods need be created...

#include "LoadedDie.h"
#include "DiceGame.h"
#include <CppUTest/TestHarness.h>

TEST_GROUP(DiceGameShould) {};

TEST(DiceGameShould, DecreaseBalanceForLoss) {
 LoadedDie *d1 = new LoadedDie(3);
 LoadedDie *d2 = new LoadedDie(3);
 DiceGame game (d1, d2);
 game.play();
 LONGS_EQUAL(-1, game.getBalance());
}

 57

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Work Involved
• Create DiceGame

• Add missing methods

• Add missing includes, etc.

• Update main()?

 58

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Dice Game (header)
05: Use the std::vector class to store 2 Die pointers.
06: Forward-declare class rather than include its
header file. Reduces compilation time and
unnecessary recompilation. Possible because
collection holds pointers, not objects.
10: Create a typedef for vector rather than using
the raw type. We are putting pointers rather than
objects into the vector. Cannot store references
(templates cannot use references), must use pointers
or references for dynamic binding. Since we are only
using pointers, we can simply forward declare the
Die class. Prefer forward declaration, even going so
far as to change the structure of the class to allow
for it. (Can also forward declare for references, but
that doesn’t solve the problem of not being able to
put references in templates.)
11: Promote the nested iterator typedef up one
level to shorten the amount of (physical) typing
required to use it.
13: Allow the two Die objects to be passed in. While
there’s nothing to indicate this (yet), the DiceGame
will take ownership of the memory associated with
the parameters passed in to its ctor.
14: Unless there’s a compelling reason to not do it,
we’ll make our destructors virtual.
15 – 17: The methods used in the test.
20: Define a field, each instance of DiceGame will
have its own collection of Die objects, which will
actually be std::vector<Die*>
24 – 25: Hide the copy ctor and assignment
operator.

01: #pragma once
02: #ifndef DICEGAME_H_
03: #define DICEGAME_H_
04:
05: #include <vector>
06: class Die;
07:
08: class DiceGame {
09: public:
10: typedef std::vector<Die*> DiceCollection;
11: typedef DiceCollection::iterator iterator;
12:
13: DiceGame(Die *d1, Die *d2);
14: virtual ~DiceGame();
15: void play();
16: int getBalance() const;
17:
18: private:
19: DiceCollection dice;
20: int balance;
21:
22: private:
23: DiceGame(const DiceGame&);
24: DiceGame& operator=(const DiceGame&);
25: };
26:
27: #endif

 59

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Dice Game (cpp)
01: By convention, include class’ header file first.

02: The header file forward declares Die. The
source file uses the class, so Die’s header file must
be included.

04: Use member-wise initialization to set balance to
0. Otherwise it would be uninitialized (by definition).

05 – 06: Add the two die objects into the vector

10: Iterate over each element of the collection of
Die objects. This is a standard form. Start at begin(),
continue while not at end(). Pre-increment (do not
post-increment) current. Why?

11: current is an iterator, which, for a vector, is
simply a pointer to what the vector contains. The
vector contains Die*, so iterator is actually Die**.
Dereference it to get back a Die*, which then is
deleted.

05, 06, 10: How does the method know which
instance of DiceGame it’s using?

01: #include "DiceGame.h"
02: #include "Die.h"
03:
04: DiceGame::DiceGame(Die*d1, Die*d2)
 :balance(0) {
05: dice.push_back(d1);
06: dice.push_back(d2);
07: }
08:
09: DiceGame::~DiceGame() {
10: for(iterator current = dice.begin();
 current != dice.end();
 ++current)
11: delete *current;
12: }

 60

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Dice Game (cpp)
We only have one test, this is all we need to get that
one test passing.

How are we going to improve the implementation?
 Write more tests.

13: void DiceGame::play() {
14: --balance;
15: }
16:
17: int DiceGame::getBalance() const {
18: return balance;
19: }

 61

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Get it all Working
• You have quite a bit of work ahead of you:

• Create the test source file

• Create DiceGame class

• Get it all compiling and the one new test passing

• Review your work, any duplication?

 62

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Improving Implementation
• Always loosing is not much fun...

• Adding a new test can help fix that:  

• Then get both tests to pass at same time.

• Add another:

• And then make sure all three tests are passing.

TEST(DiceGameShould, IncreaseBalanceForWin) {
 // ...
}

TEST(DiceGameShould, LeaveBalanceAloneForPush) {
 // ...
}

 63

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Hints...
• When you write a test for balance increasing, you’ll

need to roll the dice and get the sum:

for(iterator i = dice.begin(); i != dice.end(); ++i)
 (*i)->roll();

int total = 0;
for(iterator i = dice.begin(); i != dice.end(); ++i)
 total += (*i)->faceValue();

 64

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Now Experiment
• Here are a few things to try. For each, make the

change, run your tests, note the results and then
restore. Run each of these independently (use RCS if
you have it)

1. Delete the body of DiceGame::~DiceGame

2. Remove virtual from the declaration of Die::~Die

3. Remove virtual on the declaration of Die::faceValue()

4. Remove “const” on the declaration & definition of
LoadedDie::faceValue

5. Add virtual to declaration of Die::roll()

• Record your observations for each of these

 65

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Observations

Delete body of
DiceGame::~DiceGame

Remove virtual from
Die::~Die

Remove virtual from
Die::faceValue()

Remove const on
LoadedDie::faceValue

Add virtual to Die::roll()

 66

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

What’s Coming Up?
• Refactoring

• Extract class refactoring

• shared_ptr

• Factory

• Dependency Inversion Principle

 67

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

What of the Cup Class?
• So far, no Cup class. Will it improve our code?

• We’ll probably want to change the DiceGame ctor.

• All the collection logic will be pushed into it

• Would change the test a bit.

• How can we slowly migrate to it?

 68

Die

LoadedDie

DiceGame
2

TestClass Cup

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Refactoring
• Refactoring – Changing the structure of code without

changing its behavior.

• We might use tests to make sure we don’t change the
behavior.

• Though our current test suite is maybe a bit weak.

• Even so, let’s give it a try.

• We’re going to several seemingly unnecessary steps:

• Keep the code compiling most of the time.

• Keep the tests passing most of the time.

 69

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Refactoring: Cup Header
• Create Cup Header:

#pragma once
#ifndef CUP_H_
#define CUP_H_

#include <vector>
class Die;

class Cup {
public:
 typedef std::vector<Die*> DiceCollection;
 typedef DiceCollection::iterator iterator;
 typedef DiceCollection::const_iterator const_iterator;

 Cup(Die *d1, Die *d2);
 virtual ~Cup();

 void roll();
 int total() const;

private:
 DiceCollection dice;

private:
Cup(const Cup&);
Cup& operator=(const Cup&);

};

#endif

 70

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Refactoring: Cup Source
This code is copied (not moved) from DiceGame

By using “extract class” or many little “extract
methods” operations, you can safely refactor since
you are mostly maintaining the structure of the code.

We’ve already seen a “const method”, when you
iterate over a standard C++ collection in a const
method, you need to use a const_iterator instead of
a regular iterator.

Once you have the header and source, verify that
your system still compiles and your tests still pass.

#include "Cup.h"
#include "Die.h"

Cup::Cup(Die *d1, Die *d2) {
 dice.push_back(d1);
 dice.push_back(d2);
}

Cup::~Cup() {
 for(iterator current = dice.begin();
 current != dice.end();
 ++current)
 delete *current;
}

void Cup::roll() {
 for(iterator current = dice.begin();
 current != dice.end();
 ++current)
 (*current)->roll();
}

int Cup::total() const {
 int total = 0;

 for(const_iterator current = dice.begin();
 current != dice.end();
 ++current)
 total += (*current)->faceValue();

 return total;
}

 71

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Get to Compiling
• You’ve added code that’s a copy of existing code

• Get your code compiling

• Make sure your tests still run

• No new code, so this is a restructuring
Question: should you write unit tests for it?  
Your Answer:

 72

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Update DiceGame, Part 1
Update the header file to use Cup instead of
std::vector. New and changed lines larger than
unchanged lines.

As you are doing this, ask yourself, could we have
taken a smaller step first?

Notice that this is header is smaller? Makes sense,
much of the work has been done in Cup instead of
DiceGame.

#pragma once
#ifndef DICEGAME_H_
#define DICEGAME_H_

class Die;

class Cup;
class DiceGame {
public:

DiceGame(Die *d1, Die *d2);
virtual ~DiceGame();

void play();
int getBalance() const;

private:

Cup *dice;
int balance;

private:
DiceGame(const DiceGame&);
DiceGame& operator=(const DiceGame&);

};

#endif

 73

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Update DiceGame, Part II
Dice Game forward declared Cup, so it must include
Cup.h if it plans to use it.

Notice the order of the member-wise initialization
list? What determines the order of execution?

Notice simplified dtor? The work is the same, we’ve
pushed it into the Cup class.

How about play()? It’s pretty clear. How about taking
the conditionals and moving them into a private
method called determineResult()?

#include "DiceGame.h"
#include "Cup.h"

DiceGame::DiceGame(Die *d1, Die *d2)
 : dice(new Cup(d1, d2)), balance(0) {
}

DiceGame::~DiceGame() {
 delete dice;
}

void DiceGame::play() {
 dice->roll();

 if(dice->total() < 7)
 --balance;
 if(dice->total() > 7)
 ++balance;
}

int DiceGame::getBalance() const {
 return balance;
}

 74

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Taking Small Steps
• We extracted a class by

• First copying code into new class

• Getting it to compile

• Updating original code to use new code

• Keeping DiceGame’s public API the same

• Is there a “next step” or are we done?

 75

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Memory Allocation
• Problem

• How can a client know that the Cup ctor expects dynamically
allocated objects?

• What of the Cup class calling delete in its dtor?

 76

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

An Option
• std::shared_ptr

• Shared ownership of pointers

• Multiple, reference-counted

• When copies, reference count increased

• Will fail with circular references

 77

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Failing Example
• Memory leak...
#include <CppUTest/TestHarness.h>

TEST_GROUP(shared_ptr) {
};

TEST(shared_ptr, FailsWithout) {
 int *v = new int;
}

TEST(shared_ptr, FailsWithout)

../SharedPtrExample.cpp:6: error: Failure in TEST(shared_ptr,
FailsWithout)

Memory leak(s) found.

Leak size: 4 Allocated at: ../SharedPtrExample.cpp and line: 7. Type:
"new" Content: "
"

Total number of leaks: 1

 78

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Fixed...
• Using an std::shared_ptr:
#include <memory>

#include <CppUTest/TestHarness.h>

TEST_GROUP(shared_ptr) {
};

TEST(shared_ptr, Fixed) {
 std::shared_ptr<int> v(new int);
}

OK (9 tests, 9 ran, 20020 checks, 0 ignored, 0 filtered out, 112 ms)

 79

#include <shared_ptr.h>

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Fix DiceGame...
• Update Header:

• Update Source:

 80

#include <memory>

class DiceGame {
 ...

private:
 std::shared_ptr<Cup> dice;

DiceGame::~DiceGame() {
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Update Cup...
• Fix Cup to use std::shared_ptr

• Update all the necessary files

• Remember to remove body of dtor in Cup

• Get your tests running:

typedef std::shared_ptr<Die> sp_Die;
typedef std::vector<sp_Die> DiceCollection;
dice.push_back(sp_Die(aDie));

 81

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Check List

Extract class

std::shared_ptr

 82

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Warning: Circular References
• shared_ptr<>’s fail on circular references:

 83

:shared_ptr<Movie>

:Renter :Movie

*

:shared_ptr<Renter>

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Here’s a failing example
#include <memory>

struct Movie;
typedef std::shared_ptr<Movie> sp_Movie;

struct Renter {
 sp_Movie movie;
};

typedef std::shared_ptr<Renter> sp_Renter;
struct Movie {
 sp_Renter checkedOutBy;
};

 84

struct RentAMovieSystem {
 sp_Renter createRenter() {
 return sp_Renter(new Renter);
 }
 void rentAnyMovieTo(sp_Renter &renter) {
 Movie *someMovie = new Movie;
 renter->movie.reset(someMovie);
 someMovie->checkedOutBy = renter;
 }
};

#include <CppUTest/TestHarness.h>

TEST_GROUP(CircularReference) {
};

TEST(CircularReference, Broken) {
 RentAMovieSystem system;
 sp_Renter renter = system.createRenter();
 system.rentAnyMovieTo(renter);
}

V 2.3.4.4_z Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Possible Solutions
• Option 0: Remove Circular Reference.

• Option 1: Use Weak Pointer On “Dependent” Side

• Option 2: Use Normal Pointer Instead

 85

:shared_ptr<Movie>

:weak_ptr<Renter>

:Renter :Movie

*

:shared_ptr<Movie>

:Renter :Movie

*

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

std::weak_ptr
• Weak pointers can be set from shared pointers:

• Note, for this to work:

• Only one shared_ptr on one new Renter

• That one shared_ptr used to create weak reference

• Can you change design to remove circularity?

struct Movie {
 std::weak_ptr<Renter> checkedOutBy;
};

 86

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Raw Pointer
• Update struct:

• And assignment:

 87

struct Movie {
 Renter* checkedOutBy;
};

void rentAnyMovieTo(sp_Renter &renter) {
 Movie *someMovie = new Movie;
 renter->movie.reset(someMovie);
 someMovie->checkedOutBy = renter.get();
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

What’s Coming Up?
• for_each

• accumulate

• bind to call member functions

• pointers to member functions

• _1

 88

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

A Few Built-In Algorithms
• Remember this:

• How about this instead?

void Cup::roll() {
 for(iterator current = dice.begin();
 current != dice.end();
 ++current)
 (*current)->roll();
}

#include <algorithm>

static void rollIt(Cup::sp_Die &die) {
die->roll();

}

void Cup::roll() {
std::for_each(dice.begin(), dice.end(), rollIt);

}

 89

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

And total()...
• Instead of this...

• Try this...

int Cup::total() const {
 int total = 0;

 for(const_iterator current = dice.begin();
 current != dice.end();
 ++current)
 total += (*current)->faceValue();

 return total;
}

#include <numeric>
static int sumIt(int currentSum, const Cup::sp_Die &die) {
 return currentSum + die->faceValue();
}

int Cup::total() const {
 return std::accumulate(dice.begin(), dice.end(), 0, sumIt);
}

 90

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Update Cup
• Use for_each and accumulate

• Compare & contrast

• Do you prefer one over the other?

• What about the file-level functions?

 91

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Try This Instead
• Having to write a method that calls through to a

member method is a hassle. Thus, <tr1/functional>:
#include <tr1/functional>

using namespace std::tr1;
using namespace std::tr1::placeholders;

void Cup::roll() {
 std::for_each(
 dice.begin(),
 dice.end(),
 bind(&Die::roll, _1)
);
}

 92

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

What of accumulate?
• We can also update total:  
 

• You may be thinking &^!@#???

• http://schuchert.wikispaces.com/cpptraining.SummingAVector

int Cup::total() const {
return std::accumulate(

dice.begin(),
dice.end(),
0,
std::tr1::bind(

std::plus<int>(),
_1,
bind(&Die::faceValue, _2)

)
);

}

 93

http://schuchert.wikispaces.com/cpptraining.SummingAVector

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Check List
_1, _2

<algorithm>

<numeric>

accumulate

bind

for_each

function pointer

Pointer to member function

std::tr1::placeholders

 94

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Time Check
• The remainder of this is covered:  

http://schuchert.wikispaces.com/
cpptraining.CppAndOodTheLeastYouNeedToKnow

• Depending on time, we’ll probably switch to the next
project.

 95

http://schuchert.wikispaces.com/cpptraining.CppAndOodTheLeastYouNeedToKnow
http://schuchert.wikispaces.com/cpptraining.CppAndOodTheLeastYouNeedToKnow

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Making Test Writing Easier?
• Hide game internals a bit...

 96

:TestClass

f:
DieFactory

g:
DiceGame

1: create()

2: create(f)

vector<sp_Die>

2.1: d1 := build()
2.2: d2 := build()

2.3.1: create();
2.3.2: push_back(d)
2.3.3: push_back(d)

startTest()

:Cup
2.3: create(d1, d2)

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Oh Wait... Testability
• We still need loaded dice...

• Test will select which factory

• Factory selects die

• DiceGame gets dice from factory

 97

IDieFactory

DieFactory LoadedDie
Factory

Die

LoadedDie

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

The 4-Contact Points
• There are 4 things you might be doing

• Writing test code

• Writing production code

• Refactoring test code

• Refactoring production code

• Do one of these at a time and finish before moving on  
 
http://tinyurl.com/4-contact-points

 98

http://tinyurl.com/4-contact-points

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

New Test...
• We’re not going to change everything at once...

 99

#include "LoadedDieFactory.h"
#include "Die.h"

#include <CppUTest/TestHarness.h>

TEST_GROUP(LoadedDieFactoryShould) {
};

TEST(LoadedDieFactoryShould, ReturnLoadedDie) {
 LoadedDieFactory factory(5);
 sp_Die d = factory.build();
 LONGS_EQUAL(5, d->faceValue());
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

LoadedDieFactory
• Notice the

typedef? Seems it
might be a good
idea to make it its
own beast.

• Otherwise,
anything new
here?

 100

#pragma once
#ifndef LOADEDDIEFACTORY_H_
#define LOADEDDIEFACTORY_H_

class Die;
#include <memory>
typedef std::shared_ptr<Die> sp_Die;

class LoadedDieFactory {
public:
 LoadedDieFactory(int value);
 virtual ~LoadedDieFactory();
 sp_Die build();

private:
 int faceValue;
};

#endif

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

LoadedDieFactory
• Only slightly tricky part is the loaded value to return...

 101

#include "LoadedDieFactory.h"
#include "LoadedDie.h"

LoadedDieFactory::LoadedDieFactory(int value)
 : faceValue(value) {
}

LoadedDieFactory::~LoadedDieFactory() {
}

sp_Die LoadedDieFactory::build() {
 return sp_Die(new LoadedDie(faceValue));
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Build Test & Class
• Time to get this working, create

• LoadedDieFactoryShould.cpp

• LoadedDieFactory.h

• LoadedDieFactory.cpp

 102

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Cup Needs Updating
• Now you need to be able to build a Cup differently...

 103

#include "Cup.h"
#include "LoadedDieFactory.h"

#include <CppUTest/TestHarness.h>

TEST_GROUP(CupShould) {
};

TEST(CupShould, BeConstructableWithSharedPointers) {
 LoadedDieFactory factory(3);
 Cup cup(factory.build(), factory.build());
 LONGS_EQUAL(6, cup.total());
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Cup’s new constructor
• Need a declaration

• Then a definition

 104

class Cup {
public:
 ...

 Cup(sp_Die d1, sp_Die d2);

Cup::Cup(sp_Die d1, sp_Die d2) {
 dice.push_back(d1);
 dice.push_back(d2);
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Get ye a new cup
• Create the CupShould.cpp

• Why did you not already have one of those?

• What about having it now?

• Update the Cup class, get your test passing

 105

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Instantiating DiceGame
• Now update one existing test and get it back to

passing

 106

#include "LoadedDie.h"
#include "DiceGame.h"
#include "LoadedDieFactory.h"
#include <CppUTest/TestHarness.h>

TEST_GROUP(DiceGameShould) {};

TEST(DiceGameShould, DecreaseBalanceForLoss) {
 LoadedDieFactory factory(3);
 DiceGame game (factory);
 game.play();
 LONGS_EQUAL(-1, game.getBalance());
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

New DiceGame Construction
• The new method declared (old one still there for

now)

• And defined

 107

class LoadedDieFactory;

class DiceGame {
public:
 DiceGame(LoadedDieFactory &factory);
 DiceGame(Die *d1, Die *d2);

#include "LoadedDieFactory.h"

DiceGame::DiceGame(LoadedDieFactory &factory):balance(0) {
 sp_Die d1 = factory.build();
 sp_Die d2 = factory.build();
 dice.reset(new Cup(d1, d2));
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Make your updates
• Update this one test

• Get everything to green

• Update the next test: IncreateBalanceForWin

• Oops! There’s one test we cannot change...

• Review LeaveBalanceAloneForPush

• How are we going to fix that?

 108

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

One way... LoadedDieFactory
• Of course, start with a test:

 109

TEST(LoadedDieFactoryShould, BeAbleToTakeTwoValues) {
 LoadedDieFactory factory(3, 4);
 sp_Die d1 = factory.build();
 sp_Die d2 = factory.build();
 LONGS_EQUAL(3, d1->faceValue());
 LONGS_EQUAL(4, d2->faceValue());
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

And an updated header
• Add an overloaded constructor

• Be able to return up to 2 unique values

 110

class LoadedDieFactory {
public:
 LoadedDieFactory(int firstValue, int secondValue);
 LoadedDieFactory(int value);
 virtual ~LoadedDieFactory();
 sp_Die build();

private:
 int values[2];
 int lastIndex;
};

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

And the new definitions...

 111

LoadedDieFactory::LoadedDieFactory(int value) : lastIndex(-1) {
 values[0] = value;
 values[1] = value;
}

LoadedDieFactory::LoadedDieFactory(int firstValue, int secondValue)
 : lastIndex(-1) {
 values[0] = firstValue;
 values[1] = secondValue;
}

LoadedDieFactory::~LoadedDieFactory() {
}

sp_Die LoadedDieFactory::build() {
 lastIndex = (lastIndex + 1) % 2;
 return sp_Die(new LoadedDie(values[lastIndex]));
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Update it
• Get the factory updated

• Once you have the updated factory, fix the last test

• Now for cleanup

• Remove the old constructor from DiceGame

• In fact, remove all references to Die in the h & .cpp

• Opinions?

 112

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Improved?
• Was this too much?

• Should we have left it as is, taking two die objects?

• Could we anticipate this and design accordingly?

• Oh, did you notice there’s still more to do?

 113

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

There’s no DieFactory
• One issue with Test Doubles...

• Can you build a real system?

• We cannot

• There’s no DieFactory

• We have a few more moving parts to finish this effort

 114

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Extract an interface...
• Even though C++ does not have interfaces...

 115

#pragma once
#ifndef IDIEFACTORY_H_
#define IDIEFACTORY_H_

class Die;
#include <memory>
typedef std::shared_ptr<Die> sp_Die;

class IDieFactory {
public:
 virtual ~IDieFactory() = 0;
 virtual sp_Die build() = 0;
};

#endif

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

One Method Implemented
• Even though destructor pure virtual...

• Makes sure whole hierarchy cleans up well

• But subclasses not forced to implement

• Best of both worlds

 116

#include "IDieFactory.h"

IDieFactory::~IDieFactory() {
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Then change LoadedDieFactory
• This is it...

• If you forget public, it won’t be substitutable

• Common mistake

• Default is private

 117

#include "IDieFactory.h"

class LoadedDieFactory : public IDieFactory {

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Now DieFactory
• This test is a bit different

 118

#include "DieFactory.h"
#include "Die.h"
#include <typeinfo>
#include <CppUTest/TestHarness.h>

TEST_GROUP(DieFactoryShould) {
};

TEST(DieFactoryShould, ReturnOnlyDie) {
 DieFactory factory;
 sp_Die die = factory.build();

 CHECK(typeid(Die) == typeid(*die.get()));
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

DieFactory...

 119

#pragma once
#ifndef DIEFACTORY_H_
#define DIEFACTORY_H_

#include "IDieFactory.h"

class DieFactory
 : public IDieFactory {
public:
 DieFactory();
 virtual ~DieFactory();
 sp_Die build();
};

#endif

#include "DieFactory.h"
#include "Die.h"

DieFactory::DieFactory() {
}

DieFactory::~DieFactory() {
}

sp_Die DieFactory::build() {
 return sp_Die(new Die);
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

DieFactory
• Time to create the test and files for DieFactory

• What do you think of typeid?

• Isn’t this type-checking?

• If you have some spare time, google

• dynamic_cast

• static_cast

• const_cast

• reinterpret_cast

 120

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Finally, a Smoke Test...
• Can the game be built correctly?

• This isn’t a unit test... Just what is it?

 121

#include "DiceGame.h"
#include "DieFactory.h"
#include <stdio.h>
#include <CppUTest/TestHarness.h>

TEST_GROUP(DiceGameSmokeTest) {
};

TEST(DiceGameSmokeTest, StandardUse) {
 DieFactory factory;
 DiceGame game(factory);

 for(int i = 0; i < 28219; ++i) game.play();

 char balance[32];
 snprintf(balance, 32, "Balance = %d", game.getBalance());
 UT_PRINT(balance);
}

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Wrap it up!
• Write this smoke test

• It won’t compile

• So fix that

• What’s the output you get?

• Where does this test belong?

• What did it force you to do?

• If you do decided to add such a test to your unit test
suite, remove the output.

 122

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Check List

Abstract Factory

Factory

Interface Inheritance

Order of creation

Order of destruction

Pure virtual dtor

 123

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Final Recommendations

 124

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

You’ve got a good start...
• You have used quite a bit of C++, there’s much more

• Books to add to your library:  
Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions 
More Exceptional C++: 40 New Engineering Puzzles, Programming Problems, and
Solutions 
Accelerated C++: Practical Programming by Example 
Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition)  
Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library

• Practice, practice, practice

• Consider working through Monopoly again

• Code Katas: http://schuchert.wikispaces.com/Katas

• A final question:

 125

http://schuchert.wikispaces.com/Katas

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Rpn Calculator

 126

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

A Brief History of Rpn
• Created in 1920’s by Jan Łukasiewicz

• Doesn’t require “look ahead”, easier to implement

• No operator precedence, execute as soon as encountered

• AKA post-fix (normal is in-fix, functions are closer to pre-fix)

• HP 9100A, 1968

• 3-level stack (X, Y, Z)

• 16 storage registers

• Several functions

• 40 Pounds

• Under USD $5,000
 127

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Project Description
• Develop a programmable Rpn calculator

• Basic operations such as add, subtract, multiply, divide

• Other functions such as sum, factorial, prime factors

• Stack operations such as dup, drop, rotate up/down

• Easy to add new operations

• Create macros by combining existing operations

• Macros execute as if they are built-in operators

• Deviations

• Allow larger that 4-entry stack

• Use integer math for simplicity

 128

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

What’s Coming Up
• Analysis to Design

• Test Driven Development

• Overview

• GRASP, SOLID, Code Smells, Legacy Refactoring, Test Doubles

• The 4 Actions

 129

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Iteration Specifications
• Here are some examples to describe this iteration

Given When Then

30 4 + 34

30 4 - 26

4 6 * 24

8 2 / 4

5 ! 120

1 - -1

+ 0

$%^unknown*&^ <error>

 130

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Example Use
• Given a new calculator

1. where the user first enters 30

2. and then enters 4

3. and finally selects add

4. then the result should be 34

 131

0 T
0 Z
0 Y
0 X

0 T
0 Z
0 Y

30 X

0 T
0 Z

30 Y
4 X

0 T
0 Z
0 Y

34 X

1: enter 30 2: enter 4 3: add

4: then

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Subtraction
• What happens with subtraction and only 1 number?

• Start with a new calculator

• Enter a single number

• Subtract is defined as Y - X, which is 0 - 1 in this case:

 132

0 T
0 Z
0 Y
0 X

0 T
0 Z
0 Y
1 X

0 T
0 Z
0 Y
-1 X

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Consider Multiple Consumers
• Discuss

 133

GUI TUI Rest API Tests

RpnCalculator

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Sequence Diagrams
• Develop Sequence Diagrams for

• Add

• Factorial

• Two Levels of Detail (1st system, then object)

• System level (actor to system)

• Object level (detailed interaction)

• As you do ...

• Consider several kinds of clients: web, gui, text, test

• Hint, stacks are in the domain (see any HP calculator manual)

• Yes, that much detail
 134

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Key Design Decision
• By digits or by numbers?

• By numbers - to “enter key” or not?

 135

Rpn Calculator

By Digits By Numbers
press(3)
press(0)
enter()
press(4)

enter(30)
enter(4)

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Key Design Decision
• Method per operator or parameterized?

• What would the Open/Closed Principle Suggest?

 136

Rpn Calculator

By Method By Parameter
add()
subtract()
multiply()
divide()
factorial()

perform("+")
perform("-")
perform("*")
perform("/")
perform("!")

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

One Possible Approach
• This will get the job done

• it’s more that Extreme TDD would suggest

 137

Rpn Calculator s: Stack Add

enter(30)
push(30)

enter(4)

execute(s)

perform("+")

findOperatorNamed("+")

rhs := pop()
lhs := pop()

push(lhs + rhs)

push(4)

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Test Driven Development
• We’ll be applying (modified) laws of TDD

• Write no production code without a failing test

• Write a failing test

• Get the test to pass

• Another way to think of it:

• Red — Write Failing Test

• Green — Get Failing Test to Pass

• Blue — Refactor

 138

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

(Red)Writing a Failing Test
• For now, start with your SSD’d

• Create tests for each SSD, one at a time

• Use common setup to guide creating fixtures

• Use API calls on a controller object

• Get the code to compile with the test failing

• Test “too big”? Break it into parts and work on that part.

• If so, do you think a dynamic diagram might help the design?

 139

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Getting to (Green)
• Given a failing test

• Write just enough code to get it to pass

• Might be hard-coded return

• Might be more general

• Write the simplest thing that could possibly work

• Observations

• Code should be more general as tests added.

• Simple is not the same as stupid!

• Do not make other tests fail along the way

 140

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

(Blue)Refactor
• Review production code and tests

• Look for code smells

• Consider removing them

• Consider generalizing based on what’s coming up

• All generalizations add cost, make sure the’ll payoff

 141

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Time to Code
• Create a new project

• Set up: include & library directory / add library

• Make sure to set: refresh automatically, save before build

• Test your way into

• Getting add to work

• Getting subtract to work

• Getting factorial to work

 142

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Well... Hum
• There are problems with the code

• Duplication between Add and Subtract

• Selecting the operator’s not going to grow well

• Other things you notice?

 143

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Pay down the debt
• Time to pay down our design debt

• Design & implement duplication removal

• Improve operator selection

• Anything else we’ve identified.

 144

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

After all of that refactoring

 145

RpnCalculator

<<factory>>
MathOperator

Factory

Add Subtract Multiply Divide

Factorial

execute(:RpnStack):void
doExecute(:int, :int):int

<<template method>>
Binary Math

Operator

RpnStack

execute(:RpnStack):void

<<interface>>
<<strategy>>

IMathOperator

1

1

*

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Strategy
• Replace interchangeable algorithms with hierarchy

• Keys:

• Base interface

• Single method - client does not select what to call

• Examples

• Billing Strategy: retail, business, industrial

• Monopoly: Reading card from community chest or chance

 146

execute(...)

<<interface>>
StrategyClient

Algorithm_1 Algorithm_2 Algorithm_n...

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Template Method
• Base algorithm w/extension points in child classes

• Keys

• Base method calls abstract methods

• Abstract methods implemented in derived class

• Examples

• Protocol Enforcement

• Monopoly: Rent calculation

 147

baseAlgorithm(...)
extensionPoint(...)

<<abstract>>
TemplateMethodClient

extensionPoint(...)
Version_1

extensionPoint(...)
Version_2

extensionPoint(...)
Version_n...

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Abstract Factory
• Describe an interface for building objects

• Key

• Maps some identifier to an object

• May create new objects, copy existing ...

 148

build(...)

<<interface>>
FactoryClient

Factory_1 Factory_2 Factory_n...

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Iteration Specs
• Here are some examples to describe this iteration

Given When Then

1 2 swap 2 1

15 4 drop 15

42 dup 42 42

3 4 2 ndup 3 4 3 4

 149

3<enter>
5<enter>
2
sum
10

Given When Then

1 primeFactors

2 primeFactors 2

3 primeFactors 3

4 primeFactors 2 2

5 primeFactors 5

6 primeFactors 2 3

7 primeFactors 7

8 primeFactors 2 2 2

9 primeFactors 3 3

10 primeFactors 2 5

11 primeFactors 11

12 primeFactors 2 2 3

64 primeFactors 2 2 2 2 2
2

75 8 primeFactors 75 2 2 2

Extra Credit

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

You’re on your own
• You have some time

• Use TDD to develop Sum

• Use TDD to develop Prime Factors

• Oh, how did you test that they are available to the calculator?

• You have an Operator Factory...

• What happens if you accidentally replace existing operator?

 150

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Final Iteration
• Here are some examples to describe this iteration

start
+
*
-
save ams
3<enter>
5<enter>
2<enter>
13
ams
-72

 151

start
primeFactors
sum
save sumOfPrimeFactors
12
sumOfPrimeFactors
7

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Extra Credit

 152

start
2
*
save times2
6<enter>
times2
12

start
2
ndup
<
if
drop
else
swap
drop
then
save min
4
6
min
4
-1
min
-1

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Programmable
• Google the composite pattern 

http://schuchert.wikispaces.com/
cpptraining#LinksToDesignPatterns

• Use it as part of your design for programmability

• Design an appropriate solution

• End to end

• Does this functionality belong in the calculator?

 153

http://schuchert.wikispaces.com/cpptraining#LinksToDesignPatterns
http://schuchert.wikispaces.com/cpptraining#LinksToDesignPatterns

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Composite Object
• A composite behaves as something else...

• And holds one to zero or more of those

 154

execute(...)

<<interface>>
StrategyClient

Algorithm_1 Algorithm_2 Composite...

*

:Composite:Composite :Collection

:Add

:Multiply

:Subtract

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Composite
• Sending message to Composite...

• Sends a message to each of its contained objects

 155

AddComposite

execute(s: Stack)

Multiply Subtract

execute(s: Stack)

execute(s: Stack)

execute(s: Stack)

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Project Recap
• Started with a small solution

• Now it is programmable

• Looking back, did it seem possible? Rushed?

• How do you do this going forward?

• What’s next to learn?

 156

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

• Here’s a staring list to help with OOD

• http://schuchert.wikispaces.com/TddIsNotEnough

Design, Design, Design

GRASP Craig Larman

SOLID Robert Martin

Code Smells Martin Fowler

WELC Michael Feathers

Test Doubles Several

Coding Katas Several

Design Patterns Gang of 4

 157

http://schuchert.wikispaces.com/TddIsNotEnough

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

GRASP
Information
Expert Assign responsibility to the thing that has the information.

Controller Assign system operations (events) to a non-UI class. May be
system-wide, use case driven or for a layer.

Low Coupling Try to keep the number of connections small. Prefer coupling to
stable abstractions.

High Cohesion Keep focus. The behaviors of a thing should be related.
Alternatively, clients should use all or most parts of an API.

Polymorphism Where there are variations in type, assign responsibility to the
types (hierarchy) rather than determine behavior externally,

Pure Fabrication Create a class that does not come from the domain to assist in
maintaining high cohesion and low coupling.

Protected
Variations

Protect things by finding the change points and wrapping them
behind an interface. Use polymorphism to introduce variance.

 158

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

• http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

SOLID Principles

S Single Responsibility Single Reason to Change

O Open/Closed Open for extension closed to change

L Liskov Substitution Derived types substitutable for base
types

I Interface Segregation Interfaces should be focused (small)
& client specific

D Dependency Inversion Dependencies should go from
concrete to abstract

 159

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Package Cohesion/Coupling
• Guidelines for package cohesion 

• Guidelines for package coupling

REP Release/Reuse
Equivalency What you release is what you reuse.

CCP Common
Closure

Classes that change together should be
packaged together

CRP Common
Reuse

Classes that are used together should be
packaged together

ADP Acyclic
Dependencies No cycles in your dependencies

SDP Stable
Dependencies

Dependencies should go from less to
more stable. Depend on stable things

SAP Stable
Abstractions Abstraction increase with stability

 160

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

A Few Code Smells
• A few of Martin’s code smells:  

• http://c2.com/cgi/wiki?CodeSmell

 161

Poor Names Name suggests wrong intent

Long methods More than 1 thing/multiple levels of abstraction

Large classes More than one concept/multiple levels of abstraction

Long parameter list Too many arguments to keep straight (> 3)

Duplicated code Same or similar code appears in more than one place

Divergent change The class/method changes for dissimilar reasons

Shotgun Surgery Single change affects multiple classes/methods

Feature Envy One class uses another class’ members

Switch Statements Duplicated switches/if-else’s over same criterion

http://c2.com/cgi/wiki?CodeSmell

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Some Legacy Refactorings
• From Working Effectively with Legacy Code

Adapt Parameter 326 Change parameter to an adapter when you cannot use
extract interface

Break Out Method Object 330 Convert method using instance data into a class with a
ctor and single method

Encapsulate Global
References 339 Move access to global data into access via a class to

allow for variations during test

Extract and Override Call 348 Turn chunk of code into overridable method and then
subclass in test

Extract and Override Getter 352 Turn references into hard-coded object into call to
getter and then subclass

Extract Interface 362 Extract interface for concrete class, then use interface.
Override in test.

Introduce Instance
Delegator 317 Add instance methods calling static methods. Call

through instance, which test subclasses.
Parameterize Constructor  
Parameterize Method

379  
383

Examples of Inversion of Control (IoC)

Subclass and override
method 401 Test creates subclass & passes it in/requires some IoC

Sprout Method
Sprout Class

59
63 Create a method or class out of existing code.

 162

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Test Doubles
• Gerard Meszaros 

http://xunitpatterns.com/Test%20Double%20Patterns.html

Dummy Empty implementation. Not called or
don’t care if it is

Stub Canned replies – “snapshot in time”

Spy Watches and Records

Fake Partial Simulator

Mock Has & Validates expectations

Saboteur Designed to always fail, e.g., always
throws an exception.

 163

http://xunitpatterns.com/Test%20Double%20Patterns.html

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Design Patterns
• From: Design Patterns: Elements of Reusable Object-Oriented Software

 164

Strategy Define a function or algorithm as a class. Form a wide but
shallow hierarchy of different algorithms.

Template
Method

Write an algorithm in a base class with extension points
represented as abstract methods. Subclass and override.

Abstract
Factory

A base interface for creating one or a family of objects
through a standard API. Create implementations for each
family of objects that need to be created.

Composite A class that implements some other interface and also
holds onto zero or more instances of that same interface.

State
Similar to strategy, though the states are interdependent.
States can cause a so-called context to change from one
state to another during its lifetime.

Copyright © 2010, Brett L. Schuchert – All Rights ReservedVersion 2.5

Additional Resources
• Video Series 

• Mocking 
 

• Other

 165

C++ Dice Game http://vimeo.com/album/254486

C# Shunting Yard
Algorithm

http://vimeo.com/album/210446

Java Rpn Calculator http://vimeo.com/album/205252

iPhone iPhone & TDD http://vimeo.com/album/1472322

Java Mockito http://schuchert.wikispaces.com/Mockito.LoginServiceExample

C# Moq http://schuchert.wikispaces.com/Moq.Logging+In+Example+Implemented

Java FitNesse http://schuchert.wikispaces.com/FitNesse.Tutorials

Ruby Several http://schuchert.wikispaces.com/ruby.Tutorials

Java UI http://schuchert.wikispaces.com/tdd.Refactoring.UiExample

http://www.vimeo.com/album/254486
http://vimeo.com/album/210446
http://www.vimeo.com/album/205252
http://vimeo.com/album/1472322
http://schuchert.wikispaces.com/Mockito.LoginServiceExample
http://schuchert.wikispaces.com/Moq.Logging+In+Example+Implemented
http://schuchert.wikispaces.com/FitNesse.Tutorials
http://schuchert.wikispaces.com/ruby.Tutorials
http://schuchert.wikispaces.com/tdd.Refactoring.UiExample

Version 2.3.4.3 Copyright © 2010 - 2012, Brett L. Schuchert – All Rights Reserved

Fin.

 166

Thank
You!

