© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

C++ and Object Design:
the least you need to know

Version: 0.3a 1 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11
INTRODUCTION 1
1.1 RTAT A 1)V 1 4 130 o To o 1 1 USSP 1
1.2 HOW IS It AIffEIENTY .. et e e e e et e be bbb a e e e e e e e e e eeebebbbbaan s 2
1.3 ATAYd g L o (o T = o 1T o S 3
1.4 Standing on the Shoulders Of GIANESuiiii i e eeee e 3
2 OBLIGATORY HELLO WORLD 5
2.1 SEetting UP YOUI €NVIFONIMENT. .. .iiiiii et e e e e et e e e et e e e et e e e e et e e aesa e e e rasan e e aaerenaes 5
2.1.1 The Tools 5
2.1.2 Installing the Java Developers Kit (JDK) 6
2.1.3 Installing Eclipse CDT 6
2.1.4 Starting Eclipse CDT 6
2.1.5 Installing the Wascana Plugin 8
2.1.6 Downloading CppUTest 8
2.1.7 Building CppUTest 8
2.2 MECNANICS Of CPPU T EST .. ittt e e e e e e e e et e e e eas e e e e et e e e eeaanns 9
2.2.1 Creating a Project 10
2.2.2 Include Path, Library Path and Included Libraries 10
2.2.3 A Few Convenient Settings 11
2.2.4 Adding a CppUTest main() function 12
2.2.5 Adding a first test 13
2.2.6 Experiments in Failure 15
2.3 L= o1 | o PP 15
2.3.1 Terminology 15
2.3.2 Highlights 18
3 THE DICE GAME 20
3.1 WHAE'S ANEAU? ...ttt e e e e e e e e e e e e 20
3.2 B LS .= T o USSP 20
3.2.1 Notes on UML 20
3.2.2 The Rules of the Game 21
3.2.3 One Development Strategy 21
3.3 THE FIPSE TS, .ottt ittt ettt et e e e e e e e e e e et e e e e e e bbb 21
3.3.1 Create the testfile 23
3.3.2 Die Header 23
3.3.3 Die Source 25
3.4 T (o] [T PP PP PPPUPPPPPPPRTTN 25
3.4.1 Results 25
3.4.2 Exercises in Failure 26
3.4.3 Concept Review 27
3.4.4 Final Observation 29
Version: 0.3a 1 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.5 = LT To L] o] (0 Y/= 0 1 T=Y £ 29
3.5.1 Updated Test 29
3.5.2 Whento Clean Up 30
3.5.3 Updated Die Header File 30
3.5.4 Updated Die Source File 30
3.5.5 Exercise: Update Die 31

3.6 (D] AV o] F- 11T o EO PSP U PP 31
3.6.1 Removing Duplication 31

3.7 A Message 0N TSt GranUIAIILYiiiiiiiiie i e e e e e et e e e et e e e aataeeaens 33
3.7.1 Recap 34

3.8 Fixing an anemic roll MELNOM.o e e e e e e e e e e ee e s 35
3.8.1 Validating Roll Distribution 35
3.8.2 Updated Header File 41
3.8.3 Updated Source File 42
3.8.4 Recap 47

3.9 (08 [0 1011 1 T TP PP PP PPPPTP 51
3.9.1 Updated Header File 51
3.9.2 Updated Source 52
3.9.3 Recap 53

1 70 0 VAV o T= LS oo] 41T o U o PSP 54

311 REVIEW GAME RUIES ...ttt e e e e e e e e e e e bbb 54
3.11.1 Test Control 55
3.11.2 Dependency Injection 56
3.11.3 Polymorphism Moving Parts 57

3.12 Testing INto It: LOAEUDIETES......cciiieeeeieieie et e e e e e e e et e e e e e e e e eeeseearanannaeeeeees 58
3.12.1 Options: Interface/Concrete Inheritance 58
3.12.2 LoadedDie Implementation 59
3.12.3 Get your test passing 59
3.12.4 Experiment in Failure 59
3.12.5 Fixing It 60
3.12.6 Overloading faceValue versus roll 60
3.12.7 Fixing Die: Command Query Separation 62
3.12.8 Review 62

313 WHAE'S ON DECK? ...ttt e e e e e e e 62

3.14 Test-Driven WalKthroUgQN..........ooouuiiii e e e e e e et e eeeaaaa s 63
3.14.1 What's required to make this work? 63
3.14.2 DiceGame Header 64
3.14.3 DiceGame Source 64
3.14.4 Get it Compiling 65
3.14.5 Handle the memory leak, fix the test 66
3.14.6 Always losing is no fun 68
3.14.7 Experiments in Failure 70

1 70 L = (=T o7 | o TP 75

70 KV o T= LS oo] 41T o U] o PSP 79

Version: 0.3a 2 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11
3.16.1 Remember Cup class? 79
3.16.2 Refactoring: Definition 80
3.16.3 Updated Cup Header 80
3.16.4 Updated Cup Source 81
3.16.5 Getting to Compiling 81
3.16.6 Updating DiceGame 82
3.16.7 What of the idiom? 86
3.16.8 A Logical Fix to Cup 87

3.17 What is going 0N WIth CONSE?ccoiii e e e e e e e e e e e e e e 88

3.18 Taking SMall StEPS, RECAP .. .uiiieeeeeiie ettt e e e e e ee e e e e e e e e e e e ee et e e s e e e eeeeeaernrannanaaeaeeees 91

G0 S R |V =T 4 g1 YA A | o Tt [o 92
3.19.1 std::shared_ptr 92
3.19.2 Fixing DiceGame 94
3.19.3 Fixing Cup 96

3.20 Warning: Circular REFEIENCESccoiiiiieiiiiie e e e e e e e e e e e aer e e e e e eeees 97
3.20.1 The Problem: A concrete example 97
3.20.2 Options 100

T3t R (=T ot o OSSPSR 102

30 YV o T= LS 0o 1 11 o T o 1 O 102

3.23 A FeW BUIlt-IN AlGOTMISee i e e 103
3.23.1 Updated roll() 103
3.23.2 Updated total() 106
3.23.3 Recap 108

2 N 11 o] o)Y7=To I =TS AV 11T S 109
3.24.1 Pass a factory into DiceGame 109
3.24.2 Oh Wait, testability 110

3.25 The 4-contact points of software developmeNnt............oooouiiiiiiiiiii e 110
3.25.1 Why? 111

3.26 Create @ CONCIEIE FaCIONYttt et e e e e e et e et e e e e e e e et s e eeaeaeen 112
3.26.1 First Test against the Factory 112
3.26.2 Define the class: LoadedDieFactory 113
3.26.3 Define the methods: LoadedDieFactory 113

T A O [o To = L= 4 U= o o LSS 113
3.27.1 The Test 113
3.27.2 A new constructor 114

3.28 Dice Game INSTANTIALIONuie ettt e e e e e e e e e et bbb e e e e e e e e e esesbbaa e e e e eeas 114
3.28.1 First a test 114
3.28.2 Notice a pattern? New Constructor 115
3.28.3 Update the second test 115
3.284 Oops, not there yet 116

3.29 Extending Loaded Die FACIOIYccoiviiiiiiiiiiiie e eee et e e e e e e e e et s e e e e e e aeeaennrannanaeeneeas 116
3.20.1 Here’s a test 116

Version: 0.3a 3 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11
3.29.2 The Updated Class 116
3.29.3 Return to green 117
3.294 Back to that final test 117
3.29.5 Why modify this final test at all? 118

IR0 B T - | 1 =T o T o O 118
3.30.1 DiceGame 118
3.30.2 Cup 118
3.30.3 Common typedef 118

331 IS RIS DI e e et a e e e e b 119
3.31.1 Can we even play a real game 119
3.31.2 Problem with Test Doubles 119

3.32 Refactor: EXIraCt INEIfACE.coiiiiet e 119
3.32.1 The Class Definition 119
3.32.2 Implementing the pure virtual destructor 120
3.32.3 Update LoadedDieFactory 120

IR B (011 VA I =T = o (] Y 120
3.33.1 First the test 121
3.33.2 The Implementation 121
3.33.3 Get to Green 122

.34 A SIMOKE TS ..ttt e et e e et bbb e e e et e e e et b 122
3.34.1 Make the required updates 122
3.34.2 Back to green 123
3.34.3 Where does this test belong? 123

TG 1o T VA = T o U | o PPN 123

3.36 Final RECOMMENUALIONS.cciiiiiiiiii ittt e e e e e e e e e e bbb e e e eeeees 124
3.36.1 Books 124
3.36.2 Katas 124
3.36.3 Practice 124

IR A YLV = Y a3 ot 01T T S 125

4 RPN CALCULATOR 126

4.1 (o [=Tod DTS od] o) 1] o SN 127

4.2 LAY g = Lt @] 1 41 o 0 o PSS 127

4.3 (21 o o) 11U 0= Uo 11 T | o TS 127

4.4 (DY (o o BN =T 4] o =TS 128

4.5 (0 =Tod ST =] (U] o S 129

4.6 THE fIrSt UNIt CRECK ... e 129
4.6.1 Was all of this necessary? 132
4.6.2 Add: The First Test 132

Version: 0.3a 4

Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.7 SUDLFACE: THE SECONT TS .. ettt e et e e e e e e e e e a e e 134
4.8 What about ACLUAI VAIUES? ...ttt e e e e e e eeaeeaaeanns 135
4.9 [o] o PSP 136
4.9.1 Firstintroduce the stack 137
4.10 Getting FactOorial WOTKINGoiieei e e e e e e e e e et e e e e e e e e e e aan s 139
A.11 REVISIE AU ...ttt e et e et e e e e e e e e e e 140
4.11.1 Feature Envy 141
4.12 Resolving Feature Envy: Writing Our OWN STACKcooiiiiiiiiiieiiiiii e e e e e e e 141
4.12.1 First test: top works on an empty stack 142
4.12.2 Update RpnCalculator 144
413 FNISN SUDLIACT ...ttt e e e e e e e e n e e e 144
o 7 B (= T- To [=To I B TU o] [for=1 i o] Ko] g 0 146
4.14.1 Extract Classes 147
4.14.2 Keeping it the same 149
4.14.3 Updating Subtract 149
4.14.4 Drop 150
4.14.5 Factorial 151
415 RemMOVING DUPIICALIONuiii it e s s e e e e et e et e s e s e e e e e e eeatenan e s eeeaeeeeeaees 151
4,151 It consumes two values 152
4.15.2 It calls an extension point with the correct parameters 156
4.15.3 It stores the result 157
4.15.4 Updating Add and Subtract 157
4.15.5 Not updating drop 158
416 Al thOSE METNOUS ...ttt ettt e e e e e e e et ee bbb e e e e aaaaaeeees 158
4.16.1 An example based migration 158
4.16.2 Migrating the subtract() method 159
4.16.3 Finish the transformation 160
A B Y/ oL I U] LT 1 1= PR 161
I S o o o 1Y/ 1 o o PSSP 162
e B N @] g o] (= (=3 = Ty (o] Y A PP 164
4.19.1 Actually using the factory 165
4.20 Retargeting AUtomMated ChECKS........ccuuiiiii e e e e 166
4.20.1 Add 168
4.20.2 Drop 169
4.20.3 Factorial 170
4.20.4 MathOperation 171
4.20.5 MathOperationFactory 171
4.20.6 Subtract 171
o R o [o [T o I\ LW o] T4 o o I T 172
oy o [o 11T I 1Y] T] o T 173

Version: 0.3a 5 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.23 MathOperationFactory refactoring: Storing Math Operations...........cccooveeveeiieriviiiiiiiinin e eeeeanns 175
4.24 MathOperationFactory refactoring: Automatic Math Operation Registrationc..c.cccevvunnn.. 177
4.24.1 An object for registration 177
4.24.2 Automatically Register Multiplication 181
4.24.3 Split registrant 182
4.25 Add MiSSING EXAMPIEScoiuiiiiiii et e e e e e e 183
I o 1 1 AR U Ty o = 1Y/ USSP 184
5 RPN CALCULATOR — SPRINT 2 - GROWING FEATURES 186
5.1 2o Lo 1o TS o PSS 186
5.2 [T I o - T PSPPI 188
5.3 Equal To and Greater tNancuuuiiiiiiiie e e e e e e et e e e e e e e eeeanes 189
5.4 Y1121 61 PSPPSR PPPRPS 189
5.5 [11 o PPN 191
5.6 N T o TP PPURUPPTRTT 191
5.7 PHIME FACTOIS ...ttt bttt et ettt et e e e e e e e aeaeeaeanaens 193
57.1 Of2.. 194
572 Of3... 195
5.7.3 0Of4 ... multiple values 195
5.7.4 Of5 ... 195
5.7.5 Of 6 ... two values, but they are different 195
57.6 Aswil7 ... 196
5.7.7 But 8 is different, 3 values, instead of just 2. 196
5.7.8 Is 9 different? 196
5.7.9 Register It 197
5.8 Examples as ReJECHION CHECKSccoieiiiiiiie i e e e e e e e eeeeeeenanes 197
6 RPN CALCULATOR - SPRINT 3 — MACROS 200
6.1 [F= T 0] 0}V == 11 o S 200
6.1.1 A Macro 201
6.1.2 Adding to factory 203
6.1.3 Adding it to RpnCalculator 204
6.2 Empty Mmacros NOt @llOWEoouuiiiiiiiie e e e e e e e e e e e e aeaees 205
6.2.1 Must call start first() 206
6.2.2 Unknown operation cannot be added to a macro 206
6.2.3 Cannot save under existing name 207
6.2.4 Adding missing check on the factory 209
6.2.5 Macros can refer to other macros 209
6.3 Cleaning UP the CAlCUIALONciee e et r e e e e e e e e e aneennn e e e neeas 209
6.3.1 Calculation Mode 212

Version: 0.3a 6 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know

08/04/11

6.3.2 Executes Operations Directly

6.3.3 Throw exception when told to save

6.3.4 Change to Programming Mode When Told To Start
6.3.5 Programming Mode

6.3.6 Record Steps for Execution

6.3.7 Adding macro to factory

6.3.8 Saving causes state change

6.3.9 Other checking

6.3.10 What about the start method?

6.3.11 Ready to finish what we've started...

6.4 Updating RpnCalculator t0 USE State...ccuvuiriiiiie e e e

6.4.1 Final Cleanup
6.4.2 Summary

7 RPN CALCULATOR — SPRINT 4 - MORE COMPLEX BLOCKS

7.1 (O 1011 o]0 @] o =T =1 1 0] 1T PP

7.1.1 The “.” operator
7.1.2 It Should Be Registered...

7.2 Emit and a problem with growing interfaces...cccccvviiviicicii e

7.2.1 Emit should be registered

7.3 [T T= 120 o

7.4 Migrating to new Perform Interface.........coooovvviiiiiiiiii e

7.4.1 BinaryMathOperation

7.4.2 Update the calculator

7.4.3 The magic of checks

7.4.4 The Newest Math Operations
7.4.5 Dup

7.4.6 What Remains

7.5 Numeric Constants as OPEratiOnNS..........covveuuuiiiiiiieee e e e e e s

7.6 I TNEN L BISE e

8 RPN CALCULATOR — SPRINT 5 - FITNESSE & CSLIM
8.1.1 A spec-driven example
8.1.2 A sequence diagram showing flow

8.2 P aXo [0 LT To Jr= W o F= 1S (o () A U

8.3 Adding several MOre OPEIAtOrS.uu it eieeeie et ee e e e e et e e e e e e e e e eeeeeeaeeennns

8.3.1 ifelse
8.3.2 ntimesdo
8.3.3 ConditionWhileDo

8.4 Programming the Calculator with @ StriNgccceviieiiiiiiiciee e

8.4.1 Example forth program

8.4.2 Breaking it into parts

8.4.3 Building a Basic Sequence
8.4.4 Building a conditional sequence

214
214
215
217
218
219
219
220
222
222

.................. 222

223
223

.................. 230

.................. 231

231
233
234
235
235
236

Version: 0.3a 7 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11
8.4.5 Building a complex sequence 238
8.4.6 Adding the behavior into the calculator 238
8.4.7 Exercising the new behavior from the text ui 238
8.4.8 Saving your extensions 238

9 WHERE TO GO NEXT? 239

9.1 LI 1 5 AN Lo B =1 T 18 o | o PSPPI 239
9.1.1 GRASP 239
9.1.2 SOLID +D 239
9.1.3 Code Smells 239
9.1.4 WELC 239
9.1.5 Test Doubles 239
9.1.6 Coding Katas 239
9.1.7 The 4 Actions (should be sooner) 239

10 APPENDIX A: REVEALING THE MAGICIAN 240

10.1 AFTAYS VEISUS POINTEIS ..oiieieiiiiiiiiiseeeeeteteeetutesaaeseeeeeeeesaestetnneaaasaeaeeeeeeaessesnnnaaaeeaaeeeesesssnnnnaaaaees 240
10.1.1 Koenig's i[3] == 3[i] trick 240

10.2 MethodS VEISUS FUNCHIONSuiiiiiiiiiiiiiiit ettt et e e e e aeeaaaee e s 240

O JRC I @ T o T=T = do g @ 1Y/=T 4 (o = To [T Vo TSP 240

O @ 1Y/ T [0 = To [T o IR PSP 240

O I @Y g [o = To [T To B o Y =T € U LS U 240

10.6 VIrUAI FUNCLIONS ...ttt ettt et e e e et e e e e aeeaeaeenaens 240

10.7 new & delete Versus MalloC & frEE.......coeiiuiiiiii e 240

11 APPENDIX B: MORE COMPLEX COMPOSITION WITH BIND 241

12 APPENDIX C: FITNESSE, A QUICK INTRODUCTION 242

13 TO BE DELETED 243

G 700 R V] 1o VAL o i1 2 0 PP PPPRPURPPR 243

14 INDEX 247

Version: 0.3a 8 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 9 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Introduction

| started using C++ and Smalltalk in 1989; C++ assearch assistant, and Smalltalk in
an Object Oriented Languages Seminar, both at theetsity of lowa. In the spring
semester of 1990, while taking an advanced Opgr&ystems course, | made a decision
to use C++ (C Front 1.1), not allowing myself td Emck to “plan old C” until |
understood C++. That was the first and luckily atiriye | didn’t finish a project. It was
the first project of the course and it turns owials trying to create objects with virtual
member functions in shared memory, which was amdmany case, | continued using
C++ and Smalltalk for some years. My chances toSmselltalk diminished faster than
C++.

C++’s library, while meager, grew. The boost liyraame into existence and then
became quite a substantial collection of classesyWf those classes are useful, some
esoteric and several make the language behaveltkk®some people would like it to
behave.

In 1997, | finally switched to Java on m§ attempt. | had tried prior to Java 1 with some
success. Then about the time Java 1 was reled@sed &gain. A few months after Java
1.02 was released, | finally decided to jump the-Ghip. So | stopped using C++
professionally in 1997. For several years | managetbt use it. I'd occasionally take a
look but for the most part, | did not use it betwd®97 and around 2007.

In 2007 | joined Object Mentor and several of thiesj involved working with large
legacy C++ code bases. So | managed to start gigkup again. However, unlike my
last time using C++, this time | had a few morerged design experience, large system
development and support, experience with test drievelopment and myriad other
experiences that made my approach substantiafigrelift.

1.1 Why this book now?

If that were the end of the story, then | would have written this book. Even though |
noticed that the approach to development with C-$ missing out on several modern
ideas, | didn’t see a need. Then in mid-2010 myddgoend David Nunn asked if I'd like
to teach a C++ and Object Oriented Design claBsA&A. Of course | said yes.

| did some looking around to try and find some matehat included good Object
Oriented Design principles, C++ idioms, modern gegiractices such as the use of Test
Doubles for test isolation, etc. | did not find #mpg. | looked at the course that Object
Mentor offered and it wasn’t quite what | was laudifor either. | considered a few other
avenues but in the end, | did not find anything fhted the particular situation, so | built
my own C++ class (for thé™aime actually).

| designed a course with the intention of introdgcC++, the basics of Test Driven
Development, basic design principles, deeper dgwigiciples and design patterns. All
of this to be introduced through exercises. In mginal course design | planned for 2
projects. | added a third “simple” problem at thant, which became the first problem as
it blossomed into something at once simple andembugh to cover much of the
language my students needed to know to start bepefiective C++ programmers.

Version: 0.3a 1 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

1.2

While teaching this class, | finally came to thelization that there really is not yet a
book that covers learning just the part of C++ geed to know for Object Oriented
Programming. | looked but | did not find anythirgt quite fit the bill. There are
excellent books to be sure. Nothing like the folcwsinted. Additionally, the books
available did not take the approach I've takerhis book; embedded exercises and deep
dives into the language to provide additional cente what was happening in the
problem.

I had a similar experience like this back in 198&w, faced with having my students
shell out over $100 USD for books on micro-compa{arterm probably before most
reader’s time), none of which the students woulednafter the class, | decided to write a
book for a computer literacy course | taught aical community college.

While the book was initially published in 1988giew. It went from about 110 pages to
over 300 and was used for roughly 9 years beforeghmusted for something more
appropriate. | hope that's what happens with tbiskbas well. I'd like to think that
people learning C++ will stop learning all of tembguage and focus on learning how to
effectively use the language. To me, that meansisiag much of the language’s power.
At least as a first step towards learning C++ dihieset I'll cover is a good start. Learn
how to do things somewhat cleanly, and then |daerguts of the language if you plan to
write libraries or you just want to be a languagedn C++ offers many opportunities to
do so, but you don’t need to start there.

How is it different?

As the title suggests, | do not intend to covepathe language. In fact, I'll cover a
comparatively small subset of the language andtredard libraries. Even so, that is not
the primary difference. This book is meant to bexample of a journey through two
problems.

The approach for each problem is similar; starhwitnple goals, write a solution.
Review that and fix it as necessary. As | work tigto the solution, I'll be articulating
forces driving my decisions. I'll be bringing intlke mix things from C++, Test Driven
Development, Refactoring, C, Test Isolation, A@leftware Development, etc.

Also, there will be two reasons why | cover someghin the language. First and
primarily, it will come up as a response to sonrgghn the current problem. Second,
there will be background and context | might cawefill out details a little bit. There

will be times when | pick one solution over anottedelve a bit more into the language
or library. However, when | make that kind of démis you'll know because I'll tell you.

Another key difference with this book is that lent for you to write code as you work
through this book. That, in and of itself, is noique. What is, however, is that I'm
going to provide you tutorials so that you'll bdeato write working code. Something
that has always frustrated me is seeing code sisippth just enough context to get you
interested but leaving “some assembly requiredittierreader.

To address this, | have done three things:

e First, | have picked a tool set. It's free and dtidae available on Windows, OS X
and most UNIX varieties.

Version: 0.3a 2 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

1.3

1.4

e Second, | have uniquely identified all of the tidbsections with GUID’s (globally
unique identifiers — that's a geeky way of sayingsthing obvious)

e Finally, I have included the same detailed instauns for other platforms online
(<<site URL here>>)

To make this a bit easier, each tutorial sectidhasver mechanics at the beginning and
then get into coding. As a result, there will meds where | have you do mechanics work
ahead of time to reduce the number of unique twwiesre you have to do that.

So even if you do not know C++, you should be ablget working examples. | hope
that the text and code examples will enable yaui¢k up quite a bit of C++ along the
way. I'll be rewarding the ability to copy the pided code, however, with passing unit
tests.

As a final difference, you’ll be running everythingder the umbrella of a unit test. We
will cover 2 projects. This means you'll create tmain programs. After that, all
execution will be from tests written using a ueisting framework. I'll provide both
working code and failing code so you can see th@®rin some cases I'll deliberately
have bad designs; in some cases I'll ask you tlmparsome experiments in your code.
The experiments are a controlled way for you caufélure, know why the failure
happened, and know how to fix it. So rather thamidiag all errors, I'll try to give you a
chance to experience them in a safe manner.

What not to expect?

I’'m assuming you have some basic background inr@efading this book. That's really
my target audience. | think you can use this bdégku’re learning C++ from other
languages, but I'm not going to make any wild gessss to whether that will or will not
work. If you are using C++ or learning C++, themuyuoostly likely have been using C in
some capacity. | have not recently come acrossaylearning C++ as their first
language, so that is not what | am targeted. Has&g that, | will be delving into C stuff
every so often to explain why C++ is the way it¥eu will be able to pick up this book
and start programming in C++

Bottom line, you are not going to learn all of C+4rfact I'd guess you'll learn maybe
30% of the language (I'm guessing at the numbealrse a precise number without
context isn’t of much value). However, of that 39&u do use, it'll be what you need
90% of the time. The other 10% comes with pracegsg@erience and the many references
I'll suggest to you later in the book.

This is the start of a journey. | hope it will $®u on a good course and heavily influence
your use and future learning of C++.

Standing on the Shoulders of Giants

The only thing I'm offering in this book is my paxtilar combination of choices; there is
nothing new in this material.

First and foremost, | need to give appreciatiosgweeral early influences in my software
development career. My early interest in computeas fed by my friend John Navitsky.
| was given a summer job by Marjorie Scriver wotkin a second-hand shop, which
allowed me to earn enough money to buy my firstmater. One week before | turned

Version: 0.3a 3 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

18, Dr. Gretchen L. Moine hired me and some of ngnfis to work in a computer lab at
Kirkwood Community College. When two of her professleft, she gave us the
opportunity to teach computer literacy courses, thed like a mother hen, she defended
us as the main campus tried to get rid of ushdve any ability as a teacher, it is directly
related to early, eager and consistent stewardship.

| had several good professors at The Universitpwh and one in particular got me
started learning about OO programming, Dr. Mahestidbi. He offered an “Advanced
Seminar in OO Programming” in the Fall semester3#9. | used Smalltalk, but more
importantly, because | took that class | was elejtb get a job as a research assistant
developing a large C++ application. My friend J&fdncis was instrumental in helping
me with the C part of C++, and some of the badikes,using CVS. Unlike course work,
we had to demo our work to Ford Motor Company aA€®DM, so it was an amazing
learning experience. | would not have started u€itg if not for Mahesh.

When | started using C++, Google did not exist dree were no books on C++. So
when books came out, | bought them and devoured.tfe+ is the invention of Bjarne
Stroustrup. The first book | read on C++ was thgiwal printing of The Annotated C++
Reference. The second book | read was by Jameg@ppdvanced C++ Programming
Styles and Idioms. Many books and articles follow&alybody who’s read the work of
Andrew Koenig will probably recognize his influenoe my mental model of the
language. Much of how I think about the language weextainly influenced by his book
C Traps and Pitfalls and his many excellent agiatethe C++ Report, many of which
are available in Ruminations on C++.

James introduced me to book reviews. | purchaseéirdt edition of his book Advanced
C++ Programming Styles and Idioms. | read it angblpean email conversation with
him. As a result of giving him feedback, he conedane with his publisher and | ended
up reviewing books. One of those books was RobartiNs first book Designing Object
Oriented C++ Applications using the Booch Method.

There are many more, too many to remember. So iy laringing my perspective to
material that already existed in other forms wnithy other people.

<fill in? shorten?>

Version: 0.3a 4 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

2.1
2.11

Obligatory Hello World

Traditional language books often cover a so-cdiletb world “application.” Just for
completeness, here you go:

#include <iostream>

int main(int argc, char *argv[]) {
std: :cout << “Hello World” << std::endl;
return 0;

}

However, that’s the last example of code that do@stiude some form of self-
validation. Throughout this book I'll be using aitulesting framework in lieu of a
main() program. You won'’t see much explicit output eithéou are welcome to add
output yourself, but I'm going to rely on prograntinaxecution and validation.

This section covers the “hello world” meme, undttstyle. That's what the rest of this
section covers.

Setting up your environment

The Tools

For this book, I will be using the following toats
e Eclipse CDT

e \Wascana Eclipse Plugin

e CppUTest

The first tool is our IDBand it requires that you have a Java\istalled. The second
is a plugin to Eclipse that gives you a complete @0l set. The final item is a library
that gives you support for writing automated tekts called a unit test framework, but
its ability to assist in writing automated testsfas my purposes, its most important
feature.

| have chosen these tools for several reasons:

e They are all free and open source

e They work cross platform

e They give a consistent way to work across thosegotas — other than default
shortcut keys

e In the case of CppUTest, it does basic memory dieddction out of the box. Since
you are reading this book to learn C++, somethelgihg with memory leak
detection is an important feature.

What follows are detailed steps for installatiortla#se tools.

! C Development Toolkit.
% Integrated Development Environment.
® Virtual Machine.

Version: 0.3a 5 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

2.1.2

2.1.3

2.14

Installing the Java Developers Kit (JDK)

You'll need the JDK (or its equivalent) to run de. The easiest way to install the JDK
is to run an installer frorhttp://www.java.comfor Windows, Linux and Solaris
platforms. In the case of OS X, you already hau®HK installed.

Installing Eclipse CDT

Download the Eclipse CDT froimitp://www.eclipse.org/cdt/This book was written
using 7.0 of the Eclipse CDT, which is based onpsel Helios. Older versions may
work; newer versions almost certainly will work.

You will be downloading a zip file. You can safelgzip it anywhere. You will only
need to know where you downloaded it for two reason

e Primarily, you'll be running it, so you'll need fond the top-level executable
e One time only, you may be using programs installederneath the eclipse directory,
added by an Eclipse plugin.

To keep everything self-contained, I'll be storinerything under a directory called
learncpp. This avoids spaces in paths and it will makeadier to find everything you do.
If you choose to use a different directory, make= ga replacéearncpp with the
directory you used. Here are two example full pathmes for an idea of just where I'm
putting things:

e Under windowsC:\learncpp
e Under OS X~/learncpp = which actual becoméblsers/Schuchert/learncpp

If you extract the Eclipse CDT zip file tearncpp, it will create:

e Under windowsC:\learncpp\eclipse
e Under OS X~/learncpp/eclipse

Starting Eclipse CDT

Now that you've installed Eclipse, you can starDibuble-click on the eclipse
application under the eclipse directory. When youyidu will be asked to provide a
location for a workspace:

Version: 0.3a 6 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OO0D, The Least You Need To Know 08/04/11

& Workspace Launcher

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a wotkspace folder to use for this session.

X

Enter the location for a project in the Workspa®d box. For this first project, I'm using
c:\learncpp\Projectl.

After a few moments, Eclipse will respond with thelcome screen:

Close the welcome screen by clicking on “x” thehtigide of thaNelcome tab.

Before going any further, you now need to instadi\Wascana plug-in if you do not
already have the Gnu C++ compiler 4.4 or lateraitestt (OS X Users, you have G++

Version: 0.3a 7 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

2.1.5

2.1.6

2.1.7

installed, but it's probably earlier than 4.4, suyl need to use a port package to install
it — give yourself several hours for this).

Installing the Wascana Plugin

This step is primarily for Windows Users. Howeudnave online instructions for OS X
users at <cite site>.

TheWascana plugin gives you a minimal Unix environment, gc4,4db and other
basic tools to make the Eclipse CDT work. It idafied as an Eclipse plugin.

The basic instructions are hehdtp://code.gooqgle.com/a/eclipselabs.org/p/wascdhs/
quickly:

e Pull down theHelp menu in Eclipse and seldctstall New Software.

e In theWork with text box, enter:
http://svn.codespot.com/a/eclipselabs.org/wascepa/r

Then clickAdd

Enter a name lik§Vascana in the pop-up dialog

Select thaNascana C/C++ Developer for Windows

Click on Next twice until you get th®eview Licenses screen

Assuming you accept the terms of the license, sdie@dccept radio button and click
Finish.

Wait for the download to complete and the restatipSe. When asked for the
workspace, verify that C:\learncpp\Projectl iswlmrkspace and clicOK.

Downloading CppUTest

CppUTest is a unit testing framework we’ll be usthgoughout this book. You’'ll need to
download and build it one time. Unfortunately, wtdis, you will need to update your
path, but that’s in the next section.

For now, download CppUTest frorttp://sourceforge.net/projects/cpputesis of this
writing, I'm using CppUTest 2.2d.

Once you've downloaded that zip file, unzip its s toc:\learncpp\CppUTest. Note
that the zip file does not appear to have a topitldirectory, so you'll need to create it.

Building CppUTest

When you installed the Wascana plug-in, it addeal dwectories under your eclipse
directory: mingw and msys. Both of these direc®have bin directories that need to be
added to your path.

Begin by updating your path to include thia directories under mingw and msys. If you
used the recommend directories, their full patles ar

e C:\learncpp\eclipse\mingw\bin
e C:\learncpp\eclipse\msys\bin

Since these paths are also used by Eclipse, yoegltl to set your environment’s path. To
do this, you'll need to update the PATH environmeased by your command shell.

e Under the control panel, select system prefere(aasnder the category System and
Security, select System).

Version: 0.3a 8 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

2.2

e Select Advanced Features.

e Add the two directories to the PATH environmentiaale under system preferences
by appending:; C:\learncpp\eclipse\mingwibin; C:\lear ncpp\eclipse\msys\bin

e Note that there is one ; (semi-colon) between tirgentries.

e If you cannot edit the system preferences, inséelala new entry under User
variables. It's value should b&PATH%;
C:\learncpp\eclipse\mingwAbin; C:\lear ncpp\eclipse\msys\bin

Now switch to the CppUTest directory. If you uskd tecommend directories, the full
path is:C:\learncpp\CppUTest.

By adding the bin directories from mingw and mgy®) have some basic UNIX tools
such as gcc, g++, make, pwd, etc. Now it's a sincpke of issuing the@ake command:

C:\learncpp\CppUTest>make
compiling AllTests.cpp
compiling CommandLineArgumentsTest.cpp
compiling CommandLineTestRunnerTest.cpp
compiling FailureTest.cpp
<snip>
compiling TestRegistry.cpp
compiling TestResult.cpp
compiling Utest.cpp
compiling UtestPlatform.cpp
Building archive lib/1ibCppUTest.a
c:\Program Files\eclipse\mingw\bin\ar.exe: creating lib/1libCppUTest.a
a - src/CppUTest/CommandLineArguments.o
a - src/CppUTest/CommandLineTestRunner.o
<snip>
a - src/Platforms/Gcc/UtestPlatform.o
Linking CppUTest_tests
Running CppUTest_tests

1

0K (171 tests, 167 ran, 599 checks, 4 ignored, @ filtered out, 16 ms)

C:\learncpp\CppUTest>

Note: Depending on when you try these steps, tild ight fail because it cannot find
“cc”. To fix this, update the Makefile and incluttes following line after the comment
line with Inputs in it (#--- Inputs):

CC = gcc

You can look at théb directory to confirm that you have a file calldadppUTest.a.
However, given running unit tests, it really isn&cessary.

Mechanics of CppUTest

Now that you have all of the moving parts installgall need to configure an Eclipse
project to use CppUTest and then get your firgtrigsning.

Version: 0.3a 9 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & 00D, The Least You Need To Know 08/04/11

2.2.1 Creating a Project

Now it's time to go back into Eclipse and creata@ject. Begin by selectinigile:New
then selecC/C++ Project. You'll see the following dialog:

C++ Project

C+ + Project

Create C++ project of selected type

... @ Hello World C++ Project

& (= Shared Library
- Static Library
@ Makefile project

EnterDiceGame for the Project Name, and make sure you've selddi@GW GCC as
the Toolchain. Once you've done these two thinksk &inish.

2.2.2 Include Path, Library Path and Included Libraries

Now that you have a project listed under Bneject Explorer, you can configure it.
Select that project, right-click and sel@cbperties at the bottom of the popup menu.

Version: 0.3a 10 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

2.2.3

Include Path

Open upC/C++ Build, selectSettings. You'll see several sub-options. Look f8€C
C++ Compiler and under it, selethcludes. Click the add button, which looks like a
page with a green plus. In the dialog, ent&ktearncpp\CppUTest\include

Before moving on, clicl\pply to make sure these changes stick.
Library Path & Included Libraries

Again, undelC/C++Build, Settings look now forMingGW C++ Linker and select
Libraries. There are now two sections, Libraries (-I) anbrary search path (-L). In
Libraries, addCppUTest.

Under the Library search path, adti\learncpp\CppUTest\lib.

Note that the full name of the library is libCpplt@a. However, when specifying a
library with this tool set, you exclude the leadiii” and the file extension.

Before moving on, clicl\pply to make sure these changes stick.
Modernizing C++

There are several modern features supported by IG&€@Got available until you tell the
compiler to allow for them.

e Find GCC C++ Compiler: Settings

e Select theVliscellaneous option, notice that its current value is probably:
-c -fmessage-length=0

e Add (append) the following additional settirgtd=c++0x

That is C++ zero X, not letter o x.

Before moving on, cliclApply to make sure these changes stick.

That's All the Project Settings

Finally click OK to close the dialog.

A Few Convenient Settings

There are some top-level (not project-specificlirsgs that will improve your overall
experience. To begin making changes, pull dowminedow menu and select
Preferences.

Auto Save and Refresh

Under the preferences you'll see a box that costéanter filter text”, typesave in that
box to shorten the list of options.

SelectWorkspace under theGeneral option and enable the following settings (thetfirs
should already be set):

e Build automatically
e Refresh automatically
e Save automatically before build

Before moving on, clicl\pply to make sure these changes stick.

Version: 0.3a 11 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

224

Build automatically only affects when you perform a “clean” on a pebj& his will
remove all the built files. Build automatically Wihen turn around and rebuild the
system by default. It will not rebuild after yowsaa single file.

Refresh automatically is important because building causes an executalile created.
Sometimes Eclipse doesn’t notice that this exedeitahs created and when you try to
run your program, Eclipse will complain about n@extable existing. Setting this option
fixes that problem.

Save automatically before build will cause Eclipse to ask you to save before dalkal.
If you do not, you can change a file, not notics iinsaved and then get compilation
errors because the file is not saved and not beaafusnything you typed.

One Last Thing Run

Eclipse attempts to run something relative to tleedr think currently selected when you
use the shortcut key ctrl-F11. This can be confubehavior.

Under Run/Debug, find Launching. Under the_aunching section near the bottom,
select the radio-button with the text “Always labirtbe previously launched
application.”

Before moving on, cliclApply to make sure these changes stick.
That's All the Workspace Settings

Finally click OK to close the dialog.

Adding a CppUTest main() function

Now you are ready to create a main function. A& main() is the entry point into
any application in C++. Main can have one of twonfs:

int mainQ)

And the more traditional:

int main(int argc, char *argv[])

With that in mind, create the following main progra
#include <CppUTest/CommandLineTestRunner.h>

int main(int argc, char *argv[]) {
return CommandLineTestRunner: :RunAllTests(argc, argv);
}

Quick File Description

The first line includes a class that runs unitse$he top-level include directory for
CppUTest has a directory under called CppUTest Ehimportant because it makes a
namespace of sorts for header files. By startiegiime with CppUTest, there is a much
smaller chance of name collision in include filenes.

This is a standard main() function that uses asataledCommandLineTestRunner
That class has a method on it calRahAllTests . You pass in argc and argv and it
determines what to do based on command line argisméfe are not passing in
anything, so we’ll get the default behavior prowddwy the library.

Version: 0.3a 12 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

The return statement on that line makes sure tieatetsult of running tests is reflected
back in the shell that started the program. We wo&'making use of this, but if you
were to include running unit tests as part of gdabuild process, you could use test
failure as a reason to stop the build process.rétugn here facilitates that.

Create this file

e Select your project, right click and selé&tw.
e In the list, selecC++ Sourcefile
e For the name, enter: RunAllTests.cpp

Build your project

Compile your project by hitting ctrl-b. Alternatilye right-click and seledBuild.

Run your project

The first time you run your project, you'll want select it, right-click and seleBun
As.Local C/C++ Application. You should see output like this in the Console:

OK (@ tests, 0 ra

n, @ checks, @ ignored, @ filtered out, @ ms)

Congratulations, you have all of the major moviagtg in place and working.

2.2.5 Adding a first test

However, don't celebrate too quickly, because now time to add a test. Here is a
simple “smoke” test to verify that things work.

#include <CppUTes

TEST_GROUP(SmokeS
+s

TEST(SmokeShould,
LONGS_EQUAL(1,
}

Quick File Description

t/TestHarness.h>

hould) {

NeverBelLost) {
1;

This is mostly boilerplate code. The #include stegat, among other things, makes
available a set of macros to help in the definitbbtests. There are three major parts:

Macro

Description

TEST_GROUP

Introduce a place holder for a numbeesit. Typically know as a
test fixture. The namé&mokeShould, is somewhat arbitrary.
» This name must be a valid C++ identifier;
*» |t should make sense;
* |t must be unique across all tests in a singlegatdjacross all the
library and object files linked to make a singleextable).

This macro introducessruct into your solution. The name of
thestruct embeds the parameter narSeokeShould in this
case. Astruct is a collection of data members in C. In C++ i ¢
also include member functions. CppUTest does thisfarms a

natural place to put common code and data usecebatmdividual

Version: 0.3a

13 Author: Brett L. Schuchert (schuchert@yahoo.com)

a

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Macro Description
automated tests.
TEST Introduce a single test. It depends on dfitastre, SmokeShould.

We will be taking advantage of this later on. Hoemg\t is a
requirement of the particular tool, so you musitd®he name of
this test idfNeverBelL ost. This name must be unique within the
fixture (SmokeShould); it should make sense; it must be a valid
C++ identifier.

This macro introduces@ass into your solution. Thiglass is a
subclass of thetruct created by the TEST_GROUP macro.
CppUTest does this to enable automatic registratfamit tests
possible. If an object module that contains a TESihked into
your final executable, it will be available for exgion by the
CommandLineTestRunner.

LONGS_EQUAL | This macro performs a check. A check either retorrgoes not. If
the check returns (in this case the longs are exgulreturns), then
continue with the test. If it does not return (ddwg longs were not
equal), then this test would terminate and beladdest. In this unit
test framework, and traditionally across most efththe first value
is the expected value; the second value is thabealue.

Create This File
Create a new file called SmokeTest.cpp (ctrl-n, saldce file).
Run Your Tests

Since you’ve run your project once, you can nowthseshortcut key ctrl-F11 (mac:
Command-Shift F11) to re-run your project.

" You did not save your file, Eclipse will confirthat you want to save before building;
do so. The project will run and you will see thédaing output:

OK (1 tests, 1 ran, 1 checks, @ ignored, @ filtered out, @ ms)

The period represents the one test that executddhtlis too terse for your tastes, update
RunAllTests.cpp:

#include <CppUTest/CommandLineTestRunner.h>

int mainQ {
const char *args[] = { "", "-v" };
return CommandLineTestRunner: :RunAllTests(2, args);

}

Quick File Description

Rather than passing in the command line optionsl-bade them. In UNIX systems, the
first parameter passed into a C or C++ prograrmesiame of the executable. Some
programs use this to do different things. CppUTess not, so it always ignores the first

Version: 0.3a 14 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

element in the array. That’s what the first “’msthe args array. The second parameter, -
v, tells CppUTest to output test names and testugian time rather than “.” for each
test. It means “verbose.”

Run Your Tests
Rerun your program (ctrl-F11/Comman-F11) and ndtieeadditional output:
TEST(SmokeShould, NeverBeLost) - @ ms

OK (1 tests, 1 ran, 1 checks, @ ignored, @ filtered out, @ ms)
2.2.6 Experiments in Failure

It is important to see things both work and faiéttB g something working will hopefully
give you a sense of success. Seeing somethinig faitontrolled fashion can better
prepare you to fix problems on your own when thaggen.

Failing Check

Update the check in your SmokeShould:NeverBelL st te
LONGS_EQUAL(9999,1);

Run Your Failing Test

Rerun your program and notice the failed test autgnupped):
..\SmokeTest.cpp:7: error: Failure in TEST(SmokeShould, NeverBelLost)

expected <9999 0x270f>

but was < 1 0x0001>
So here are some questions you might ask (andahsivers):

e Which test failed? The one on line 7 of the SmokeTest.cpp file.d8Hled
SmokeShould, NeverBeLost.

e Howdidit fail? A check on line 7 was expecting the value 9999 thuas given 1.
Since 1 does not equal 9999 (even for very largigegeof 1), the LONGS_EQUAL
macro caused this test to stop at the failure.

Fix the test back to passing before moving on. yBw make both values 9999, 1, or
some other value?)

2.3 Recap
2.3.1 Terminology

Term Description

Auto Test Discovery | In CppUTest, tests are autacadlyi discovered. Simply
creating a neWEST_GROURNd adding dEST to it will
cause the test to be found assuming the object lmodu
containing theTEST_GROURNJTEST are linked in to the
final application.

Version: 0.3a 15 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know

08/04/11

Term Description
CommandLine A class from CppUTest used to execute tests creetad
TestRunner TEST_GROURNATEST. It can handle a few command line

arguments. In the second form of yooin()
passed irv, for verbose output.

function, you

CommandLine
TestRunner.h

This is the header file you include to get the
CommandLineTestRunner . However, the recommended
include path for CppUTest makes you qualify the eawth
CppUTest/ in front of it.

Compilation Unit

When the C++ compiler compilesragte source file, it first
processes all of the include files and macros.rékalt of that
phase is called a compilation unit. It becomessthece
material for the production of an object modulejaliis what
gets linked into a final executable.

Ctrl-B (OS X:
Command — B)

Build the application and produce an executable.

Ctrl-F11 (OS X:
Command-Shift F11)

Run the last thing you ran. This is over simplifeetd depends
on the Eclipse configuration. In this case, youthanged the
Eclipse configuration to always run the last thing, so it will
not be relative to the current project. Also, yaillychave one
project in your workspace, so, again, it will onlyn the one
executable.

Include Directory

The include directory path forgLprest in our examples is
C:\learncpp\CppUTest\include . This directory
contains a directory under it call€@ppUTest . This is by
design to make sure header file names in CppUTesbd
conflict with other header file names.

libCppUTest.a

This was the library file producedentbuilding CppUTest. Wi
need to include it to get our project to link. Whea added it to
our project, we followed the UNIX convention of gping
“lib” at the beginning and “.a” at the end.

112

Library Directory

The library directory in our caseC:\learncpp\CppUTest\lib.
We added that so Eclipse could link our project.

LONGS_EQUAL

A macro in the CppUTest library. It lsshn underlying methog
that compares the first (expected) value to thersg:¢actual)
value. If the longs are equal, then the methodmstuf not,
then it stops this unit test from continued exemuind marks
the test as failing.

Object Module

A file created by the C++ compilempast of building a system|

It contains all of the code from, typically, a degource file,
along with anything introduced by header files.

RunAllTests

This is a method on the class CommamelLestRunner. It
happens to be a static (or class) method. This snéaan be

Version: 0.3a

16 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

Term

Description

called without having any objects. The most impatrtaing
about this method is that it causes all of the tasts to run.

standard library

The standard library ships withCal+ compilers. However,
just what ships is somewhat variable. We've sedncsiut, and
object that comes as part of the standard librEtng.
std::vector class is also part of the standard library. We
be seeing this class quite a bit more as we mdoeehe
DiceGame in earnest.

std Classes can be part of a namespace. A namdscply a
way to group related classes. The standard lilmiagses are in
a namespace called std (or std::trl).

struct In C++ a struct and a class are the samg.tfihe only

difference is that the default access level irracstispublic,
whereas in classes itfisivate.

template class

Thestd::vector class is a template class. Template clas
are parameterized classes with their parameteng lpgovided
in <>. In our particular example, the parametetig>. An
std::vector <int> stores a variable number of int values.

Ses

TEST

A macro from CppUTest that introduces a neswitgo the
system. The TEST macro takes two parameters; ristadithe
name of the test fixture introduced by the TEST_GRO
macro. The second is the name of the test. Bottesanust be
valid C++ names. TEST names must be unique witieir test
fixture.

The TEST macro actually creates a class, whickchld class
of the structure created by the TEST_GROUP madre.name
of the class embeds the test name parameter.

TEST_GROUP

A macro from CppUTest that introduces a new tegtife into
the system. The TEST_GROUP macro takes one pargraete
name, which must be unique across all object madiriked
into an application. The name must be a valid Cama

THE TEST_GROUP macro creates a struct. The nartteeof
struct embeds the test fixture name.

TestHarness.h

This is a header file from CppUTEstthe main header file
used in test files. As with all CppUTest headezdjlit resides ir
a subdirectory called CppUTest, so qualify its nawith
CppUTest/ when including it.

Remember that order of includes is important. Idelthis file
last in any source file to avoid problematic int#i@ns with the
standard library classes.

vector

A class from the C++ standard library. Wedls to

Version: 0.3a

17 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Term Description

demonstrate a potential issue you might come aevitsorder
of includes. A vector is variable-sized array. Theess is in the
namespace std, so it’s full namesid::vector . You'll be
using this class more.

2.3.2 Highlights
Tool Installation
In this section you installed a number of tools Abidries:

Java Developer Toolkit
Eclipse CDT

Wascana Eclipse Plug-in
CppUTest

These are the basic tools of your environment aitid tvem you will be able to work
with C++ in a relatively controlled manner.

Luckily, this is a one-time process, so now that'ye done this, you have your
development environment for the remainder of thekbo

Project Configuration
Each time you start a project, you may need toigarg it. In our case, we:

e Added a path to the include directories to find Gppst header files
e Added a path to the library directories to finddgpoUTest.a
e Added a library, CppUTest, to be linked into oueextable.

Eclipse Configuration

You also configured Eclipse to automatically salesfbefore building and to find files
created during the build process automatically.

In both the project and eclipse configuration stépgu can remember a key word or
two, you might be able to use the filter box attibye of the list of configuration options
to shorten the list.

Complete Build Execute Cycle

You created some source files, a main() and twicstasrce files, all of which got linked
into an executable. Initially no tests ran. Then woded a test, which ran. You then
made that test fail and added another test thaecha compilation failure.

Did you notice how quick it was to simply perforittlé experiments to see “what-if"?
This is a key to learning. Rather than speculateietvhat might be, try it out and see
what happens. The one caveat is that it may notdae if the results are speaking
towards your environment or something about thguage standard. This comes with a
combination of research and continuous questiorlihg.biggest recommendation | can
make here is to continuously question what youvégeried to make sure your
understanding of the results is not too far reagf(ihis result is about my current
environment, and not a general principle), or g#géar enough (this is part of the
language specification and if another environmeiaves differently, it is incorrect).

Version: 0.3a 18 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Now it's on to the seeming trivial Dice Game.

Version: 0.3a 19 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3 The Dice Game

This is a simple project to get your feet wet, @itsseems. By the end of this project,
you’'ll have used much of what you'll need to knomoat C++ to effectively use it.

3.1 What's Ahead?
Here’s a quick idea of what's coming up during fbisject:

Creating Classes
Subclassing

Interfaces

Guts of C++

Unit testing

Test driven development

The work that we’ll be doing going forward will lokeiven by writing automated tests.
Initially I'll provide the design up front; at sontiees we’ll be “discovering” the design
as we go along. Writing tests where there’s alremdgsign in place is often called Test-
First Development, whereas using tests to increatigrdiscover the design is typically
called Test-Driven Development.

3.2 The Design
Here is a quick model for our top-level Dice Game:

1 2
Dice Game Cup Die

3.2.1 Notes on UML*

This book is not about UML. Even so, | need sonsdaay to express ideas at a level
higher than code, so that’s the language I'll biagisHere are the parts of this diagram so
you can effectively read it.

These boxes represent classes. This particularpgascalled Dice
Dice Game | | Game, meaning there will be a class calléceGame in our solution.
In our use of C++, this means we will have a heéitkecalled
DiceGame.h and a source file callddiceGame.cpp. The diagram
shows Cup an®ie , so there are two other classes and therefore four
more files (two header files, two source files).

Since we’ll be writing tests as well, there will test source files for
each of these design-level concepts.

] A navigable connection. The line itself, ignoritng tarrow head,
_— suggests a connection between two classes. Sdstlaesrennection
betweerDiceGame and Cup. The diagram also shows a connectign
between Cup anDie . Without the arrow head, this just means therge’s
an association. The arrow head is called naviggbvihich means that

* Unified Modeling Language.

Version: 0.3a 20 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.2.2

3.2.3

3.3

the class on the side without the arrow head caigate to the side
with the arrow head. Since this is a solid linestibngly suggests that
the DiceGame class will have some kind of member data
(attribute/field) that holds onto to a Cup object.

You'll also notice numbers on those lines. Thahies multiplicity of
the relationship. In this particular example itwisd'1l”, which is the
default value. | won't be using default values hesgal think a default
value of 1 was a poor choice in the design of UMH &don’t want
you to have to be a “language lawyer” when reathege diagrams.

In the case of the Cup ie relationship it shows a 2, meaning an
object of the Cup class holds onto 2 objects ofige class.
Ultimately, when there’s more than 1 or a variaienber, you'll end
up using some kind of collection class. We've alseseen a collection
classstd::vector , which is what we’ll use to represent this
relationship.

The Rules of the Game

This is a simple game. A player plays the gameolliing the dice. Here are the possible
results:

e The player wins 1 if the roll is > 7
e The game is a push if the player rolls 7
e The player loses 1 if therollis< 7

The point of this project is not to creat®@eGame. The point oDiceGame is to
serve as a vehicle to cover Object Oriented DesighC++, so the rules are mostly
irrelevant. That there are some rules, which dferéint in some consistent way, is
important. What those rules are, however, isn’llyemportant.

One Development Strategy

There are several ways to go about writing the ¢odthis project. Possibly the most
familiar is to simply create all the classes arehtiee if things work. We will not be
taking that approach, and instead we will be wgittutomated tests first. Those tests
often won’t compile initially, so we’ll then creatke production code to get the tests to
compile but probably not pass. Then we’ll get #sg to pass. When the tests are
passing, we might clean up our work a bit in anvégtcalled refactoring.

This may seem backwards to how you were taughwhat you are used to doing. Here’s
an observation: Nobody was born knowing how to paog So everything you do now is
a learned activity. If this seems strange or baclwéand | expect it will), that's because
it is different from what you’ve done in the pabhis doesn’t make it worse or better, it's
just different. | hope by the time you've workeddtgh this book you'll think it is better.
However, if you don’t that’s fine. At the very leakhope you'll find value in the idea of
writing automated unit tests.

The First Test

We have a rough design so now it's on to writirfgibng unit tests. Here is one such
failing test:

Version: 0.3a 21 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include "Die.h"

#include <CppUTest/TestHarness.h>

TEST_GROUP(Die) {

h

TEST(Die, InitialValueInRangelto6) {

}

Die d;
CHECK(d.faceValue() >=1 && d.faceValue() <= 6);

Line

Description

01

You must#include the header file for any classes you'll be usingsTets

the source file know about the class’ definitids:member variables (attributes)

and its member functions (methods).

01

Comparetinclude using™ versustinclude using<>. When using" ,
the current directory is checked as well as stahohelude locations and any

include directories you've added (remember, yoweddtie include directory for

CppUTest). The <> does not check the current dirgdiut otherwise it is the
same list.

Traditionally, your files aréfinclude d using
are included using <>.

while system and library file

03

The order of includes, as mentioned above, jitant. CppUTest overrides
new anddelete , which are used to manage memory allocated asrdggam
runs (dynamically allocated memory). These two afmes replacenalloc and
free , respectively, in C++. Note, they are operator€++, or reserved words
wheremalloc andfree are functions in a librarymew anddelete are
different because they do more, which we’ll gebilater. Don’t mix and match
new and delete witimalloc andfree ; only usenew anddelete with
classes (ostruct s that have been written as classes).

05 -
06

Define a struct for a test fixture. This creatdmaestruct (class) with Die
in its name. The actual full name of the class ddpen the version of
CppUTest you are using. This variability suggestasicular style of writing
tests, which we’ll see later on.

06

The TEST_GROUP createstuct . It is important to end a class definition
with a ;. TEST creates a class, but unlike TESR@JP, you are adding a
method to a class via the macro rather than fuiélynthg a class. So it does not
require a “;” at the end because the macro ddes you. It's still there.

It is safe to simply always use a ";" at the entath of these macros.

08

Create a test. This macro createtass which includes
InitialValuelnRange1to6 in its name. Thkass inherits from thestruct

created by the TEST_GROUP macro. In reality,dlagss created has a single

h

Version: 0.3a

22 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description

method added to it that holds the code betweerd{}aand it is that method that
gets executed by the unit test framework.

10 Test assertion. This is a macro that calls daodktike LONGS_EQUAL. If the
expression evaluates to true (a non-0 result) themethod returns and the te
continues execution. If the expression is fals@ Kasult), then the method
terminates test execution (throwing an exceptiatheuthe covers).

3.3.1 Create the test file

1°2]
—

Add a new source file to your project. CalDie Test.cpp. Enter the code above into that
file. Eclipse will warn you that line 1, the #inde ofDie .h, names a file that does not
exist. That's OK. You've written a test and thettisscurrently failing, but not for long.

Build your application and review the compiler es.o
3.3.2 Die Header

#pragma once
#ifndef DIE_H_
f#idefine DIE_H_

class Die {
public:
int faceValue() const;

B
ftendif

Line | Description

01 — | Guard against this header file gettitigclude d multiple times. A header file
03, | may contairdeclarations or definitions. A declaration can be repeated, while a
21 definition cannot. This header fildefines the clas®ie . You can tell itis a
definition becauselass Die is followed by{ ... }; If the code instead
was:class Die; then it would only be declaration, which can safely be
repeated.

A declaration states that something exists but does not praletils about
size, structure or functionality. definition does what aeclaration does and
additionally describes size, structure and/or fiemetlity. Thisclass definition
states that there iscdass calledDie with a single member function (method),
int faceValue() const;.

Any compilation unit can include multipleleclarations of a given thing (class,
function, variable) but only orgefinition. A declaration after adefinition is
also OK.

01 The#pragma macro is a standard way to introduce compileri§peznde. By
definition, if a compiler does not understand tet Bafter#pragma it ignores it
silently. This particula#!pragma says to actually only include this physical file

Version: 0.3a 23 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line

Description

once. Most modern compilers support it and it ofseenough to just include th
expression. If you know your compiler and you kngwr compiler supports
this and you only use one compiler, you don’t nieses 2, 3 or 10.

02 -
03,
21

This is a traditional way to guard against multiplelusion of a header file.
Unlike #pragma once , multiple inclusions still happen, but only thestione
is processed, the others are skipped. The compieis up to the matching
#endif and simply ignores those lines. It takes timestmdrthose lines but it
does not cause the compilation to fail.

05

Begin defining a class callddie (the singular of dice). You can tell it is a
definition in this case because it is followed byefsus ;.

06

Everything after this line is accessible to aogie. The default access level for
classes iprivate: , which means only code in the class (and frienthéch
we will not cover in this book) can access thaist.

Note, the checking gdublic: , private: (andprotected:) is done at
compilation time.

07

Declare amember function (method). You can tell this isdeclaration for a
method because it is followed by ; instead of {isT¢$imple rule applies to
class ,struct and functions.

The return type of this methodirg , meaning a caller can use that value for
calculations.

The method takes no arguments as its formal argulséis () . This can also
be written agvoid) , but this distinction is only relevant for oldercGde.

Finally, the method is declared to tenst . A const member function states
an intention or a contract. It says that calling thethod does not change the

state of the receiving object. This makes sensenain-quantum level, observir
what was rolled does not change the value of a die.

08

Finish theclass definition.

Don't forget ; at the end — we’ll have a failuresesise coming up to see what
happens. Modern compilers can suggest that youagensuch an error some

times. More typically, you'll get 25 or 100 erroesjough for the compiler to just

give up.

The reason you must finish a class with ; is dg\:

» A class is the same as a struct, with a differeféult access level.

» C++ is heavily backwards compatible with C.

» |In C, it was common practice to define a strucamd immediately define a
single variable of that structure.

» To end a structure definition and not add an immedvariable definition, a
struct is followed by a ;.

* To end a structure definition and define an immietNariable, a struct is
followed by some variable name and then a ;

» So a struct is always followed by ;

= Since struct == class (with different default asclevel), therefore you must

Version: 0.3a

24 Author: Brett L. Schuchert (schuchert@yahoo.com)

g

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description

end a class with ; to indicate that you've compldtee class definition
Method definitions do not need a trailing ;.

10 Balance thetifndef on line 02 with a matchingendif

3.3.3 Die Source

3.4

3.4.1

#include "Die.h"

int Die::faceValue() const {
return 1;

}

Line | Description

01 Include the header file for this class as trst thing in the source file. It is not
necessary to include the header file as the firagtin the source file. However,
the header file must Banclude d beforedefining any of the class’ methods.

03 Define the methodie::faceValue . The method signature must match that
in the header file. However, since a source file lcave either methods or

functions (not associated with a class), Dg&: to indicate that this is meant
to define amember function as opposed to a non-member (or global) function.

The:: operator is the scope operator. It says thattting on its right is a
member of the thing on its left. $aceValue is a member dDie . The
header file included the cladsfinition. You cannotefine a member function
without a classlefinition.

You can tell this is definition versus aleclaration because it is followed by {
instead of ;.

=

03 The test only requires a value between 1 and 6etson 1 . It's good enough
for now. We'll use tests for force a better implartation.

Exercise

It's time to get your failing test compiling andgséng. Create two file§ie .h and
Die .cpp. If you use Eclipse to create a new clas®rdtian creating a header file and
source file, you will have a few additional method@kat's OK, we’ll be getting to those.

Results

Once you've created tHgie class, build and run your tests. You should sesesioing
similar to:

TEST(vectorShould, HaveInitialSizeOf@) - @ ms
TEST(SmokeShould, NeverBelLost) - @ ms

TEST(Die, InitialValueInRangelto6) - @ ms

Version: 0.3a 25 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.4.2

OK (3 tests, 3 ran, 3 checks, @ ignored, @ filtered out, @ ms)

Before moving on, delete the files SmokeTest.cap\&ectorTest.cpp. They were
examples to demonstrate a working system and aitatiap failure.

If you simply remove the source files, Eclipse Wwalhve the object modules around and
those tests will still be there. To fix it:

e Delete the two files (if you have not already dspng
e Perform a clean build. Right-click on the projestiaelect Clean Project.
e Re-run your tests.

Exercises in Failure
Now it is time for some controlled experiments.
Forgetting ; at the end of TEST_GROUP

Edit your fileDie Test.cpp. Remove the ; at the end of TEST_GROUWR héd your
system.

e What errors do you see?
e Do those errors seem to be related to what youdjdst

After reading the error messages, replace théheatnd of TEST_GROUP and verify
that your system still builds.

Forgetting ; at the end of class Die
Try the same experiment but instead remove it filoaDie class inDie .hpp.

e As before, what errors do you see?
e Are they even she same?
e Is there any clue as to the real problem?

After making those observations, fix your systemabging the ; back on to the end of
theDie class definition.

Getting the signature incorrect

Try removing the word@¢onst from the end of théaceValue method declaration in
Die .h, but notDie .cpp, and build.

e Do these errors seem to make sense?

e What can you do to make finding these kinds ofrereasier?

e What can you do when writing your own code to medamitting these kinds of
errors less likely?

Why Experiment?

One thing that most C++ compilers will do is givauyerrors that only make sense,
occasionally, to an expert. When | type some syateor, most of the time | look at the
offending line and try to figure out it without iag the error message. If that does not
work, then | try skimming the message to seedicbgnize it as an error I've made in the
past or if it has certain keywords that resonaté wie. This is the nature of dealing with
compilation errors. The only way you'll get skilledlithis is practice. Each compiler is

Version: 0.3a 26 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

different but learning one compiler will help. Laarg the syntax will also help. There
are other techniques that can help as well, fomg@ commenting out sections of a file
to see if you can guess what's going on. In alesathese are just approaches to figuring
out what'’s going wrong. Experience and practicélie language is the cost of entry
for solving these kinds of problems.

3.4.3 Concept Review

Term Description

#define Defines a macro. We used it as a technique to maleethat if a
header file is included more than once, it is @rycessed the first
time. This is necessary becauwséinitions cannot be repeated, while
declarations can. A class header file typically contains a<las
definition, so it cannot be processed once in any single itation

unit.

#endif This balances the #ifndef macro that starts thénérg of the old-
style conditional guard started with #ifndef.

#ifndef This means “if not defined”. It's used to see ihacro has or has not

yet been defined. If it has not been defined, corireading and
compiling up to the matching #endif. If the macesHtbeen defined,
read, but don’t otherwise process up to the matchandif.

Note that for any single compilation unit, you néednake sure that
the identifier (macro name) after #define is uniqi¥e do this by
using the name of the file, which happens to m#étemame of the
class. This is a good basic approach.

#include with ™ | The list of directories searched when using ""tidels the current
directory as well as standard directories and gneasspecify. We
used Eclipse to extend the list of directories dezdl to include the
CppUTest base include directory. Eclipse simplyspad (capital
letter i) flag to the command-line compiler.

#pragma once | This is a modern way to avoid multiple inclusiotishe same
header file. If a compiler supports this, thenlgeahly include the
file once. If the compiler does not understand, ttisn by definition
it silently ignores it.

CHECK This is a macro that is part of CppUTest and ihile available by
including TestHarness.h. It verifies that the résglexpression
evaluates to true (non-0). If it does, then notliagpens and the
test continues. If it does not, then the test teat@s and is recorded
as a failed test.

class A combination of member data (fields or attributasyl member
functions (methods). A class is equivalent to acitother than its
default access level, which is private.

const member | A member function that does not logically changestate of the
function object. You should be able to caltanst member function over
and over and get the same result.

Version: 0.3a 27 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

Term Description

CppUTest CppUTest is an open-source automated testing yiblayou use it
to create focused, small tests that test only bimgtthen you may
be creating unit tests. If you are testing lardemks of code, then
you are creating automated tests that are notlctuat tests. This
is neither a good thing nor a bad thing.

Declaration Expressing that something exists. You can declaed class exists
a function exists or some variable exists. A detian only provides
basic type information, not storage or implementatietails. It is
lighter weight than a definition.

Definition Describes something in enough detail to know ite,sts methods
(if it is a class) or its code if is a method ondtion. Typically,
classes are defined in a header file but their custlare only
declared in the header file. The method bodieslessi a source file
thus they are defined in a source file.

For classes and methods, you can tell a definftmm a declaration
depending on what comes after the name. If these tsefore a {,
then it is a declaration. If there is a { beforg then it's a definition.

Member A function that is declared within a class defimiti The only

function explicit example so far faceValue on theDie class.

Member The implementation of a member function. The oregple we

function have so far iDie ::faceValue

definition

public: Access level of member data or member functionbli®members
are accessible to any code.

Scope :: The name on the right is a part of the name onettieExamples

include std::vector (the vector class is a memibénestd
namespace) ardie ::faceValue (faceValue is a method in
theDie class).

struct versus
class

Classes and structs are equivalent in C++. Thedifflgrence is the
default access; private for classes, public farcss:

TEST A macro that defines an automated test, whichfgeesented as a
class. The class is a sub-class of the structeztdat the related
TEST _GROUP.

TEST_GROUP

A macro that defines a test fixture, which is inmpénted as a C++
struct.

Traditionally, you’ll only have one of these peusce file. You can
have more, but in general one source file for amp@se produces
cleaner code that compiles and ages better.

TestHarness.h

The header file that gives the macros you’ll ugarost of your test|

writing.

Version: 0.3a

28 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.4.4 Final Observation

Notice that our test does not directly produce aumyput. This is by design, not
accidental. For now consider this comment:

e Automated tests should produce no output.
We will come back to this but for now let your braihew on that thought.
3.5 Making Improvements

The first test got us a class with a single, harded method. That's a good start. Also,
considering how much C++ you've already covereggfially you've taken a break
before moving into the second test for this class.

In any case, you'll be adding a new test, whicH feiice an update to tHeie class.
Though, it may not require as much as you'd likevtite yourself. Here’s something to
begin observing:

e As you increase the number of tests, your prodnataxe should become more
general.

This can be used as either a metric or a guidefise metric you might see if the code is
in fact becoming more general as the number of iastease. You might notice:

e Hard-coded values becoming conditions then mowvitg loops
e Handling more cases overall
e Gracefully dealing with edge and exceptional candg

3.5.1 Updated Test

As with all the work in this book, we’ll be changiicode either by writing a test or with
tests already in place. With that in mind, hera gecond test that you can add after the
last test:

#include "Die.h"
#include <CppUTest/TestHarness.h>

TEST_GROUP(Die) {
};

TEST(Die, InitialValueInRangelto6) {

Die d;

CHECK(d.faceValue() >=1 && d.faceValue() <= 6);
}

TEST(Die, RollesInRangelTo6) {
Die d;
for(int i = 0; i < 10000; ++i) {
d.rollQ;
CHECK(d. faceValue() >= 1);
CHECK(d.faceValue() <= 6);
}
}

Version: 0.3a 29 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description
13 Introduce a new test called RollsinRangelTo6.
14 Create an instance ofCae . Notice the duplication from lie 097?

16 Call a new method, roll. If line 14 were in thedy of the for loop, a new die
object would be created for each time through dlog |

17 — | Verify that the die’'faceValue is within the range 1 to 6. Do this in 2 checks
18 rather than one like before. Notice the duplicaiti line 10? It's even worse in
a sense because it does the same thing in a gldjfférent way, so it could be
harder to notice.

3.5.2 When to Clean Up

Notice the commentary about duplication? There’'sigaterlying design principle known
as Don’t Repeat Yourself (DRY. Duplication can cause several problems:

e Increased overall amount of code someone has totanai

e When something changes, there’s more to changenanel opportunities to miss
some of the needed places

e Ultimately, it serves as inertia resisting change.

So we will strive to remove duplication. However remove the duplication we will
have to change another test. Rather than deal®étduplication now, we will finish
what we have started and then remove the duplitadiaying focused on the current
task.

3.5.3 Updated Die Header File

#pragma once
#ifndef DIE_H_
#define DIE_H_

class Die {
public:
int rollQ);
int faceValue() const;

b
#endif
The only change is the declaration of a new methaitj,on line 7.

3.5.4 Updated Die Source File

#include "Die.h"
int Die::roll(Q) {
return 9999;

}

int Die::faceValue() const {

® Site Pragmatic Programmer, Dave Thomas.

Version: 0.3a 30 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

return 1;

}

The only change is the definition of tBée ::roll member function on lines 2 — 4. Notice
the arbitrary return value? What is your reactoth@at?

3.5.5 Exercise: Update Die
Make the following changes:

e Add the new test tDie Test.cpp
e UpdateDie .h with the roll method declaration
e UpdateDie .cpp with the roll method definition

Get back to green, meaning your code compiles andtgsts all pass.
3.6 DRY Violation
Now that you are at a stable point, you have soptiems:

e Clean up tests to remove duplication
e Add new tests to force the extension of functidgali
e Clean up the production code

Since we observed duplication, now is a good tioneimove it. We are going to change
the structure of the code without changing its baraln this case we’re removing
duplication from test code, but we could do sonrggtgimilar with production code.

Changing the structure of the code without changmbgehavior is known as
refactoring. Our working definition of behavior will be “pasgj tests.” So long as we
keep the tests passing, we are refactoring.

3.6.1 Removing Duplication

TheTEST_GROUmacro introduces a test fixture. It is time togaklvantage of that.
Any fields or methods added to thEST_GROURre available to alTESTS that use
thatTEST_GROUPSo simply adding Bie object and a supporting method will help
remove the duplication.

In fact, this is an example of inheritance. Hegediagram to represent what we are about

to do:
TEST_GROUP(Die)
+d: Die
+verifyDieValue(): void
TEST(InitialValueBetween1And6) TEST(RollesinRange1To6)
+d: Die + means public. d is the name of something thptiigic.

Version: 0.3a 31 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

:Die means it is an instance obae .

+verifyDie Value(): void | + means public. veridye Value() is the name of a public
method. :void means the method returns nothing.

Inheritance. Each box represents a class. In #ss the
Zﬁ base type is a test fixture. We don’t know the éxatne,

but the name comes from the TSET_GROUP macronso
taking a little liberty with UML. The derived classames
come from the TEST macro. Everything in the baasscls
public so it will be available to the derived class

Step 1: Add

Start by adding new functionality rather than chag@nything in place. The diagram
shows a public attribute (field/member data) apdialic method (member function).
Here’s one way to accomplish both of those:

#include "Die.h"
#include <CppUTest/CommandLineTestRunner.h>

TEST_GROUP(Die) {
Die d;
void verifyDieValue() {
CHECK(d.faceValue() >= 1);
CHECK(d.faceValue() <= 6);
}
};

Line | Description

06 Add a member field to the struct created udmegREST_GROUP macro. Its
name is d, its type Bie . Since TEST_GROUP creates a struct, default access
is public. The reason TEST_GROUP creates a stersug a class is because |t
is meant to hold common data and methods to belysezgits, which inherit
from the so-called test fixture.

07 — | Define a method called veribje Value(). It takes no parameters and returns|no
10 values. This is a method definition in a classrd&éin. There’s a term for that,
it's called anmplicit inline function. Inline functions are something you should
eventually learn how to write, but they are notigjsct explicitly covered in this
book. I'm only mentioning it here so that:

» You will understand what this code actually does

= You will know what this is called so you can lodkip in a C++ Reference’s

index.

Run It

Add these two changes and confirm that your catlesmpiles. You can also re-run
your tests. When people discuss Test Driven Dewvedop and refactoring, they often
discuss “getting to green fast and often”. This tiek to accomplish that goal:

Version: 0.3a 32 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.7

e Initially add code, don’t change it
e Bite off a very small bit and get it working
e Make sure it compiles and the tests still pass

Update First Test
Make sure these appear to work by only updatingtesie Here’s the first test updated:

TEST(Die, InitialValueInRangelTo6) {
verifyDieValue(Q);
}

Note that the entire body is replaced by a cath&verifyDie Value method. The
original test created a single die then perform@&@H&CK. This method does the same.

Run It

Update the test and confirm that you are still gr&ee? Keeping things clean and green
isn’t so bad when you understand how to break dawroblem into smaller and smaller
steps.

Update Second Test
Here’s an updated version of the second test:

TEST(Die, RollesInRangelTo6) {
for(int i = 0; i < 10000; ++i) {
d.rollQ;
verifyDieValue(Q);

}
}

This example removes the creation dia and it calls the public base method, thereby
removing the duplication

Run It

Again, get to green. Change the test and verifyytbar code compiles and the tests still
pass.

A Message on Test Granularity

The first two tests are similar. They both creat®hject and they both check that the
face value is within a particular range. Howeveeytare testing very different things.

The first test confirms that after an instancehefie class is created that is has a valid
face value. That is, the object is created in d-defined, usable state. The second test
verifies that the die rolls a value in a valid rargf 1 — 6. Notice that it does not confirm
the distribution of the values, just that a valuésale that range does not happen for a
large number of uses.

What is the same is the mechanism of validationficming the die is valid by looking at
its face value. This is an example of checkingestaboking at the value of a die and
confirming that its value is in a range is verifyithat its state, its member data (or
attributes) are in a well-defined state. We hapgpdre checking all of the state in the die
because there’s only one value. This is incidelttéd.reasonable to test only part of an

Version: 0.3a 33 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

object’s state in one test and another part interdest. For now, more, smaller tests are
better than fewer, large tests.

For a quick answer as to why, consider how liketgst is to break relative to its size.

The larger a test, typically, the more it coverlse Thore a test covers the more things that
can change and break the test. Larger tests temalv®omore moving parts, each of which
might cause a test to break. As a corollary, ésa inust be large, then the code it is
testing is probably highly coupled and hard to ustasd.

Stated differently: Bad code is hard to test; ifiy@an write clear tests, your code is
probably well written.

3.7.1 Recap
Term Description
As # tests Become more general. More tests, testing diffetleings, forces your
Increases, production code to handle more situations. Asiidies more
production situations, it will either become ugly or clean eTtests force change

code should | and they support experimentation to consider aitéres solutions tq
find one that is clean for the given set of tests.

DRY Don’'t Repeat Yourself.
Keeping Tests | we will strive to have clean production code areholtest code.
Clean Tests can be an asset, allowing you to make chaadely without

breaking exiting code. However, if you do not treaitir tests with
respect, or let them age badly, then they will éwvelty wither and
die.

In fact, all code is either getting better or woadlehe time. Even if
you are not changing the code, your users andrfgndiher ways to
make it break, so unless you are actively carimgful feeding your
code (test and production code), it's going to die.

Order of Tests | The order of test execution is, by design, unknowhile you can
figure out the test order just looking at the otitjplo not take this

information into consideration when writing teskgsts should be
written as mini-universes, with their own laws diygics (starting
conditions) and their own, independent checks.

Test Fixture | The TEST_GROUP macro introduces a test fixtureémented as :
C++ struct. It holds common member data and merfinetions for

tests. A good way to group tests is by common s&upst fixture is
a way to capture common setup.

I recommend one test fixture per source file.

Test Fixture | Fields added to a TEST_GROUP are available to iafividual test.
Fields This is a way to reduce duplication across teses.udéd a common
Die objectin the TEST_GROUP, and each TESTs is abdetess

it. These fields are available because of inhecgan

Test Fixture Methods in a TEST_GROUP are accessible by TESTsadled a
Methods method in the TEST_GROUP to validate that the dieflsvas

-

Version: 0.3a 34 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.8

3.8.1

Term Description

within the range 1 — 6 and then used that validaticeach of the
TESTSs.

Fixing an anemic roll method

The roll method returns a hard-coded value. Homveanin general, improve the cé@e
As stated earlier, we’ll be growing our code thriotige additional of additional tests.

Validating Roll Distribution

Now it is time for a test that verifies all valua® rolled. While we’re at it, we’'ll also
verify that the distribution is “reasonable.” Thevere be several steps to the final form
of the test, which uses the standard library agr@ifiors.

Writing it the hard way
Here’s a test that will get the job done:

TEST(Die, ShouldRollAllValuesEvenly_1) {
int values[6] = { @, 0, 0, @, @, @ };

for(int i = 0; i < 600000; ++i) {
d.rollQ;
int faceValue = d.faceValue(Q);
int countIndex = faceValue - 1;
++values[countIndex];

}

for(int i = 0; i < 6; ++i) {
CHECK(values[i] > 95000);
CHECK(values[i] < 105000);
}
}

In a nutshell:

e Create an array of size 6 (6-sided dice), initeaizo all 0’s.

e Roll 600,000 times, incrementing the count by aoreaf given face value (1 is stored
atindex 0, 2 at 1, etc.

e Verify that all values rolled are in within 5% oéllanced

This test is fine as is, but since part of the pagoof this book is to introduce classes in
the standard library, read on.

The std::array class

There’s a simple wrapper class for raw arraysivikga way to initialize values and
iterate over a collection; it allows raw arrayd®used with other parts of the standard
library in the same way that the collection classesk.

Here is the first update to the previous exampidy(the changes):

#include <array>

® The general answer to this question is: “Write another test.” — Really.

Version: 0.3a 35 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

TEST(Die, ShouldRollAllValuesEvenly_2) {
std: :array<int, 6> values;
values.fill(0);

Line | Description

01 Include the std::array class. Note that in galrtbe order of header files is
important to CppUTest. The real issue is if thesglases dynamic memory
allocation. This class does not, so it can be oetubefore or after the #include
of CppUTest/TestHarness.h.

03 Define an std::array that holds 6 ints. Theyactass wraps “raw” arrays. Its
initial index is 0. Its last index is the size (6)inus 1.

04 Initialize all values in the array to 0. Notatithe fill method uses the second
template parameter (6) to know the range. It setrGsand goes to 5 (1 minus the
second parameter).

If there were all the std::class did, then thetmdittle reason to use it. However, before
moving on, a few observations:

e The variable values is no longer a primitive agas in the first version.
e Therefore, a constructor is called upon its debnit
e If you review the first version, specifically lin€s 12, and 13, you'll notice the array
is accessed using []. This is an overloaded operaémber function on the std::array
class. The full method name is actually operatovfpu could write line 08 as:
++values.operator[](countIndex);

Using a typedef

When | use collection classes, any many other etagsthe standard library, I'll use
typedef statements to introduce synonyms for tineesiones long names. It just so
happens, as you'll see, it also removes a DRY timia

Here’s one more minor change:

typedef std::array<int, 6> RollArray;
RollArray values;
values.fill(0Q);

Line 01 introduces a name, RollArray, which is a@yym for std::array<int , 6>. As
with the previous example, not much change andghtmot seem like much value.

However, read on to see additional changes thatwave this to an idiomatic use of
classes in the standard library.

Moving towards an iterator by using raw pointers

The standard collections and algorithms use a Bedcpair of iterators to describe a
range. An iterator is a logical way to process @ets in a collection. Each collection
declares two methods: begin() and end(). Thermetihod, begin(), represents the logical
beginning of a collection. The end() is a logic#ntifier representing “one past the end”.

The validation loop at the bottom of the test cduddrewritten using this idea as follows:
for (int *i = &values[@]; i != &values[6]; ++i) {

Version: 0.3a 36 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

CHECK(*i > 95000);
CHECK(*i < 105000);
}

A raw array stores values in contiguous bytes. arhay class is a lightweight wrapper
around a raw array, so its underlying storageasstime. The address of values|[0] is the
beginning of the array. The address of values[]stafter the last element in the array.
This loop starts at the first element and continukge i is not on the address just after
the last element.

If this were a raw array, the for loop should haeen:

for (int *i = values; i != values + 6; ++i) {

However, since values is an instance of a classethan even better way to write this:
for (int *i = values.begin(); i != values.end(); ++i) {

In all of these examples, i represents an iteiiatorthe collection. It turns out that for
classes like array, an iterator is just a raw poirfeor more complex classes, the iterator
is also a more complex type. However, there’s aseotion used in the standard library.
Each collection type has a nested typedef, iterathich represents its iterator type.

The full name of that type in this case is:

std: :array<int, 6>::iterator;

However, we have a typedef for the first part,rsour case, the name is:
RollArray::iterator;

This changes the for-loop one more time:

for (RollArray::iterator i = values.begin(); i != values.end(); ++i) {
Introducing second typedef

The almost-final version of the for loop is stilba long winded. I'll introduce a second
typedef to “promote” the nested typedef in theexlibn class up to the current scope:

TEST(Die, ShouldRollAllValuesEvenly_5) {
typedef std::array<int, 6> RollArray;
typedef RollArray::iterator iterator;
RollArray values;

Now the final for-loop looks like this:

for (iterator i = values.begin(); i != values.end(); ++i) {
CHECK(*1i > 95000);
CHECK(*i < 105000);

}

Shortening the middle loop

The middle loop uses several temporary variablesake its intent clearer. Here’s a
“tighter” version that is probably more typical:

for (int i = 0; i < 600000; ++i) {
d.rollQ);
++values[d.faceValue() - 1];

Version: 0.3a 37 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

}

This is a more c-ish way of doing things. Regamsligiswhether you prefer the longer
version using temporary variables this shorter version, most compilers are gaing
generate the same code.

Putting it all together
<TO DO>

The previous section and the next two code exanmudsnger flow... Need to integrate
them. Also, the name in the previous examplesfisrént.

</TO DO>

The tests do not currently check to see if all @alare rolled. This next test accomplishes
that, making sure roll values are reasonably thigted:

TEST(Die, DistributionReasonable) {
std: :array<int, 6> values;
vdlues.fill(0);
for(int i = 0; i < 600000; ++i) {

d.rollQ;
++values[d.faceValue() - 1];

}

for(std: :array<int, 6>::iterator
iter = values.begin();
iter != values.end();
++iter) {
CHECK(*iter > 95000);
CHECK(*iter < 105000);
}
}

Line | Description

01 Introduce a new test called DistributionReast&ab

02 Use the standard library array class. This dlagds a raw array but gives a few
convenience methods. This class looks likstarvector , but it is a fixed
size.

02 This class is available Bginclud ing <array>

03 Initialize the contents of the array to 0. luyased a raw array, you'd either need
to loop through the values, or initialize all oéth with O when you created the|
array.

04 Loop 600,000 times.

05 — | Roll the die. Get théaceValue , subtract one. This gives a range of 0 — 5
06 (std:array’s are 0-based, as at@::vector s and raw arrays). Increment th
count at indexaceValue - 1 by one. So the count of the number of times 1

D

" These temporary variables are called “explaining variables” by Martin Fowler in Refactoring.

Version: 0.3a 38 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line

Description

was rolled will be in index 0.

09 -
12

Iterate over the entire array. This is a bit muxkake in, however this is how
modern C++ using the standard library should b&ewri I'll be giving a simpler
version coming up using something calletyzedef

09

Use a nested typedef in the std::array classdcaérator. The type iterator is
actually just a pointer to what is in the arraync¢® the array containst s, the
type std::array<int,6>::iterator is actually int*.

02,
09

Notice the duplication? Both lines contain theyitdualified name
std::array<int, 6> . This violated DRY. We'll fix this before creagn
the test in our project.

09 -
10

Define an instance of a thing callediterator . That instance is known as
iter . Itis initialized to thevalues.begin() , Which is the address of the
first element in the array. That it, it points that is invalues[0] ; it is equal
to &values .

11

So long aster is not at the end of the array, continue going the loop.
Since array is a thin wrapper around a raw array,can figure out what
values.end() returns. It is the address just after the lagheld in the array.
Since this is atd::array<int, 6> , the last element is at index 5.
Thereforeyalues.end() returns&values + 6

12

Increment the counter. You are possibly moreistomed to seeing iter++ (that
is, post increment versus pre-increment). On g foop, they produce the same
result. Modern compilers and processors can efsitizis at compile time.
However, if the type of the iterator is actuallg@nplex type as opposed to a
raw type, then pre-increment is more efficient.Have more to say about this
later. For now, you can safely make this substtutiniversally. Most of the
time it will make no difference. Occasionally itllhbe more efficient because it
will avoid the creation of an unnecessary objertc&it is a hard habit to
change, better to start practicing it now.

Technically, post-increment returns the value efssignment, which require
the creation of a temporary value. This temporaiy® is called an r-value. It i$
called an r-value because it can appear on thésigk of assignment (a = b) but
not on the left side of assignment.

[92)

13,
14

To get to the current value in the array throughitdrator , dereference it.
That's whattiter does, it turns thpointer to an int into anint

Again, this is idiomatic use of the standard ligré8o this is something that
you’ll need to practice so that it becomes secatdre.

13,
14

Make sure that the total number of rolls for a givalue is approximately one
sixth of the total number of rolls (with a 5% mardor error).

This test is a bit of a jump. It introduces seveml things:

e The std:.array class from the standard library.
e |teration across all elements of a collection.

Version: 0.3a

39 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

e The iterator nested type
e Dereferencing iterators
e The begin() and end() methods of collections

For now, | want you to replicate it. You'll be gat§ more practice with this in the future
but to be able to type it, you'll need to build tige complex muscle memory required.
Think of this as the natural language approackaming C++.

Fixing DRY Violation with an Idiom

Before you actually write this test, there’s onerenthing | want to introduce to make
this code a touch easier: usitygedef

Here’s the same code usitypedef s to remove the duplication, and | hope, make the
code more readable:

#include <array>
typedef std::array<int, 6> RollArray;
typedef RollArray::iterator iterator;

TEST(Die, DistributionReasonable) {
RollArray values;
vdlues.fill(0);
for (int i = 0; i < 600000; ++i) {
d.rollQ;
++values[d.faceValue() - 1];

}

for (iterator iter=values.begin(); iter!=values.end(); ++iter) {
CHECK(*iter > 95000);
CHECK(*iter < 105000);
}
}

Line | Description

01 This is the header file faatd::array . This header file can be included aftey
<CppUTest/TestHarness.h> . It happens to work because the
std::array class does do anything with dynamic memory alioocat

02 Usetypedef to introduce a synonym for the full name of thexgr The
original version had duplication, this version daes. Now, anywhere below
line 02 (in the compilation unit) usirigollArray will actually be using
std::array<int, 6>

03 The typeiterator Is actually a nestetypedef in thestd::array class.
This line introduces a synonym fiberator called the same thing. This is g
way to “promote” a nestetypedef up to the current scope.

Any line of code below line 03 (in the compilatianit) usingiterator will
actually be usingtd::array<int, 6>::iterator

The name you use is arbitrary but it should makse&eSince thierator

Version: 0.3a 40 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description
meme is embedded deeply in the C++ standard librayoid originality and
just use it.

06 Define astd::array<int, 6> by using thaypedef

13 Define astd::array<int, 6>::iterator by using theypedef

Create the Test

Create the second form of the test. Add it to ttistimg Die Test.cpp class. You should
be able to get a compiling test that fails executed

3.8.2 Updated Header File

Now that theDie needs to produce different values, it's time tedt a better
implementation. The header file needs some updates:

#pragma once
#ifndef DIE_H_
#tdefine DIE_H_

class Die {
public:

Die();
int rollQ);
int faceValue() const;

private:
int value;
b
#endif
Line | Description
07 Declare a no-argument constructor (ctor). If glealare no constructors, C++
will declare a no-argument constructor for yoursslavhich is typically called
the default constructor. The compiler-provided nguanent constructor
performs default initialization. Default initializan for primitives is to do
nothing. Default initialization for non-primitivggnstances of classes, or objeg
is to call the object’'s no-argument constructor.
We’ve added member data on line 12 to this classita. Sinceint is a
primitive type, its default initialization is to dmthing. We will use the
constructor to satalue to some reasonable initial value.
11 Everything from this line on is private: until thextpublic: , private: , or
protected:
12 Add member data (fields, instance data). Eastante of die will have its own
value member data.

ts)

Version: 0.3a

41 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

This header file declares a constructor, whicloisstdered a special function. That it is
special is not important, what is important, howeisethat that constructor is implicitly
used throughout your code base.

Experiment

Make the change to the header file and attempuitd.bAll the code will compile, but it
will not link. The linking error will be related tthe fact that your class definition
contains a declaration for a no-argument construbtd you have not yet defined it (in
the source file).

Often, you can add a member function to a clas$oi@pas it is not used, adding just a
declaration but no definition will case no probler@sice calls to constructors are
implicit (added by the compiler), they are usedreif it is not obvious. In fact, any time
you define an instance, a constructor will be chlNo so for primitivesifit , int* |

char , char* , etc.).

3.8.3 Updated Source File

The header file contains a declaration of no-arguroenstructor, so it is time to add it.
This section contains a few steps so you can obghings actually happening rather
than just believe a book.

First Pass
#include "Die.h"

Die::Die(Q) {}

int Die::roll(Q) {
return 9999;
}

int Die::faceValue() const {
return value;

}

There are missing line numbers to maintain the daraenumbers from this version to
the final version for this section.

Line | Description

05 Define the no-argument constructor. For now&sinothing. This code is what
the compiler writes for you by default.

16 Change the definition daceValue to return the new instance data. A

guestion to start asking yourself is this: How dibes method know one value
from another? If there are 1,000e objects in the system, how does this single
method distinguish one die from another?

Experiments in Failure

The code did not link. Now it will link if you defie the constructor. Add just line 5, get
to compiling. Now you should see the most receatlged test failing. Why? Because the
distribution of values is not reasonable; the diky oolls 1.

Version: 0.3a 42 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Now, update youfaceValue method to return value instead of returning 1.nMhen
your tests. Now ask yourself, “what just happen&d?!

Returning back to just one failure

The problem is that the meth&ateValue returns member data. That member data is
an int, which C++ does not initialize by defaulowf particular compiler might initialize
it to 0. If it does, the tests will still fail.

What's really happening is that memory for the aligect is allocated somewhere. You
cannot tell for sure where without looking at Cp@dT, but where it is placed is not
important. It's in memory somewhere.

That memory may have previously held a value oright have been set to all 0’s.
Whatever that memory had for a value is what thenbex data will contain. So you need
to initialize data. That is the primary role of@estructor. So here are two equivalent
ways to accomplish initialization:

05: Die::Die() { value = 1; }
And then this form | want you to learn:
05: Die::Die() : value(l) {}

The first formassigns the value 1 to the member data. The second veisithalizes the
member data to 1. It may sound like the same tland,for primitives it is the same
thing. Howeverprefer initialization over assignment.

Of course, you're going to have to learn one frbmather. This will come up again, so
for now:

e Use the second form

e Understand that C++ treats initialization differé&oim assignment

e Interms of a constructor, the second form is howde initialization versus
assignment.

e Even though for primitives there is no differenttesre is a difference for objects. It
will typically be better performing, but more impantly, there are cases where it will
be required.

Make the change to your constructor and noticeytbatare back to one failing test.

By the way, the name for the second fornrM&mber-wise Initialization List. It starts
with a : after the close parenthesis of the forangliment list and ends with the opening
curly bracket {.

Get back to green

Now it is time to get back to green. We'll do tlath a quick and dirty implementation
then a better one after that.

int Die::roll(Q) {
static int lastValue = 0;
lastValue = (lastValue + 1) % 6;
return value = lastValue + 1;

Version: 0.3a 43 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

I’'m using letters here because these lines argaiag to last very long.

Line | Description

Ob Define a variable calleldstValue . This variable istatic . This form of
static makedastValue exist for the entire progrdimThe initialization of
lastValue to 0 is done once, the first time thehuodtis executed, but never
again.

Oc Add one to last value and use modulus with 6. Wiildimit lastValue to
the range 0 — 5.

od Assign the member datalue tolastValue + 1 . Sincelastvalue isin
the range 0 — 5jalue will be in the range 1 — 6.

Return the result of the assignment. Note thagassent returns the thing
assigned to, which is value in this case. Techlyicatsignment returns an |-
value. An l-value is something that can appeatenéft-hand side of the
assignment operator.

This first version should get your tests passingk&the change and get to green. Once
you are green, read on.

Refactoring

Remember that refactoring means to change thetsteuaf your code without changing
its behavior. Behavior, in our work, is definedthg automated tests. If we plan to
change the production code, so long as the tests pe& are in great shape.

The second version of the C++ standard is calledathich stands for “Technical
Release 1. OK, it really is not a standard but@mmendation. It recommended adding
several classes to the standard library. One gobagditions to the library for that
version was is a number of new random number g&rerd’m providing this next
version for two reasons:

e So you will be aware of classes available to yothelibrary
e Students in the classes I've taught seem to lile th

So here is a final version of the entde .cpp file for this section:
#include "Die.h"
#include <trl/random>
Die::Die() : value(l) {}

int Die::roll(Q) {
using namespace std::trl;
static mt19937 engine;
static uniform_int<int> uniform(1l, 6);

return value = uniform(engine);

® This is somewhat simplified, but it's a good enough model for the discussion.

Version: 0.3a 44 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

int Die::faceValue() const {

}

return value;

Line

Description

03

Include the new random number generation fesitvieethis header file. Notice
the use of trl in the name of the header file. ¥an probably guess that
something was part of trl if its header file inasdrl.

05

The final version of the constructor. This vensinitializes the member data
value to 1 by using the member-wise initializatish

08

The classes about to be named are part of la&s€s of trl are typically in the
trl namespace. The trl namespace is a nested recaespghe std namespace
So, for example, mt19937 is a class name. ltsfahe is std::trl1::mt19937.
Rather than typing that, the using expression Braibof the names in the
std::trl namespace into the current scope (therrethod). This makes those
names available without fully qualifying them.

Since this using expression is in the body of t#niion of the roll method, it
only impacts the roll method.

09

The class mt19937 is a random number geneiic line defines a single
instance of the class, called engine. It is statieaning there will only be one,
which will live between executions of the roll meth The first time the roll

method is called, this object will be initializegince this is an object, and not a

primitive, one of its constructors will be calléthere are no parameters
provided to the constructor so the no-argumenttcocter will be called.

10

The template class uniform_int<int> attemptarndormly distribute the values
it is provided across some range of values. Thisdiefines an instance of the
class called uniform. The first time the roll medhe called, one of uniform’s
constructors will be automatically called. The g1 after uniform are paramete
provided to the constructor. So a constructor gkivo numbers will be called
rather than the no-argument constructor.

[S

12

First, generate a random value. Next, assigreti@om result to the value
member data. Finally, return the I-value returne@ aesult of assignment, whi
is the member dataalue .

There is quite a bit going on here.

» The statemeniniform(engine) calls a method on the uniform class
taking an engine object. This looks like a functoatl, but it is in fact calling

a method calledperator() , literally. This expression could be written as

uniform.operator()(engine)

» The () operator is called the function call operalioallows an object to look
like it is a function. Another name for this is ffctor” or function-object.

* The return from calling operator() is assignedatue.

» The result of that assignment is value itself.

» The member field value is returned.

ch

Version: 0.3a

45 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description

12 Notice the DRY violation? Two lines of code botturning the value member
data. This doesn’t seem like much, but as youse#, it causes some subtle
problems.

12 There is another design principle that this cadites: TheCommand/Query
Separation Principle. This principle suggests that a function or metsloduld
either be a command or a query. A command chartgtsisut does not return
value. A query returns a value but does not chatae. Since roll() can chang
the value of the die, its returning a value viddatee principle.

There are times when following the command/quepasaion is problematic.

One common example is with multi-threaded prograngmOften you need to

both perform a check and change a value if thatlcpasses, however both of
those things need to be done as a single unit df.wo

We are not writing a multi-threaded applicationwewer, so violation this
principle might cause problems.

Now a secret. That violation is by design. It wiime up shortly as you will se
an actual problem that could have been avertedhedode not violated the
command/query separation.

D W

D

Now it is time to change your code. Change the @mgntation of roll to use the new
random number generation classes. Now that yoavaage of their existence, you're in a
good position to look them up if they tickle yoanty’, this will be the last mention of
the random number generator.

A note on this C ugliness

Using a static variable in a method (or functiaan old C hack. However, due to the
design of the class | only wanted one instanceotf the engine and the uniform object.
There are several ways to do this:

1. Static variables in the class (so-called class, @atstatic member data)

Static variables in the source file, but outside ofiethod

Global variables

Each die object could have its own copy, eachailimted with a different random seed

Each die object has its own pointer to an engimkaanuniform_int

Not do it and just skip those classes (or lightsttion them)

7. The static hack | used

o gk wN

Fundamentally | didn’t really like any of thesewodns. My personal definition of
design is “Selecting the solution that sucks tlastié Often there is not a single best
answer, so you take the best answer you can get.

Here is why, case by case, | rejected the firsbpbons:

‘ Option | Description

° That's one of the ways this book avoids being an encyclopedia. Another is simply not covering
everything. So you will not win any trivial pursuit contests, but you will be able to write decent OO
programs with what you will learn.

Version: 0.3a 46 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L.

Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Option

Description

1

While | did want a single instance, adding thiestne header file would then
make all files that includBie .h know about the random number generatio
stuff. This is strictly implementation only so spding this knowledge across
the source base represents bad and fundamentakgessary coupling.

>

This isn’t really any better than in the functiamd it expands the visibility of
the variables from just one method to every linthsncompilation unit below
where it is introduced. It's better than optiorblit if I'm already considering
file-level scope, which is what static on a vareabutside of a method
represents, then static on a variable in a fundpomethod) really isn’t any
more complex. Same idea, more focused scope.

Global variables allow for wide-reaching couplihgvill use them in
controlled fashions. But in reality, global varieblare a great way to have
guaranteed employment as you work fixing bugs ferev

First, there’s the issue of making the randoml@mentation visible to all files
that includeDie .h. That is unnecessary coupling. Unnecessary caupl
causes slower compilation times, slower feedbaolt,ilacreased time to read
and understand what is going on.

Also, this would require the introduction of more-features than | wanted
to do at this point. Important features, to be shut ones that will naturally
occur.

This reduces the issue of unnecessary couplicguse it is possible to use
something called a forward-declaration to minintize unnecessary coupling.
However, this would introduce dynamic memory altaraas well.

Both of those subjects are coming up. But as wiéhprevious option, more
C++ than | wanted to cover at this point. Thingast thill come up anyway.

Of all the options that | did not pick, this ietbest option. It might have been
the best option overall, however | have withessezligh people interested in
this that it seems worthy of mention. | don’t thitik worthy of a lot of detail
because those details are available elsewher#y kabw to look up those
details, you need to know it exists. So using & great way to raise
awareness.

This option is somewhat complex, but it's somaghli will actually do in
production code to keep implementation details helepden.

3.8.4 Recap

Term

Description

<trl/random> The header file used to include suipipomew random number

generation algorithms introduced into technicatask 1 of C++.

array

A class in the standard library. It offerthia wrapper around a raw
C array. It provides utility methods and it alsokesia raw array
look like a standard collection.

assignment = is the assignment operator. It tdleegdlue on its right side and

Version: 0.3a

47 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

Term Description
applies it to the thing on its left side. The thogthe left side must
be an |-value, such as a variable. The thing omitfn side can be
an I-value but it can also be an r-value, e.g., 4.

begin A method on the standard collections. Itrrefwan iterator set to the

beginning element of the collection.

command-query
separation

A design principle that suggests methods and fanstshould either

be a command or a query, but not both. A commanadgés state
but returns no value; a query returns a value basahot return
State.

Constructor(ctor

A special method on a class used to initialize lajea of that class.
It is special in that you do not explicitly call the compiler inserts

code to invoke it. In fact, when creating an ohjaatonstructor will
be called. Primitive types, such as pointers davaek constructors

end

A method on the standard collections. It refw@mething that can
be used for comparison. Iteration across all elésn@ma collection
start at begin(), and continue while the iterasomat equal to end().

function-object

An instance of a class that capoesd to the message (). This is a
overloaded operator. The full method name is opefatAt a
superficial level, it makes an object look likdoéhaves like a
function. When used as a parameter to a templass,al is possible
to write code that uses either a function or a fiemcobject without
having to do anything special, so it is a conveiwesy to make
generic code.

=)

functor

Same as a function object, just an altéreatame.

initialization

When an object or primitive is deidd and set at the same time, i
being initialized. For non-primitives, initializath means the
compiler inserts a call to one of its constructors.

iterator

This is both a design pattern, a name bygdte standard library
and a nestetypedef . All of the collection types in the standard
library contain a declaration of a type calledater. It represents
something that code uses to work through all elesiera
collection. In the case of array and vector, thpetgf iterator is
simply a pointer to what the array or vectors hokts more
complex collections, the iterator is more compldawever, its use
is consistent across the collection classes istdredard library.

I-value

A fully-formed variable or object. It iss@thing that can be on the
left-side of an assignment operator. Temporaryaslr a constants
such as 4 or “4” are not |-values, but insteadlues.

Member field

A non-static variable that is partaatlass definition.

member-wise
initialization list

On a constructor, it is the place where member ciatebe
initialized using non-default initialization. It ests between the) of

the constructor argument list and the { markingdtaet of the

Version: 0.3a

48 Author: Brett L. Schuchert (schuchert@yahoo.com)

S

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Term Description
method definition. The member-wise initializatiost begins with a

modulus (%) Given two integer values, return thmaider of division of the
number on the left by the number on the right. 6 %5, whereas 6
%5is 1.

mt19937 A class added to the standard library gsopdechnical release 1. It
provides a sequence of random values using thedvieesTwister
algorithm

namespace A way to group related classes and {esidkhe original standard
library resides in a namespace called std. Exangflés members
include std::cout anstd::vector . When technical release 1 was
introduced, it was created as a nested namespadee shal, giving
classes like std::tr1::mt19937.

nested type Adding a type in a class creates ashégbe. All of the standard
collections have a nested type called iteratoraarather nested type
calledconst _iterator for dealing with constant collections.

nested The iterator andonst _iterator nested types are created using a/C
typedef typedef . Since thos¢ypedef s are in a class, they are nested
typedef s. This means their full name includes the nantaef
class in which they reside.

no-argument A constructor on a class that takes no argumentieriWou create 3
constructor C++ class with no constructor, C++ will attempiatdd one taking
no parameters. You can choose to write that ydufgéle one

provided by C++ does not do what you require. Waeacross thig
while changing th®ie class. We added a primitive member data
entry called value, which required initialization.

non-primitive An object. An instance of a classtiuct. Non-primitives have
constructors, which are called automatically whHendbject is
created.

object/instance Defining a variable of a classtarcs creates an object. Object an
instance are synonyms.

operator() The function call operator. We saw timghe uniform_int class.

pre-increment ++ on the left side of a variable-FPicrement returns the value of|a
variableafter adding one. The significance of this is that the p
increment operator returns an l-value rather tmamalue. An r-
value requires the creation of a temporary objghgreas an I|-value

1%

[N

does not.
prefer All non-primitives are initialized. Assignment aftiaitialization
initialization may cause unnecessary or duplicate work. Therglésdifference

over assignment| with primitive values, however, there is no harnmgsnitialization
over assignment, so applying this to all variapes reduces the
amount you need to remember.

Version: 0.3a 49 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

Term

Description

primitive

Types know by the compiler. Examples ud# int, char, void*, to
name a few. All points are primitives. All referesc(we’ve not
come across this yet) are also primitives.

primitive
initialization

Primitives are not initialized by default. We exipaced this when
adding the value member data to Bie class. It was not
initialized. We added a constructor to force ittiatization. We then
looked at assigning the value in the body of thestrmictor versus
initializing it in the member-wise initializatiomst. For primitives,
there’s little difference. However, there are ditras where the
member-wise initialization list is mandatory.

private:

Access level. Things that are private catre accessed outside of
the class unless using “friends”.

r-value

A value that can only appear on the rigié ©f an assignment
operator. A copy or a temporary.

special member
functions

Constructors and the destructor are examples afapaember
functions.

static variables

Static typically means “one” ims&manner.

= Static on a variable in a function means there avilly be one, it
will be initialized the first time through the futh@n and it will
live for the life of the program.

» Static on a variable in a source file but outsifia tunction means
there is only one, it will be initialized befora ifirst use (typically
before main() is called in practice) and it is oabtcessible from
the point in the file where it occurs to the endhds file.

= Static on a function in a file means the functisonly available
to this one compilation unit. File-level scope.

= Static on a variable in a class means there wilt ba one of themn
rather than one per object. This is typically chibtass data.

» Static on a method in a class means that it inssahethod. It
does not operate on objects. It does not itselé lzeess to
member data unless it happens to have an instdnlce olass.

std::trl

The namespace of classes added as gadtuofical release 1 of the
C++ language.

template class

A class that takes parameters ieshave seen two examples up
to this point, std::array arstd::vector . Atemplate class is a
partial or meta class. Providing template parammeges a
complete class. In fact, in C++ a vector<int> apdtor<int*> are
two different classes. Using a template causesréwegion of a
complete class.

trl Technical release 1, or ISO/IEC TR 19768. T$is set of
recommendations, not actually a standard. Sevéthealasses
were taken from the boost library.

typedef A way in C (and C++) to introduce a synonym for teo type. I'll

Version: 0.3a

50 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Term Description
be usingypedef to remove duplication primarily when using
template classes from the standard library.

uniform_int<int>| A class described in trl that attempts to providewen distribution
of values across a range.

using A keyword to bring names from one namespatceanother
namespace.

3.9 C++ Idioms

There’s one more group of changes based on thivegsampiler does by default. The
compiler will add a no-argument constructor if yamnot add any constructors to your
class. The compiler will also add three more meshtodyour class if you do not do so
yourself:

e A destructor
e A copy-constructor
e An assignment operator

This section is about doing this yourself. Ultintgtevhether and how these methods are
declared and or defined should be an explicit d&tis he first step, however, is
awareness that C++ is adding these methods andhtveto override the default
behavior.

3.9.1 Updated Header File

Whether a class will take over the generation o§&¥4 methods is part of a class’
definition, which is in a header file:

#pragma once
#ifndef DIE_H_
#fdefine DIE_H_

class Die {
public:

Die();

virtual ~Die();

int roll();
int faceValue() const;

private:
int value;

private:
Die(const Died);
Die& operator=(const Die&);

h
ftendif

Version: 0.3a 51 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line

Description

08

Declare a destructor. This is a special metlatlddwhen an object is removed
from the system. By convention, we’ll be makingadlbur destructors virtual.
More on this later. There are situations whereithan inappropriate thing to do
e.g., embedded systems with strong memory resingtior putting objects into
shared memory. Neither of these is relevant fa pinoblem.

17

Declare a copy constructor. It is private, g6 itot available for use outside of
the class. In fact, it will not be used inside thess, so there will be no definitian
for this method. This makes it impossible to acetdiy copy an object of this
class.

18

Ibid. but for the assignment operator. The assant operator, by convention,
returns a reference to the original receiver. Biue of the &, the return type is
an original, not a copy, so it is an |-value. Assiggnt operators are meant to
return I-values, and this is how to do that.

17,
18

Both of these take in@onst Die &. The & means reference. Thoenst
suggests that the object passed in will remain angéd.

Experiment in Failure

Update the header file and attempt to compile. ¥owtice a linking error because your
class’ definition states that the class is provgdandestructor. Since the compiler
automatically injects calls to a class’ destruetben it leaves the system, you must
provide a definition if you declare a destructothe class’ definition.

3.9.2 Updated Source

#include "Die.h"

#include <trl/random>

Die::Die() : value(l) {}
Die::~Die() {}

int Die::roll(Q) {

}

using namespace std::trl;
static mt19937 engine;
static uniform_int<int>

uniform(l, 6);

return value = uniform(engine);

int Die::faceValue() const {

}

return value;

Line

Description

06

Define the destructor. There’s nothing to doth@compiler-provided destructor

Version: 0.3a

52 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description

would have been adequate. However, there’s stdhaon to provide it. Doing S
can reduce your object module size and your linkimg. Not by much, but on
large system, you might notice a difference.

It is also not possible to make the destructouairtf you do not declare it as
such yourself. That is, a compiler-provided destuwill never be virtual.

Back to Green

Add the destructor definition and get back to green

3.9.3 Recap

Term

Definition

Assignment
Operator

A method with the following characteristics:

» |ts name ioperator=

* |t must take one parameter, an object of the cthsstypical parameter
type isconst Type&

= |t should return a reference to an object of tlasg| so the typical retur
type isType&.

By default, classes will be given an assignmentatpe By declaring this
method, you are stopping the compiler from addmg method itself. So
long as it is not used, you do not need to defieemhethod. By making it
private, only your class can use it, which makesmlikely that it will get
used.

Copy
Constructor

A constructor used when copying the object. Likedksignment
operator, the compiler provides one of these. Uf geclare it in your
class, the compiler will not provide it for you.

A copy constructor has the following characteristic

» |ts name is the same as your class name. Thiseeguirement of all
constructors.

» |t must take one parameter, a reference to an bbjgour class. It
should be &onst reference, but in any case it must be a reference..

= |t has no return type because constructors doana heturn types.

Destructor
(dtor)

A destructor is named ~ClassName. It is automayiealded by the
compiler if you do not write one. A call to the thestor is automatically
added by the compiler upon an object being remowsladded a
destructor and made it virtual. For now, this isamtgo get you practicing
a habit. We’ll come across this again.

Operator
Overloading

You can write operators for your class. There Has@n several examples

of this so far:

* The assignment operator declaration you just atlolgdur class

» The uniform_int class had an overloaded operator().

= The vector class and the array class both hav@amawr(], which
makes both classes look like raw arrays.

reference

A reference is a primitive type. It albosvvariable to refer to another

Version: 0.3a

53 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

variable rather than be a copy. In C, which doadage references, you

accomplish the same thing by using pointers. Hereadew things to

keep in mind with references:

= Their primary use is as parameters sent into mstithile it is
possible to use one in the middle of a functiors dtypical.

» They are primitive types. This means you can usevathout including
a header file; though you’ll have to forward-deelaon-primitive types
(classes) for which you use a reference.

= When they are created, they must be initialized, @rce initialized
always refer to the same thing.

= Assignment to a reference changes the value dhthg referred to, no
the reference itself.

= As we will see later, you cannot put referencetemplate classes. So,
for example, neithestd::vector <int&> or std::array<int&> are
valid C++.

= A reference is a synonym for another object.

» You might think of a reference as a dereferenagtalized pointer.
Then again, you might not.

virtual

A keyword saying that a method might berondelen in a sub-class. The
first place where you explicitly used this featuras with the virtual
destructor oDie . However, the TEST macro actually adds a virtual
method to the class it creates to allow for testeton. We will be seeing
much more of this coming up.

Virtual dtor

The virtual destructor is a recommetnalafor any class that might be a
base class. For now, form the habit. As you workugh the book, more
will be revealed.

3.10 What's coming up?

Next up is thbiceGame itself. However, to effectively test tliziceGame, we will
need to learn several new things:

Inversion of Control & Dependency Injection

Test Doubles

The Mechanics of dynamic binding in C++ (virtualthreds)
A light spattering of pointers and references
Subclass/inheritance and command/query separation
More on iterators in the standard library.

3.11 Review Game Rules

TheDiceGame has a few simple rules:

e Roll <7, the player looses
e Roll > 7, the player wins
e Roll == 7, it's a push, neither a win nor a loss

TheDiceGame ultimately uses 2 die objects, both of which fo# 6 (with an even
distribution), so the range of possible totals is 22.

Version: 0.3a

54 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

If you are taking a typical approach to this proflgrou might simply write the

production code, and be done with it. However, dlgfmut this book we’re only writing
production code with tests in place first. Thigaaices a challenge: How can you write
a test for a particular situation when what affébesresults is a random event? The rules
of the game are fixed, but depend on somethingdrits our control. Or is it?

3.11.1 Test Control
Consider this updated class diagram:

TestClass DiceGame Die

LoadedDie

Imagine if you created a new claksadedDie . This class behaves likelae but it
can be set to always return a particular valwadedDie will take the place oDie for
tests in thddiceGame. This allows a test to decide what's going to leapp

This might seem like cheating. However, you alrelaglye tests to verify th&tie works.
Given that we knoviDie works, then iDiceGame usesDie or something that behaves
like Die , it will not invalidate our testing regime. Sinee can control &oadedDie

we can control the test results. In reality, wesalecting a particular path through the
production code by controlling the test. This mayasubtle point, so let me restate it in
a different way:

e DiceGame does not depend on how the roll method is impldgetent depends on
what the roll method returns. So any roll methaat tleturns a valid range of values
will do. One that returns a random value is as gaodne that returns a controlled or
fixed value.

This idea is fundamentdloadedDie is going to substitute fddie in the test.
LoadedDie is called alest Double™. Test Double is a general category. It describes
anything used as a placeholder for a test, usbdrig under control things that might
otherwise change the results of the test. In thiiqular casel,.oadedDie returns a
fixed value, so a more specific name is a Stub.

The idea is basic; providing support in your desitpr this is fundamental to better
coding. It just so happens that making somethiatalde also tends to lead to better
design. However, at this point it's time to makieadd, if not misleading statement:

Testing Trumps Design

19 hitp://xunitpatterns.com/, Meszaros, Gerard.

Version: 0.3a 55 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

That is, given a choice between a “great desiga’afdesign that can be tested”, I'll

pick the testable design without a compelling reasodo otherwise. This is generally a
false dichotomy as good designs are generallylikst&o how can you take advantage of
this idea for thdiceGame? It will require a few moving parts:

e Dependency Injection
e Polymorphism

3.11.2 Dependency Injection

Objects interact by sending messages. When onetdbjks to another object, the caller
sends a message. A message is associated witthadnehich is then executed. There
are two parts to this relationship:

e What message to send
e Which object receives the message

The idea of dependency injection only addressesegbend point. It has nothing to do
with the first. So dependency injection is abouttoalling which objects are being sent
messages.

In our particular situation, we hasceGame andDie . DiceGame needs taoll()

two die objects and then get thisiceValue() . The question then remains, to which
die objects will theDiceGame talk? Alternatively, how wilDiceGame get access to
Die objects? There are two general ways this can mappe

e TheDiceGame selects whiclDie objects it talks to
e TheDiceGame is told whichDie objects to talk to.

The second option is dependency injection. Whas dais look like from a design
perspective? There are several options; here igatexl constructor injection:

1: create(3) d1: Loaded
— Die
L TestScenario()
‘DiceGame 2: create(3) d2: Loaded
Test . Die

3: create(d1, d2)

:DiceGame
—>

This is a UML Communication Diagram. A messagetsttre whole sequence, that's the
unnumbered “TestScenario()” message coming “froendtltside.” That message results
in three more messages (there’s more, I'm just gigthe first three). The first and
second messages create two instanceésadedDie . Each is created with a value of 3

Version: 0.3a 56 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

passed in. The messageate is a convention to show that an object is being
constructed. ThBiceGame is then created in step three and it is givenhandles two
LoadedDie objects.

Rather than creatinQie objects itself, th®iceGame is given those objects. If the
DiceGame createdDie objects directly, controlling what happens is maifécult (not
impossible, just more difficult).

As a sidebar, the first time | was introduced @ ittea of Dependency Injection, it
seemed so trivial that | rejected it as a signiftddea. Sometimes | would pass things
into constructors and sometimes | would not. | didee its impact on testability. | was
confusing the mechanism, passing an object in, thghintent, providing a hook for
control of a relationship. It took several monttisthe importance of this seemingly
simple idea to sink in.

Given aDiceGame created with twd.oadedDie objects, both of which were created
with the value 3, can you guess the expected rekthie test? If théoadedDie

objects simply return the value they were giveoaastruction time, then 3 + 3 will give
6, which is less than 7. So the player will lose.

However, there are several moving parts to maleewiork in C++.
3.11.3 Polymorphism Moving Parts

Simply passing in a different object is not enoudle need to write the code in such a
way that we getlifferent behavior with LoadedDie than withDie objects.
Specifically, we want the sum seen by BieeGame to be under our control. We have
not yet written it as such, but assume for the murtteatDiceGame uses faceValue() to
calculate a sum. This means we nkeddedDie to return a controlled value from the
faceValue method. For this to work:

Die should have a virtual destructor

Die must have at least one other virtual methfadeValue() in this case
That virtual methodféceValue()) must be overridden bizoadedDie
That virtual methodféceValue()) must be called bypiceGame
DiceGame must hold either pointers or referencedl®

The last four bullets enable dynamic binding of tethod. That is, the particular method
called depends on the type of the object receithegnessage. If tHaceValue

message is sent to an instance offee class, it will callDie ::faceValue . If the
message is instead sent to an instance dfdhdedDie class, then it will instead
invokeLoadedDie :faceValue . This determination is made at runtime, rathen thia
compile time. Thus, the method is dynamically baundC++, most of the work is
calculated at compile time, so while there is saverhead, it's small. It's the cost of an
indirect jump versus a direct jump.

That is a whole lot to take it. Rather than justjping right in, we will continue the
practice of working through a series of automaéstistand changing production code to
produce the desired effect.

Version: 0.3a 57 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.12 Testing Into It: LoadedDieTest

Before we can uskoadedDie , we’ll need to create it. So that's a good placstart.
Here’s the first version of LoadBie Test.cpp:

#include "LoadedDie.h"
#include <CppUTest/TestHarness.h>

TEST_GROUP(LoadedDieShould) {
I

TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue) {
LoadedDie die(5);
LONGS_EQUAL(5, die.faceValue());

}

This test simply demonstrates that:

e There is (or rather will be) a class callsshdedDie

e Constructing an instance bbadedDie takes a single parameter

e Calling thefaceValue method on &oadedDie returns the value passed into the
constructor.

Of course, if you create just this test, it wiltrmompile because there is hoadedDie
class yet.

3.12.1 Options: Interface/Concrete Inheritance
There are two ways to accomplish our goal:

e CreateloadedDie as a subclass @fie
e Create a top-levéhterface™ that bothDie andLoadedDie inherit from

The second approach is more pure, but it also desdumore moving parts. For now, we
will pick the first option. However, we will usedlsecond option later in this project.

With this decision made, herelisadedDie ’'s header file:

#pragma once
#ifndef LOADEDDIE_H_
#define LOADEDDIE_H_

#include "Die.h"
class LoadedDie: public Die {
public:

LoadedDie(int value);

int faceValue() const;

private:

' C++ does not actually support interfaces, but there is an idiomatic way to create something similar.
In any case, an interface is something that describes pure behavior without providing any
implementation. That is, it provides method declarations but no method definitions.

Version: 0.3a 58 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

int loadedValue;

B
ftendif

The only new thing in this example is on line OfeTpart from the : to the { is how you
create a subclass. This states tletdedDie publicly inherits from the clad3ie . As
we will see, d.oadedDie is “compatible” with or “substitutable for’ Rie . Anywhere
code wants ®ie , we can provide hoadedDie .

To use inheritance, the code must include the hiddedor the base clasBie .h in this
case. Inheritance is simultaneously powerful amgghlyicoupling. I'll have more to say
on this in a bit.

3.12.2 LoadedDie Implementation
#include "LoadedDie.h"

LoadedDie: :LoadedDie(int value) : loadedValue(value) {
}

int LoadedDie::faceValue() const {
return loadedValue;
}

There is no new syntax in this example. The consdrus provided an int called value.
The member data, loadedValue, is initialized wilue in the member-wise initialization
list. The methodaceValue returns loadedValue instead of value, which istwha

Die ::faceValue() doesloadedDie :faceValue is meant to replace, or override,
Die ::faceValue

3.12.3 Get your test passing
You have three files to create:

e Loadedie Test.cpp
e LoadedDie .h
e LoadedDie .cpp

Get to green before moving on.

Here’s a question to ask yourself: In PolymorphMoving Parts on page 57, there’s a
list of bullets. Does this solution conform to tbdsullets?

3.12.4 Experiment in Failure
Make an update to yolroadedDie test:

TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue) {
LoadedDie die(5);
LONGS_EQUAL(S5, die.faceValue());
Die &d = die;
LONGS_EQUAL(5, d.faceValue());
}

Version: 0.3a 59 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Earlier | mentioned that you do not typically usérences in the middle of a method and
here | am violating that. It's to demonstrate duf@. The variable d is a reference to the
variable die. That is, die and d are the same bigxidf they are the same value, then it
seems to make sense thatfdreeValue method should give the same result. If that's
the case, then this test will pass.

Check, are you green?
TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue)

..\LoadedDieTest.cpp:12: error: Failure in TEST(LoadedDieShould,
HaveFaceValueEqualToConstructorParamaterValue)

expected <5 Ox5>

but was <1 Ox1>

The test fails. The second assertion shows thdat®/alue is 1 instead of the
expected (or desired 5). So there’s a problem thighcurrent implementation.

3.12.5 Fixing It

The problem is that C++ does not pick the methadtime unless the method is
declared virtual in the base class’ definition.t®efaceValue method needs to be
declared virtual. As soon as there’s one virtualhoe in a class, the destructor should be
declared virtual as wéfl. While nothing bad will happen here, there is aslility of a
memory leak if you do not do this. So form the halbimaking destructors virtual unless
you have a good reason not to.

Simply chang®ie .h so that the destructor and faeeValue methods are declared
virtual:

class Die {
public:
Die();
virtual ~DieQ);
int rollQ);
virtual int faceValue() const;

Make this change and see that your tests are nesinga Congratulations, you've just
used a test to confirm the need for a virtual métho

3.12.6 Overloading faceValue versus roll

Why didLoadedDie overridefaceValue versus roll? A quick answer is “because
that’'s how we wrote it.” More fundamentally, how wad you choose given this
situation? Alternatively, how can we render theisiea moot?

2 This is a surface-level rule. In fact, if sub-classes do no dynamic memory allocation then the
destructor does not need to be virtual. There’s even more. However, the overhead of making the
destructor virtual when you have another virtual method is much lower than adding the first virtual
method.

Version: 0.3a 60 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Command-query separation suggests that a method should either producerayeha
return a value, but not do both. The roll() methamates this as it, presumably, changes
the value of &ie and returns the value just rolled.

That means that a client oDae could simply call roll() and never cddiceValue

Do you see a problem with this? In the section Rolgphism Moving Parts, on 57, one
of the bullets states that the client must callintial method. If the only method that is
virtual isfaceValue , and it is possible that a client could call mtld get the same
result, then it is possible that a client will mall the virtual method.

There are several ways to address this problem:

e Ignore it. Buyer beware. Some assembly required.aNgyeat option, but a common
one.

e Change the roll() method to cédiceValue

e Change roll() to not return a value, forcing cleeta callfaceValue

Let’s look at those last two options:
Fixing DRY violation

The current implementation violations DRY. There &awo ways in which the
faceValue can be acquired by client code. Here’s the cuiraptementation:

int Die::roll(Q) {
using namespace std::trl;
static mt19937 engine;
static uniform_int<int> uniform(1l, 6);

return value = uniform(engine);

}
Here is a version with the DRY violation removed:

int Die::rollQ {
using namespace std::tril;
static mt19937 engine;
static uniform_int<int> uniform(1l, 6);

value = uniform(engine);
return faceValue(Q);

}

This solves the problem becadaeeValue is always called. There were two ways in
which thefaceValue was returned. Now there is only 1 way; therewgagk a path
through thdfaceValue

This is a good solution; however, it may not be amobbvious one until you consider the
possibility of a subclass.

Fix command-query separation violation

Another way to fix the problem is to change rolhiat return a value. This forces the
client to callfaceValue if it needs the value. The updated roll() metheddmes:

Version: 0.3a 61 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

void Die::roll() {
using namespace std::trl;
static mt19937 engine;
static uniform_int<int> uniform(1l, 6);

value = uniform(engine);

}

Notice that these two approaches result in nebhdysame code.

3.12.7 Fixing Die: Command Query Separation

Update théie class to remove the command-query separationd&ieition is above.
You will also need to change the declaration (ehkader file). Make sure you are green
before continuing.

3.12.8 Review

3.13

Inheritance is defining one class in terms of aantloadedDie ’s definition depends
onDie ’s definition, so much so that the header fileofdedDie must include the
header file oDie . In fact, inheritance is the highest form of canglin class-based,
statically typed languages (e.g., C++, Java, Clis & ironic in the sense that
inheritance offers the possibility of flexibility ¢he cost of being fragile.

If you plan to use inheritance and polymorphisngonr solution, there are several steps
required in C++ to make it happen:

There must be a base class.

There must be a derived class

There must be method declared virtual in the besesc

The derived class must override the base classasheth

A client must invoke the method through a pointeraference to the base class
You should make the destructor virtual in the baases.

That's a bit to remember. Practice it.

Even if you understand the mechanics, however, kmpwhen to do this is something
that only comes with experience. You need to titygh out to see if they work. One
thing that helps is trying to put methods with algethat have the information to make
decisions or do the work. This is one of Craig Lan's GRASP patterns; specifically
Information Expert. If you find yourself using & lof if then else blocks or switch
statements, you may be missing an opportunity.

Once you figure out how, and then even when, teest@l the issue of avoiding a DRY
violation and watching out for command-query sepanaviolations. You'll see several
more examples later.

What's on Deck?

It's time to create the actuBiceGame class. There's some work to be done, so this is
what’s coming up:

e Creating thdbiceGame from scratch, strictly using tests
e Generalizing production code by adding tests

Version: 0.3a 62 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Refactoring code by extracting classes

Making tests easier by changing the APIs of classes
We'll revisit dependency injection

Dynamic memory allocation

Using destructors

3.14 Test-Driven Walkthrough
Here’s a first test to cover one of the conditiohtheDiceGame:

#include "LoadedDie.h"
#include "DiceGame.h"
#include <CppUTest/TestHarness.h>

TEST_GROUP(DiceGame) {};

TEST(DiceGame, BalanceDecreasesForLoss) {

LoadedDie *d1 = new LoadedDie(3);
LoadedDie *d2 = new LoadedDie(3);
DiceGame game (d1, d2);
game.play(Q);

LONGS_EQUAL(-1, game.getBalance());

Line

Description

08,
09

Create an instance ofLaadedDie using new. The new operator allocates
enough memory to hold the thing being createds @tlonstructor (if what is
being created is non-primitive), and returns a f@ito the allocated memory.

Objects created with new live until the code usesdelete operator to release
the memory. This code does not use delete, sor¢itbee is a memory leak or
the game calls delete to free memory.

10

Create &iceGame. This is a local variable, so it will go away ornbes block
of code finishes. ThBiceGame'’s constructor is passed tiiwadedDie

pointers. Initially we will do nothing with thosemters, and then we’ll release
the memory properly.

11

Call the game’s play method. The play methodldetide if the game is a win,
lose or draw based on the sum of the die objedsqubinto the constructor.

12

This test controlled what's going to happen. theo way to think about this is
that the test has picked one particular path thrdbg production code. The
expected result is a loss, so the balance, asstoriedinitially O, is reduced by
one. The test defines its own reality.

3.14.1 What's required to make this work?

First, of course, is thBiceGame class. It does not exist. A review of the testgasgs
several demands on tBeceGame class:

Version: 0.3a

63 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

e It must have a constructor that takes two parameRainters to something. While the
code createkoadedDie objects, we’ll be treating them Bse objects.
e The game must have a play method.

The game must have a getBalance method.

e The game, apparently, is responsible for propeatydng the dynamically allocated
memory of thd.oadedDie objects.

3.14.2 DiceGame Header

Here’s a minimal header that, with the providedrseuwill get the code back to
compiling:

#pragma once
#ifndef DICEGAME_H_
#define DICEGAME_H_

class Die;

class DiceGame {
public:

B

DiceGame(Die *dl1l, Die *d2);

void playQ);
int getBalance() const;

#endif

Line

Description

05

Declare that there is a cla3g . This is also known as a forward-declare. Thg
is a header file that contains thée definition. Including header files is
expensive. A review of the rest of this headerdiidy shows one more use of
theDie type (so far). Line 09 makes a referenc®i® *. Die * is a pointer. All
pointers are primitives, and more importantly, shene size. So the compiler
does not need size information, therefore it dadgequire a definition dDie ,
it just needs to know that the class exists.

09

The constructor takes in twidie pointers. The test createsadedDie with
new. New returns pointers, which we are providm®iceGame. Since
LoadedDie inherits fromDie (using so-called public inheritance), a pointer
aDie can also point to koadedDie . You already saw something similar in
test where a reference t®& (also a primitive type) referred to a
LoadedDie .

2re

3.14.3 DiceGame Source
This will get the code compiling but with a failitigst:

#include "DiceGame.h"

Version: 0.3a

64 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

DiceGame: :DiceGame(Die *d1l, Die *d2) {

}

void DiceGame::play() {

}

int DiceGame: :getBalance() const {
return -1;

}

3.14.4 Get it Compiling
You have a little bit of work:

e CreateDiceGameTest.cpp
e CreateDiceGame.h
e CreateDiceGame.cpp

Get the code compiling and run all tests. The urild fail, but the failure may be a
surprise:

TEST(DiceGame, BalanceDecreasesForLoss)

..\DiceGameTest.cpp:7: error: Failure in TEST(DiceGame,
BalanceDecreasesForLoss)

Memory leak(s) found.

Leak size: 12 Allocated at: ..\DiceGameTest.cpp and line: 8. Type:
"new" Content: "ECA"

Leak size: 12 Allocated at: ..\DiceGameTest.cpp and line: 9. Type:
"new" Content: "ECA"

Total number of leaks: 2

There’s a memory leak. This is the primary reasomose to use CppUTest for this book.
It has simple memory leak detection built in. Thare other solutions | could have used,
but all of them require more moving parts, so lided to keep it simple.

You have two quick options to fix this memory leak:

e Have the test free the memory
e Have theDiceGame free the memory

If we have the test free the memory, then evetywtdshave to do it. That's a DRY
violation. It also seems like a poor assignmenesponsibility. If we have the
DiceGame free the memory, it resolves the DRY violationt hiwomplicates the
DiceGame class and it requires “tribal knowledge” of yolients. Your clients will
have to know to only pass in objects created usevg. There is no language-defined

Version: 0.3a 65 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

way to determine if a given pointer can safely beetbd or ndt, so you must just “be
careful” (at least for now).

We are going to hav@iceGame free the memory. We will remove the requirement of
tribal knowledge for successful use through a bé&tk design. We’'re going to do that
later.

3.14.5 Handle the memory leak, fix the test

DiceGame needs to hold on to twidie pointers. We have several options to
accomplish that:

e Hold two attributes
e Use arstd::array
e Use arstd::vector

Since | want you to learn how to use some of theddrd libraries, we’ll use the vector
class. However, any of these solutions would work.

Update the header

#pragma once
#ifndef DICEGAME_H_
#define DICEGAME_H_

class Die;
#include <vector>

class DiceGame {

public:
typedef std::vector<Die*> DiceCollection;
typedef DiceCollection::iterator iterator;

DiceGame(Die *dl1l, Die *d2);
virtual ~DiceGame();

void playQ);
int getBalance() const;

private:
DiceCollection theDice;
};

ftendif

Line | Description
06 Use thestd::vector class.
10 Use a nestetypedef to make using thstd::vector just a bit easier.

3 That is, given a pointer, there is no language-defined way to tell if it points to something created with
new or not. You can only delete things created with new.

Version: 0.3a 66 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line

Description

DiceCollection is a synonym for a vector of poirtt@Die .

11

The vector class has an iterator. Create a synamyhe DiceGame class with
the same name as the nested typedef. An iteraitoeligded with all of the
standard collections and it is one way to work veiith of the elements in a
given collection.

20

Store an std::vectof3ie *>, but make it read well.

Update the source

#include "DiceGame.h"

#include "Die.h"

DiceGame: :DiceGame(Die *d1, Die *d2) {

}

theDice.push_back(dl);
theDice.push_back(d2);

DiceGame: :~DiceGame() {

}

for(iterator
iter = theDice.begin(); iter != theDice.end(); ++iter)
delete *iter;

void DiceGame: :play() {

}

int DiceGame: :getBalance() const {

}

return -1;

Line

Description

06,
07

Add d1 and then d2 to the end of the vector. This the body of the
constructor. By the time the code reaches thistpthie vector’s constructor has
already been called. It is not possible to userstroctor to automatically insert
these, so it is done after initialization of thete.

11

Iterate over the entire vector, one elementtme.

12

Call delete, one by one, on each item in théovec

Get to green

Make these changes, you should be green.

Follow the idiom

There is one more problem with the class. It candpeed. This might not seem like a
bad idea, but if a copy is made, the copy willggties of the pointers stored in the
contained vector. Let me say that again: The copigelct will havecopies of the
pointersto the Die objects, not copies of the Die objects. Eventuiddéyoriginal (or the

Version: 0.3a

67 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

copy) will go away, freeing memory. The remainiregsion will either use the now
deallocated objects or attempt to delete them #isWhat happens in both cases is not
defined, but it falls under the category of “thingsir mother told you to avoid.”

The easiest thing to do is not allow copies. Singalgl this section to yoldiceGame’s
header file just before the close curly bracket:

private:
DiceGame(const DiceGame&);
DiceGame& operator=(const DiceGame&);

At this point it may be worth mentioning that th@vate: is not necessary if there’s
already another private: above. | do this by cotivan The bottom of my class has
private, but unimplemented methods.

Make sure your solution is still green, and thentrwe.
3.14.6 Always losing is no fun

The implementation leaves a lot to be desired.l@mne hand, since the value -1 is
already returned, the worse you can ever do iad¢psnce. On the other hand, you always
lose once. To infinitely improve the odds of wingjiit's time for another test:

TEST(DiceGame, BalanceIncreasesForWin) {
LoadedDie *d1 = new LoadedDie(4);
LoadedDie *d2 = new LoadedDie(4);
DiceGame game (dl, d2);

game.play(Q;
LONGS_EQUAL(1, game.getBalance());

3

Create this test and verify that it fails.

What all do we need?

This one simple test is going to force a bit ofingd

e The code needs to actually check for winning onigs
e The code needs either a balance or a way to remréhthe previous time was a
wind or a loss

Here is one way to get this test to pass:
Add a new field to the class:

private:
DiceCollection theDice;
int balance;

Don't forget to initialize that balance
Add a member-wise initialization list to set balario O:
DiceGame: :DiceGame(Die *dl, Die *d2) : balance(@) {

You do not need to do anything with the other mandaga, theDice. Its no-argument
constructor is called automatically.

Version: 0.3a 68 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Now do something in play

void DiceGame: :play() {
int sum = 0;
for(iterator
iter = theDice.begin(); iter != theDice.end(); ++iter) {
(*iter)->rollQ);
sum += (*iter)->faceValue(Q);

}

if (sum > 7)
++balance;
if (sum < 7)
--balance;

Line | Description

03 Iterate over every element in the collection.

04 Roll the current die object. Since the vectddéigointers and an iterator is a
pointer to what the vector holds, the iterator tigoactuallyDie **. The
expression (*iter) results in a pointer to a digech -> then sends a message
through a pointer. You could also write this (*fiteoll().

05 Add to the sum the faceValue() of the curreatabject.

08 — | Conditionally increment or decrement the balangeedding on the sum. Note |
11 could have used an else if on line 10, but the ec®@déear enough that | don’t do
so.

Return the balance
Since balance now holds the results, getBalanesgisito return it:

int DiceGame: :getBalance() const {
return balance;
}

Get back to green
Make these changes and get back to green.
One final test

There’s no test for a “push”. Even though reviewtoge suggests it is handled correctly,
let’'s write a test. This test serves as a reminfléne rules of the game and it constrains
the implementation to work for all the conditions Wnow abouit.

TEST(DiceGame, BalanceRemainsSameForPush) {
LoadedDie *d1 = new LoadedDie(4);
LoadedDie *d2 = new LoadedDie(3);
DiceGame game (dl, d2);
game.play(Q;

LONGS_EQUAL(@, game.getBalance());

Version: 0.3a 69 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Add this final test and verify that your solutianstill green.
3.14.7 Experiments in Failure

Now for a few experiments to see what might happgou make a few common
mistakes. Here’s what's on deck:

Removing the body of thBiceGame destructor

Removing virtual from the declaration of tbée destructor

Removing virtual from the declaration bfe ::faceValue

Removingconst from the declaration and definition bbadedDie ::faceValue
Adding virtual to the declaration @fie ::roll

Body of ~DiceGame
Make the following change to the bodyiteGame:

DiceGame: :~DiceGame() {
// for(iterator

// iter = theDice.begin(); iter != theDice.end(); ++iter)
// delete *iter;
}

Run your tests and notice what happens. In myisolut end up with three failures. All
of those failures related to memory leaks. If youadittle research, you’ll notice that
there are three tests using hieeGame class.

This is a demonstration of a memory leak, but véhthere a memory leak?

In a nutshell:

e Thestd::vector class is a generic container, so it knows nothaingut what you
are choosing to put into it. This includes theeatiéince between pointers and non-
pointers.

e There is nothing built into the language makingassible to tell if something that
happens to be a pointer also happens to be dynidyratlacated or not. There are
things you can do under the covers to strongly ssigguch a thing, and it is possible
to use custom libraries to make it possible, bulanguage-defined way.

e Since thestd::vector class can only depend on standards, there’s ndavay
know if what is holds is a pointer to dynamicallijpaated memory.

e Even if there were a way to make that determinatioere’s no way the
std::vector could know that it is responsible for cleaningtbhat memory. It
would be possible add some kind of flag, but thea'ne back to the issue of not
having a standard way to know if something is l@giointer and that it points to
dynamically allocated memory.

e Therefore, the vector has no policy regarding viaut in it.

That'’s not to say that thetd::vector does not handle its own memory allocation. A
vector holds onto a block of memory that it dynaatiycallocated. The vector manages
an initial block, which can change size over titdere’s a logical image of some sample
code:

void foo() {

Version: 0.3a 70 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

std: :vector<int*> v;

int valueOnStack;

int *valueOnHeap = new int;
v.push_back(&valueOnStack);
v.push_back(valueOnHeap);

}

Given this simple code, what does this logicallgiddike in memory?

Stack Heap

v.vector<int*>

valueOnStack

valueOnHeap:
int*

The code example includes three local variablegalMeOnStack and valueOnHeap.
Those variables are stored on the program stacksftlttivector holds onto a block
of memory (its default size is typically 10). Aftputting two values onto the vector using
push_back , the value at index O is an address to the loaaable valueOnStack. The
value at index 1 is a copy of the address held bytihe variable valueOnHeap.

When this method exits, the program stack is cteakaything that is an object on the
program stack will have its destructor called. Rtiira values like int and int* do not
have destructors. So given this code examplejdhidat the stack and the heap will
resemble after the program terminates:

Version: 0.3a 71 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Stack Heap

Thestd::vector class assumes no responsibility for what is addétd It assumes
responsibility for the memory it allocates, whishwhat it uses to hold on to the things
you add to it. However, if you add a pointer toyaamically allocated object, then you
have to take care of releasing that memory.

The body of the destructor was doing that. Welis# this in a bit to see another way to
make this happen automatically.

Before moving on to the next experiment, uncomntieatody of the destructor and
verify your code is still green.

Removing virtual on ~Die declaration

In this next experiment, you're going to simply i@ra virtual to “see” what happens. So
remove the keyword virtual from the declaratiortt@Die destructor and run your tests.
What happens?

It appears as if nothing happens, and in this @der case nothing bad happens. To have
this kind of change cause a problem requires skstaps:

A derived class inheriting from a base class (weshhis)

Creating an instance of a derived class using menh@ve this)

Holding on to that newly-created object via a peir{tve have this)

Releasing memory to that newly-created object tijinats pointer (we have this)
The base class’ destructor must be non-virtualjgsedid this)

The derived class must dynamically allocate menfarigsing)

In fact, it takes quite a few moving parts to haveon-virtual destructor in a base class
cause problems for a derived class. However, teinoa you of the problem, make the
following change to youtoadedDie .h (add arstd::vector):

#include <vector>
class LoadedDie: public Die {

public:
LoadedDie(int value);

Version: 0.3a 72 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

int faceValue() const;

private:
int loadedValue;
std: :vector<int> problemChild;

}s
Now change youtoadedDie .cpp (just the constructor):

LoadedDie: :LoadedDie(int value) : loadedValue(value) {
problemChild.push_back(value);
}

Make these changes, run your tests. You'll noticed tests failing due to memory leaks.

Now, make the destructor Die virtual and see that the tests pass. Finally, ventioe
use ofstd::vector in LoadedDie (both the header and the source).

What just happened?

Your LoadedDie class had a destructor even if you do not write fon it. Even if you

do write one for it, the call to the destructorcohtained objects is added by the compiler
(remember, destructors are special). $tu:vector class allocates memory.

Exactly when is left to a given implementation, lewer adding the line to the
constructor to put a single value on the vectoederthe vector to perform dynamic
memory allocation. When tHgiceGame'’s destructor is called, it calls delete on each of
its contained pointers ie objects:

DiceGame: :~DiceGame() {
for(iterator
iter = theDice.begin(); iter != theDice.end(); ++iter)
delete *iter;

}

The question is this, “which destructor gets caledthe destructor is declared virtual in
Die , then the compiler will insert just enough codenake sure that the correct
destructor is called at runtime. If the destructor is not declareduatt then the compiler
inserts a call to the destructor of the type retdrhy *iter). Since iter is a pointer to a
Die , *iter is aDie , so the destructor called i®te , regardless of what the pointer
actually points to.

Adding virtual to even one method comes with a,omkich is discussed later on.
However, adding a second virtual method when tiseadready one is a much smaller
cost. So if you have even one virtual method, ogke the destructor virtual. If you are
not using inheritance, then you do not need aajidiestructor. If you're not certain that
either:

e The class you are working on will never serve base class
e The class won't be substituted with a test doubléng test
e Subclasses, if there are any, will not need toguerfany dynamic allocation

Then you can safely leave off the virtual destructo

4 This has to do with virtual method dispatch. More on this later.

Version: 0.3a 73 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

On the other hand, if you are writing unit testyas write the rest of your code, you'll
probably find pretty quickly if there’s a missingtual destructor, so you can probably
get away with leaving this until you need it.

Make sure your code is green before moving oném#xt experiment.
Removing virtual from the declaration of Die::faceV alue

This is an experiment you should have already pexd. In any case, make this change
and see what happens.

You'll notice several failing tests, 4 in my ca¥¢hy is this? For the same reason that the
wrong destructor is called, the wrong versioffiaaeValue is called.

Here’s the offending code:

void DiceGame: :play() {
int sum = 0;
for(iterator
iter = theDice.begin(); iter != theDice.end(); ++iter) {
(*iter)->rollQ);
sum += (*iter)->faceValue(Q);

}

Notice the call tdaceValue on line 06? Which version ¢dceValue s called? If
the method is declared virtual, then the compiiserts just enough code to make sure
that the correct version fdceValue is called. If thdaceValue method is not
declared virtual, then the compiler inserts enocahe to call the method based on the
type of *iter. Since *iter is equal ie **, *iter results in a pointer to ®ie , orDie *.
The compiler selects the methDek ::faceValue as a result. MakintaceValue
virtual forces the compiler to insert a little bibre to make this work.

At this point it is worth mentioning a few more gps of terms:

Term Description

static type (or) The type known by the compiler based on a statitysis
compiler-time type | (compile-time reading) of the type information. §i8 what can
be determined strictly from looking at the compdatunit.

dynamic type (or) | The actual type of the object at runtime. This rmaynay not be
run-time type different from the static type. If the static tyigeeither a pointer
or a reference to an object, then the static tyyedynamic type
can be different.

In this most recent example, the static type ofig®ie **. The static type of the
expression *iter iPie *. However, given that our tests created instanées

LoadedDie , here’s how the analysis goes. The static typeeofs still Die **, as is the
dynamic type. However, while the static type o€ritsDie *, the actual type is
LoadedDie *. This only becomes important upon calling a methuat is virtual. For
non-virtual methods, the compiler selects the nme:thessed on the static type. For virtual
methods, the compiler selects the method basedeodyinamic type. Since the compiler
cannot possibly know what the actual run-time tgpd instead inserts a level of

Version: 0.3a 74 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

indirection that, when the program runs, causesdnect method to be called. This is
called virtual function dispatch. There’s more bistsubject later.

Add the virtual keyword back on to the declaratidfiaceValue . Get your code back
to green, and then move to the next section.

Removing const from the declaration and definition of LoadedDie::faceValue

When you mean to override methods, the signatiged to match exactlyy Remove the
const keyword from both the declaration and definitidrfiaceValue in

LoadedDie and run your tests. If you only remove it from dn not the other, your
code will not compile.

Interestingly, you'll have the same tests failirsgoefore. In this case, while the base
method is virtual, the derived method, as writdres not match so it does not override.
That is, it's an unrelated method and it does @aehany impact on dynamic method
selection.

In general, when | override a method from a basescin a derived class, I'll copy the
method signature from the base class’ definitida the derived class’ definition.

Another thing to consider, when writing automatests meaning to invoke overridden
methods, hold a reference or pointer to the basss chther than the derived class. This is
a sure way to make sure you've actually overridaiéase class method as intended.

Return your code to green. Add ttenst keyword back on to the method declaration in
the header file and the method definition in therse file.

Adding virtual to the declaration of Die::roll

Is there any value in making roll virtual? There ab subclasses that override roll, so
making it virtual will have no noticeable effectol could look at the size of the
executable before and after. When | do that, bdfarake the change, my executable is
784,060 bytes. After the change, the size is ungddnWithout creating a subclass, or
doing some sophisticated timings, it will be hayddll whether or not roll is in fact
virtual.

Originally, the roll() method had a return valu&igviolated command-query separation,
and you fixed it. Now it returns no value, so itkesa it less likely that a client can
depend on its effect directly. So this experimeniot too fruitful.

You can return roll to non-virtual or leave it via. The end result will not change.

3.15 Recap
Term Description
. public die The syntax for making one class intieom another. After

class LoadedDie and before the open curly bracketadd
this to define that one class is a subclass ofremot

In all of the examples in this book we will uspublic , but
private and protected are available as optionsoatglde our

'® This is somewhat simplified, return types can be co-variant, but this is the only mention of that idea
in this book. It's too advanced for this book.

Version: 0.3a 75 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

Term

Description

scope.

Using this for, so-called public inheritance, makt@s class in the
definition substitutable for the base class.

base class

A class used as part of the definifiamather class, specifically
in an inheritance relationship. All of a base classomes part of
the derived class. Whether what comes from the tlass is
available to the derived class depends on the \ehétle thing in
qguestion (method or attribute) is declared to daipuprotected or
private. Private data, for example, is part ofdkerall structure
but a derived class cannot directly access it.

child class

In an inheritance relationship, ithe tlass that is defined in terms

of another class. A child class knows its parenbése class). Th
reverse is not true.

D

communication
diagram

A type of UML diagram that shows objects, connedibetween
objects and interactions, or message flows. Bafivie 2.0, this
was called a collaboration diagram.

compile-time type

The type of a variable that cardbtermined strictly looking at the

source code. It is independent of the order of etx@c (run time
information).

The compile-time type limits what is available ® lsed. Only

things in the public interface of the compile-titype are available

to be used by code.

create A special method used on UML diagrams picglly suggests the
execution of a constructor. This is a standard eatign on
dynamic diagrams in UML, which includes sequenag an
communication diagrams.

delete Delete is somewhat analogous to free intl® saveral key

differences.

= [t is built into the language and it is known as telete
operator. Whereas free() is standard functionlibrary.

= |f delete is used on a pointer to an object, &,*, it will
automatically call a destructor. If it instead @sito a raw time,
then there is no destructor to call.

» There are three forms but | only use 1 in this bddie three
forms are delete, delete[] and delete(). The seamwlcthird
form are array delete and placement delete.

In C++ you should use new for all allocation antetiefor all
deallocation. Mixing new with malloc is not definddising delete
on something allocated with malloc or free on sdimef allocated
with new is also not defined. It's easy to predvbiat will typically
happen, but the standard says the results areinadef

delete versus free

See the discussion on delete.

dependency

Making it possible for a client clasprtavide dependent objects

Version: 0.3a

76 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

Term

Description

injection

For example, th®iceGame requires twdie * for its
constructor, so its dependent objects must be geovi

derived class

A class that has a parent or base clasadedDie is an example
of a derived class. This is a synonym for childsland subclass.

dynamic allocation

Usingmalloc ornew are examples of dynamic allocation.
Acquiring space for data at runtime rather thangll@cating at
compile time.

dynamic binding

Selection of a method at runtintbeathan compile-time. In C+4
virtual methods invoked through pointers or refeemnare
dynamically bound rather than statically bound.

dynamic type

A pointer or reference to a clasgroics can in fact point (or refer
to) an object of its particular type or any classtoucture publicly
derived from that structure. For examge * can legally point
to either &Die * or aLoadedDie *.

heap

A region of memory used for dynamic allocatifimngs created
with new (ormalloc) are put on the heap rather than the stack.
Things placed on the heap remain there until tmeyeaplicitly
removed usinglelete (orfree if malloc was used). The
heap is also cleared when a program terminates.

inheritance

A relationship between classes. A lotess serves as part of
another class’ definition. All structural partstbé base class are
in the derived class. Accessibility is determingdathether the
thing in particular is public, protected or privaliems that are
protected are available for derived classes. Thingtsare private
are there, but not available for access.

interface

C++ does not support interfaces direétlyinterface represents
concept that describes behaviour but, providesnpdementation
for that behaviour.

message

When a client makes a request of an oisjsetnds the target
object a message. A message gets turned into adatisome
point. In C++, that translation can be done at atertpne or
runtime. If the target is an object, then the dateation is done at
compile time. If the target is a pointer or referemo an object,
then the determination is done at runtime if thessage is virtual
or compile time if the method is non-virtual.

method

A synonym for member function. A method =haviour of an
object. A class declares a number of methods, santual, others
non-virtual. Methods that are declared virtual baroverridden by
sub-classes.

new

A keyword in C++, it provides a mechanism floaating
memory at runtime rather than compile time. Wherealoc() is
standard function in a library, new is a built-ijpepator.

Version: 0.3a

77 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

Term

Description

new versus mallog

When new is used to create atphhe compiler automatically
calls a constructor. The sequence of steps forusasd on an
object:

» Allocate an appropriately-sized chunk of memory.
= Call the constructor to initialize the memory.
» Return the address of the allocated memory.

Unlike new, malloc skips the middle step. Therethree forms of
new: new, new[], new(). The second and third foarescalled
array new and placement new, respectively. Thasesfare out of
scope for this book.

non-virtual By default, destructors are non-virtual. If a classy serve as a

destructor base class and it is possible that derived clasggs perform
dynamic memory allocation, then it is a good ideanbke base-
class destructors virtual. There are several cmmditrequired to
make a memory leak happen, but it is possible.

override Method overriding is where a derived claggaces an

implementation of a virtual base-class method bietéor its
purposes. We have one explicit example of this e/tiee

faceValue method ofLoadedDie returns a predictable resulf.

parent class

Synonym for base class or superclass.

polymorphism

Pithy: same message, different methbdt is, the same messag
sent to multiple objects results in different methdeing execute
based on which object receives a message. For égasamding
faceValue to aDie object results in the most recent roll valu
(or 1 if the die has not been rolled) to be retdri@hereas,
sendingaceValue to aLoadedDie will always return the
value passed into its constructor.

[1%)

request

A synonym for message.

response

A synonym for method.

run-time type

The actual type of an object at progexecution time. A pointer
or reference to an object in C++ can point to ¢erreo a publicly
derived subclass at runtime.

stack

AKA program stack. The place where localalags are
automatically stored by the compiler. A variabletba stack lives
as long as the block of code containing that vésiabes.
Variables on the stack automatically go away wheretghod or
function returns. If a variable is a non-primititeen its destructo
is also called.

Be careful here. Remember that pointers and reteseare
primitive types. So, for example, a pointer to @ din the stack,
when it goes away, does not result in a destruzttbr

static type

Same as compile-time type. It is tipetyf a variable known to

Version: 0.3a

78 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

Term Description
the compiler.

stub LoadedDie is an example of a stub class. It is a partickilad
of test double that has a fixed value. You canktloiha stub as a
“snapshot in time.”

sub class Synonym for derived class or child class.

super class Synonym for base class or parent class.

test double A place-holder for a real object useplt some part of a test

under control. We creatddadedDie as a test double f@ie to
make sure we are able to test all of the ruleb®@biceGame.

test isolation

There are several interpretatioests should not impact each
other. However, in this section we introduce theguaility of
using test doubles by using dependency injectidallp control
what one particular test is doing.

virtual

A keyword added to member function decliarad. A virtual
method can be overridden by subclasses. If thatodas invoked
through a pointer or reference to a base clasgdirect method
will be selected at runtime based on the dynanpe tf the
object. That is, ifaceValue is sent to »ie , then

Die ::faceValue is called, whereas fhceValue issentto a
LoadedDie , thenLoadedDie ::faceValue is invoked.

virtual destructor

Destructors for base classesilghioe declared virtual. If they arg
not, there’s a possibility of a memory leak, as destrated in
Experiment in Failure stating on page 59.

virtual method

A method declared virtual can berodden by subclasses. See
virtual above.

virtual method
override

Subclasses wishing to replace a base-class’ meitibdts own
implementation override a virtual method declared base class

3.16 What’s coming up?

In this section we will revisit:

e Refactoring — specifically Extract Class
e Dependency Inversion Principle

We will additionally improve memory management lsyng std::shared_ptr and then
have a first look at a design pattern called thetfset Factory pattern.

3.16.1 Remember Cup class?

Remember some time ago the mention of a Cup class:

Version: 0.3a

79 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

TestClass DiceGame Cup Die

LoadedDie

Now it is time to revisit Cup. The code alreadystxi it just happens to be in the
DiceGame. This burdens the implementation@iteGame with both business rules as

well as knowing how to store, roll, and deallocaudtiple Die objects.

To fix this, you are going to apply an “Extract €3arefactoring. That is, there’s a class
in the middle of another, and you are going to nmiake own class.

3.16.2 Refactoring: Definition

You have already performed some refactoring. Eeeiit’'s worth remembering just what
refactoring means: Changing the structure of atmwvithout changing its behavior.

In this class, you’ll move code froBiceGame into a new class called Cup.

3.16.3 Updated Cup Header

Here is a header file that captures the Cup-reled@depts from thBiceGame class.
Notice that this is a new file. You are not yet mgkchanges to existing code.

#pragma once
#ifndef CUP_H
#define CUP_H

class Die;
#include <vector>

class Cup {

public:
typedef std::vector<Die*> DiceCollection;
typedef DiceCollection::iterator iterator;

Cup(Die *dl, Die *d2);
~CupQ;

void rollQ);
int totalQ);

private:
DiceCollection dice;
};

#endif
This code mirrors the code DiceGame. So far, there is nothing new.

Version: 0.3a 80 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.16.4 Updated Cup Source
The source code can be copied frblneGame as well:
#include "Cup.h"

#include "Die.h"

Cup::Cup(Die *dl1, Die *d2) {
dice.push_back(dl);
dice.push_back(d2);

}

Cup::~CupQ {
for(iterator i = dice.begin(); i != dice.end(); ++1i)
delete *i;

}

void Cup::roll(Q) {
for(iterator i = dice.begin(); i != dice.end(); ++1i)
*1)->rollQ);
}

int Cup::totalQ) {
int sum = 0;
for(iterator i = dice.begin(); i != dice.end(); ++1i)
sum += (*1)->faceValue(Q);
return sum;

}

As with the header file, there’s nothing explicitigw in this code. The one big
difference is that the original code (still) hastboupled for loop iDiceGame::play:

void DiceGame::play() {
int sum = 0;
for(iterator
iter = theDice.begin(); iter != theDice.end(); ++iter) {
(*iter)->roll(Q);
sum += (*iter)->faceValue(Q);

}

This look both rolls the dice and calculates thaltd'he Cup’s implementation of roll()
and total() have had this one loop split into teogds. In fact, Martin Fowler calls this a
“split loop” refactoring. The original code unnesasly coupled rolling and calculating
the total.

3.16.5 Getting to Compiling

Before changing any of the old production code tigetheader file and source file for
Cup created and compiling. Get you code back teGre

Version: 0.3a 81 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.16.6 Updating DiceGame

Now it is time to change tHeiceGame to use the new code. However, rather than just
changing all of the code in place, these next stspsa technique often called parallel
development. The goal is to get the code as ctosernplete as possible so that the
amount of time that your automated tests fail israall as possible.

Updating class definition

First, we’ll add some kind of “handle” to a Cup. Ybave three general options (right
now):

e Afull Cup
private:

Cup cup;
e A pointerto a Cup
private:

Cup *cup;
e Areference to a Cup
private:

Cup ∪

All three will work but there are some advantages disadvantages:

e A full Cup will be automatically instantiated coctly. Its destructor will be called
automatically as well. However, there’s no chararediynamic binding, so testing is a
bit more difficult. Also, to hold a full Cup, tHeiceGame header file will have to
include the Cup header file. Including header fiteselatively expensive.

e A pointer is not automatically instantiated or eded. Some code somewhere will
have to call new and delete or something more dotew. However, you do not have
to include the header file of Cup in the headerdiDiceGame. A pointer also
allows for the possibility of virtual methods taagla role in the game.

e Areference has nearly the same characteristiagpainter. The primary difference is
that a reference must be initialized, which witjuée you to use a member-wise
initialization list. Once initialized, it can nevpoint to anything else.

My preference for testability leads me to the seédwvp options. References are OK as
attributes, but | typically reserve them for paréene and return values. For this solution,
therefore, I'll go with a pointer. With that in rdnhere’s an updatddiceGame using
parallel development:

#pragma once
#ifndef DICEGAME_H_
#define DICEGAME_H_

class Die;
#include <vector>
class Cup;

class DiceGame {

public:
typedef std::vector<Die*> DiceCollection;
typedef DiceCollection::iterator iterator;

Version: 0.3a 82 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

DiceGame(Die *dl1l, Die *d2);
virtual ~DiceGame();

void playQ);
int getBalance() const;

private:
DiceCollection theDice;
Cup *cup;
int balance;

private:
DiceGame(const DiceGamed);
DiceGame& operator=(const DiceGame&);

B
#ftendif

Line | Description

07 Forward declare the Cup class. This just tekbscompiler that there is a class
calledDie somewhere in the system.

22 Add a pointer to a Cup as member data. This @gyires a forward declare
because all pointers are primitive types, and tbezehe compiler knows their
size, which is necessary to calculate the sizesnfigle instance of a
DiceGame.

These changes will leave the code in a compiliagesand the tests still pass.
Initial Updating of Method Definitions

To introduce this new Cup into tileceGame eco system, we will update a few of the
existing methods to use it as well as the origueaitor.

First, the construction and destruction:

#include "Cup.h"

DiceGame: :DiceGame(Die *dl, Die *d2) : cup(@), balance(@) {
theDice.push_back(dl);
theDice.push_back(d2);

}
DiceGame: :~DiceGame() {
for(iterator
iter = theDice.begin(); iter != theDice.end(); ++iter)
delete *iter;
delete cup;
}

‘ Line ‘ Description ‘

Version: 0.3a 83 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description

01 The code will be using Cup, so it must includgp®@. Remember, Cup was
forward declared in the header file. The souremifitludes it because it needs|to
know more about the class than the header file.

02 Initialize the cup pointer to 0. This is how yiottialize pointers in C++, use 0;
do not use NULL.

10 Delete the pointer held in the member data. Righv this pointer is 0. By
definition, it is safe to delete a pointer initiadd to 0, so this is safe.

This change keeps the code compiling and runniogvever, there’s a bit of an issue
going any further. The destructormnceGame calls delete on the pointers passed into
the constructor. If we add those sabie pointers to the Cup, which also calls delete,
then the same address will be deleted twice. Bhisrbidden, or rather undefined.

Here’s a quick experiment to convince yourself thet is a bad idea:

DiceGame: :DiceGame(Die *dl, Die *d2)
: cup(new Cup(dl, d2)), balance(@) {
theDice.push_back(dl);
theDice.push_back(d2);

}

On line 5, construct a new Cup, passing in d1 gdrtdis will cause some kind of
segmentation violation or some other undefined biehalt will fail in some way that

will vary by your platform and by what you havetated. In my particular situation I am
using Eclipse and | have Visual Studio installexl] get a prompt to bring up the Visual
Studio debugger for this violation. On an XP insiabn without Visual Studio installed,
I'll get a dialog saying that a program terminased I'll be given the option of mailing a
report somewhere.

However, this does suggest an unorthodox internteeédam. Simply update the
constructor as shown and the remove the codedlestses memory in the destructor:

DiceGame: :~DiceGame() {
delete cup;
}

The Cup now owns that memory and its destructeasss it.
Make these two changes and your code should ba.gree

At this point, if you update thBiceGame::play method, then the original solution, the
std::vector , won't really be partaking in the solution:

void DiceGame::play() {
cup->rollQ);
int sum = cup->total();

if (sum > 7)
++balance;
if (sum < 7)
--balance;

Version: 0.3a 84 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Simply roll the cup and then get its total. Makihgs change leaves bits of the previous
solution:

e In the header file
e include of <vector>
e two typedefs
« member data called theDice
e In the source file
* include ofDie .h
« call topush_back in the constructor

Removing these bits results in the followlDgeGame header:

#pragma once
#ifndef DICEGAME_H_
#define DICEGAME_H_

class Cup;
class Die;

class DiceGame {

public:
DiceGame(Die *dl1l, Die *d2);
virtual ~DiceGame();

void play(Q);
int getBalance() const;

private:
Cup *cup;
int balance;

private:
DiceGame(const DiceGame&);
DiceGame& operator=(const DiceGame&);

1

#endif

And the finalDiceGame source file:
#include "DiceGame.h"

#include "Cup.h"

DiceGame: :DiceGame(Die *d1, Die *d2)

: cup(new Cup(dl, d2)), balance(?) {
}

DiceGame: :~DiceGame() {
delete cup;

}

Version: 0.3a 85 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

void DiceGame: :play() {
cup->rollQ);
int sum = cup->total();

if (sum > 7)
++balance;
if (sum < 7)
--balance;

}

int DiceGame: :getBalance() const {
return balance;
}

Notice that these files are quite a bit smallerichhimakes sense since much of the work
was dealing with the details of atd::vector <Die *>, which has been delegated to
the Cup class.

Make these changes; get your solution back to green
3.16.7 What of the idiom?

Remember the copy constructor and assignment @per&hould you hide these two
methods? In fact, if you do not hide them, you dand up with serious problems. This
code would cause the sai@ object to get deleted multiple times:

Die *dl = new Die;
Die *d2 = new Die;
Cup cl(dl, d2);
Cup c2(cl);

Cup c3 = cl;
Cup c4(0, 0);
c4 = cl;

Line | Description

01 Create a die, nothing new here.

02 Ibid.

03 Create a cup called c1, it holds onto (and thezeowns) d1 and d2.

04 Create a cup called c2, using the compiler-plexvicopy constructor. c2 will
hold a copy of d1 and d2 and it will think thabivns d1 and d2. Now there are
two objects, ¢l and c2 that own d1 and d2. Therskcap will get destroyed
first, and then the first cup will get destroyedh&¥ that happens you'll see
some kind of serious program failure.

05 Adding insult to injury, construct another cigtled c3 using the copy
constructor. This line is equivalent to line O4stja different syntax. You can
distinguish this from assignment (line 07) becathsline involves a variable
definition. Oh, now three objects think they ownaiid d2.

06 Create a cup called c4, it initially pointswwotnon-die objects. This will work,
but don’t roll the cup, or the program fails.

Version: 0.3a 86 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description
07 Assign c1 to c4. This uses the compiler-providssignment operator. Now c4

will think it owns d1 and d2. So there are 4 olgeell taking responsibility for
releasing the same memory. This is a crash waitifgppen.

How can you fix this? First, make the assignmemraior and copy constructor private:

private:
Cup(const Cup);
Cup& operator=(Cconst Cup&);

Another thing you can do is coming up; use anstdred_ptr. Even so, unless you have
a compelling reason to do otherwise, make theshadstprivate. If you do so, then lines
04, 05 and 07 will not compile.

3.16.8 A Logical Fix to Cup

RemembefaceValue onDie ? Itis constant. The Cup’s analog, total, is hetgame.
It could do with a change:

int total(Q);

This method does not change the Cup, so it shaubobist :

int total() const;

Of course, to make this change, you will have tang/e the method definition:
int Cup::total() const {

If you try just this, your code will not compil@@the error probably won'’t give you
much of a clue what’'s wrong with your code. Hettts compilation error from my
machine (yours may vary):

\C up.cpp: In member function 'int Cup::total(Q) const':

Containers have a nested typedef for iterator. @afges a type you use when iterating
over the contents of a collection. However, adaiogst to the method makes the
current objectonst . When this happens, the collection is considemetst . The
iterator is for norzonst collections. However, the standard collectionsehasecond
nested typedetonst _iterator. So you can make the following changegetathis back
to compiling and working:

class Cup {

public:

typedef std::vector<Die*> DiceCollection;

typedef DiceCollection::iterator iterator;
typedef DiceCollection::const_iterator const_iterator;

Version: 0.3a 87 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

Line

Description

03,
04

The original nested typedefs.

05

A new nested typedef foranst _iterator. This is the thing you'll use in any
methods denoted asnst .

The total() method definition changes to asest _iterator:
int Cup::total() const {

int sum = 0;

for(const_iterator i = dice.begin(); i != dice.end(); ++i)
sum += (*i)->faceValueQ);

return sum;

Line

Description

03

Switch fromiterator
and passes.

to const_iterator , and viola the code compiles

3.17 What is going on with const?

Theconst keyword says somethingaéenst . What exactly isonst depends on

where theconst

is located. Here are the typical examples yoed ander a discussion

of const :

Code Description

int *pi = 0; Just a pointer to an integer.

const int *pci = 0; A pointer to an integer constant. That is, the minan

intconst *pci = 0;

point anywhere, and where it points to can chahgge,
you cannot change the underlying integer to which i
points. These are equivalent definitions.

int *const cpi=0;

A constant pointer to an integer. That is, thispexi will
always point to the same place in memory (0 in ¢hise).
The value pointed to can be changed (if it didoinpto 0
that is).

0;

0;

const

int * const cpic =

intconst * const cpic =

A constant pointer to a constant integer. Nothiag ¢
change, neither the value pointed to nor the addres
memory. These are equivalent definitions.

This is a typical introduction to this subject, liig very hard to figure out how to
remember all of these details. | learned a seeexting something by Andrew Koenig
called the right-left rule. The basics to readirgldrations and definitions goes
something like this:

e Find the name — that’s the one potential hard part.

Version: 0.3a

88 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

e Once you have the name, read right until either:
e You've reached the end of the statement, a ; -ner @orks the same way
« You have one more open parentheses) than closathases (
e Now read to the left until either:
« If you just found a ; going right, read all the waythe left
« If you just found an unmatched) going right, réa¢he matching (.

Here are those definitions read using this rule:

Code Description

int *pi = 0; The name is pi. Going to the right tbs an =, so read al
the way to the left, which gives pi is a pointeatoint.

const int *pci = 0; The name is pci. Going to the right, there’s asa-read

int const *pci = O; all the way to the left, which gives either:

» pointer to an integer constant
» pointer to a constant integer

int *const cpi =0; The name is cpi. Going to the right is an =, so meading
to the left, cpi is a constant pointer to an intege

const int* const cpic =| The name is cpic. Going to the right is an =, s@ no

0; reading back to the left:
intconst * const cpic =| " constant pointer to an int that is constant
0: » constant pointer to a constant int

Those are relatively simple examples. Here’s soimegtthat is a bit more complex:
int getBalance() const;
The name is getBalance(), what of the rest?

e (Going to the right is (, the rules don’t say angthabout that, but it means that
getBalance appears to be a function.

e Continuing right, there’s a). However, that magh® (, so getBalance is a function
that takes no arguments. You don't start readifigpecause the () are balanced,
there’s not an extra close parentheses.

e Continuing right, iconst . So this is a method on something thatdest - the
object, it turns out.

e Continuing right, is the ;, so finish to the left;

e Going left is int, which is the return type of timeethod.

So getBalance is a method taking no parameterghwéconst and it returns an int. So
what does theonst mean?

The current Object

How does any method know “the current object”? &le:
Die di;

Die d2;

dl.rollQ;

d2.rollQ);

Version: 0.3a 89 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

The roll method sets the value of a die, but ttseogly one roll method and in this
example there are twidie objects. How does this work?

Here’s a key to thinking about C++, everything irtCcan be, and often is, represented
in C. That is, everything you write in C++ cantlenslated to structs, functions and
pointers.

The member functioDie ::roll() appears to take no arguments, but in ifatestkes one
argument, the current object. Logically there lmethod whose name includes both roll
and the name of the class. Let’s call this methad__ roll. This method takes one
argument, a pointer to a die. That pointer is ddlthis”, so here’s a more complete
function declaratioff:

void Die__roll(Die *this);

This is not quite correct, because in a methad,nbt possible to change to which object
the so-called this pointer points to, so it shdagda constant pointer:

void Die__roll(Die *const this);
Using the right-left rule to read this: “this” iscanstant pointer to Rie .
In the body of the roll method is the code asstgnmlue:
void Die::roll(Q) {
Q&iue = uniform(engine);
}
This is equivalent to the followiri§

void Die::roll(Q) {
éﬁis->value = uniform(engine);
}

So logically (and in some cases nearly literallgg compiler converts the simple
example above to:

Die di;
Die d2;
Die__roll(&dl);
Die__roll(&d2);

So now it is hopefully clear how methods know therent object. It's passed in as a
hidden parameter. In fact, that's what makes a atethmethod, a hidden first parameter.

So, again, what does a const method do?
Consider the methd@ceValue

int Die::faceValue() const {

'® Note that this is close to valid C++. There are 2 problems. First, this is a reserved word, so you
cannot name a variable this. Second, the name of the method includes two _. While technically valid,
the compiler and preprocessor reserve names with two or more _ (typically at the beginning of a
name). So in practice | would not put two consecutive underscores in a name.

7 In fact, this is literally equivalent as this form will compile and work just fine.

Version: 0.3a 20 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

return value;

3
What's constant in this? The current object, ortthe pointer. Here’s a logical rewrite:

int Die__faceValue(const Die *const this) {
return value;

}

So this is a constant pointer (which is alway40sdDie that is itself constant (which it
normally is not). What this does is prevents charigehe current object. It’s still
possible to make changes. The object is not phjsicanstant, but you have to do
something special in modern compilers to removetmst characteristit®.

3.18 Taking Small Steps, Recap

This started off as an exercise to reduce the ocexitglin DiceGame by refactoring.
Specifically, you extracted a class outaéeGame and called in Cup. In general,
refactoring starts with creating new code rathantbhanging existing code. You can
certainly change code in place, but that is aiskier. Taking small steps and keeping
your code green leaves you in a better state totbeupted. Since a modern work day
involves interruption, this style of code modificet can make your daily live a touch
easier.

The steps for extracting class are:

e Create a new class by copying existing code
« Create a standard header file
« Create the source file
« Get to compiling
e Add the Cup into th®iceGame using parallel development
« Get as much changedDiceGame as you can manage while keeping the
solution green
« Finally make the plunge
« Clean up after the change
e Quick review
« We made the copy constructor and assignment opgravate
¢ We made total(yonst

In general, refactoring starts with creation ratih@n making inline changes. You do not
have to do this, but if you change code first aaettg a non-compiling state, when you
get interrupted, and you will get interrupted, yoight lose your train of thought. If you
leave the code compiling and the tests passing aidke time, getting interrupted means
you still have a working system with some possibiypecessary code.

Any reasonably mature code base is inconsistentacts unnecessary code and is in a
constant state of decay. That'’s the reality of sugcessful system. So if you happen to
get interrupted but tests are still passing, thanvye simply added a little white noise
until you get back to the work.

'8 You can use const_cast<Die*>(this) to remove the const-ness. That's the last you'll hear of it in this
book as it is out of scope.

Version: 0.3a 91 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.19 Memory Allocation

How can clients obDiceGame, or Cup for that matter, know that these clasgps@ a
dynamically allocated pointer? Consider the comstms forDiceGame:

class DiceGame {
public:
DiceGame(Die *dl, Die *d2);

Either of these examples successfully crea@exaGame:

Die di; Die *d1l = new Die;

Die d2; Die *d2 = new Die;

DiceGame troubleAhead(&dl, &d2); DiceGame noWorries(dl, d2);

The one on the left will lead to problems at timetiof destruction and there’s no good
way to with the current API to make that clear. Yomwld use a nested typedef such as:

class DiceGame {

public:
typedef Die* dyno_die;
DiceGame(dyno_die d1, dyno_die d2);

This is better because it documents an expectatidrit does so in a way that must
compile. Can we do better? Can we also clean umtplementation and take care of the
allocation a bit more automatically?

3.19.1 std::shared_ptr

There are classes in the standard library that\wipallocation. We’ll have a look at
one such class, though there are several. As éthetst of the book, let’s start with a
failing test:

MemoryLeakDemonstration.cpp

#include <CppUTest/TestHarness.h>

TEST_GROUP(MemoryLeakDemonstration) {
};

TEST(MemoryLeakDemonstration, ThisLeaks) {
int *bad(new int);
}

This allocates memory on the heap on line 07. Th&@ other code that releases the
memory, and in fact without doing something withtimg a custom memory allocation
solution, there no way to recover after the tashieates. This is what memory logically
looks like over time:

Version: 0.3a 92 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

On line 07, just before
the call to new.

After line 07, before

method termination After line 08

Stack

Stack Stack

Heap Heap Heap

The problem is that the variable is a raw type @wdtypes don’t have constructors.
What we need to do is convert the raw type intoraw type so that the pointer will
have delete called automatically when the methoditeates. Here’s a similar test, but
this one passes:

#include <memory>

#include <CppUTest/TestHarness.h>

TEST_GROUP(MemoryLeakDemonstration) {

i

TEST(MemoryLeakDemonstration, ThisWorks) {

}

std: :shared_ptr<int> good(new int);

Line

Description

01

Include the header file for std::shared_ptr<>.

09

Create a shared pointer instead of a raw poigtace this is a non-raw type, it

has a destructor, which will get called whgod goes out of scope.

09

Notice that the template parameter typeirg> and nokint*> . The class
is designed to work with pointers to dynamicallppeated memory. So a
std::shared_ptr<int> Is a shared pointer to an integer. The name of
class suggests it is a pointer already. The seerathple,
std::shared_ptr<int*> is valid, but it is a shapainter to a pointer to ant
It's like anint**

the

The std::shared_ptr class maintains a count ofitineber of times the pointer is shared.
The deallocation only happens if the count goemeto. Here’s what memory logically
looks like over time:

Version: 0.3a

93 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

After line 09, before

method termination After line 10

Stack Heap Stack Heap

good: ||

shared_ptr<int>

3.19.2 Fixing DiceGame

With this in mind, now you can fikiceGame. Here’s the updated header file:

#include <memory>
class DiceGame {
private:
std: :shared_ptr<Cup> cup;
}s

Line | Description
01 Include the header file for std::shared ptr<>.

07 Change the cup member data to be a shard paistead of a raw pointer. Thjs
will make calling delete unnecessary; it won't col@ither.

The source file needs one change for this to cagitl work:
DiceGame: :~DiceGame() {

}

Delete the body of the destructor. The std::shgredakes care of memory deallocation,
S0 you can (and must) remove it.

The design of the class is meant to make it loskljke a pointer.
Notice the play method is unchanged:

void DiceGame: :play() {
cup->rollQ);
int sum = cup->total();

}
How does this work?

Version: 0.3a 94 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Operator Overloading

You've already seen examples of operator overlggdipecifically the assignment
operator. It turns out that another operator youmaerload is> . If you were to create
such an operator for one of your classesRiay, it could look like this:

Die* operator->() { return this; }

Then the following code, while redundant, would lwor

Die di;

di->rollQ);

Don't do this. I'm just demonstrating what this midook like. Here’s what the same
operator might look like for the std::shared_p#ass:

namespace std {

template<class P> class shared_ptr {
public:

shared_ptr(P *v) : target(v) {}

P* operator->() { return target; }
private:

P* target;
}s

exp::shared_ptr<int> example(new int);

Line

Description

01

Everything from this line to the matching cldse in the namespace std.

02

Define a template class with one parani&t@he class is called shared_ptr.

04

Declare and immediately define a constructois Kimd of method is called an
implicit inline method. The combination of declagiand then immediately
defining a method is what makes it implicit.

05

Declare and then immediately define a method calfetator->. The
method returns the target pointer stored in thesiraotor.

11

Create an instance of the shared_ptr.

This is in no way near a full implementation of tass. For that you should have a look

at the<memory> header file.

How can C++ tell the difference?

How can the compiler decide between a “regulardrd one you have declared for your

class? You cannot change the definition of thedagg. This means that while you can
write your own operators for your class, you canmote your own operators for
primitive types. All pointers are primitive typabgrefore you cannot change the
behavior of -> on a pointer. For example:

% The actual class has more than one template argument; this is logically showing what's necessary to
get a working operator-> method added to a class like the shared_ptr class.

Version: 0.3a

95 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Die di;
di->rollQ);

There’s only two things that can happen here:

e |If your Die class has declared an operator-> method, it witigile.
e If your Die class does not declare an operator-> methodwiliisot compile.

Contrast that with this example:

Die *dl = new Die;
di->rollQ);
delete di;

There’s only one thing that happens here. The oy is pointer tdie . All pointers

are primitive types, so this uses the built-in w@rof operator->. There is no ambiguity
in what happens with either of these examples.

3.19.3 Fixing Cup
The Header File

Now it's time to get a little more creative and fhe Cup class. Since Cup holds a vector
of Die objects, we’re going to have to do a bit more work

class Die;
#include <vector>
#include <memory>

class Cup {

public:
typedef std::shared_ptr<Die> spDie;
typedef std::vector<spDie> DiceCollection;

Line | Description
03 Include the necessary header file for the shaoader.

07 Unlike the last example, define a nested typbdebuse it will make the
changes to the source code easier.

08 Update the typedef to useBp instead oDie *. Note the use of typedefs
minimize the changes in the header file to one line

The Source File
The source changes in terms of construction analuddi®n only:

Cup::Cup(Die *dl1, Die *d2) {
dice.push_back(spDie(dl));
dice.push_back(spDie(d2));

}

gup::~Cup() {

Version: 0.3a 96 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description

02, | Instead of putting rawie pointers into thetd::vector , putspDie . Why
03 | you have to do this has to do with the design efstrared_ptr class. The
push_back method orvector is expecting aspDie but you have a

Die* . There is a constructor ghared_ptr that would work, but the desig
of shared_ptr makes the implicit use of that forbidden (by utthe
explicit keyword). So you must explicitly create an ins&ant
std::shared_ptr , for which we have already created a negsgpddef
This is by design because accidentally creatingcarsd shared pointer on
something that already has a shared pointer wikedhe program to crash

when memory is either released multiple times oneimory that was released
is then read.

06 All memory is now taken care of tsgd::shared_ptr , simply remove the
body of the destructor.

-

3.20 Warning: Circular References

While std::shared_ptr solves the basic probleneldasing memory, as with all solutions,
it comes with problems. Specifically, circular nefieces will not get removed.

3.20.1 The Problem: A concrete example
Here is a simple domain using shared pointers:

:Renter
F'3
:shared_ptr<Renter> :shared_ptr<Movie>
1
:Movie

Here’s a version of this diagram in code (CircukefidRenceExample.cpp):

#include <memory>

struct Movie;
struct Renter {
std: :shared_ptr<Movie> movie;
}s
struct Movie {
std: :shared_ptr<Renter> checkedOutBy;
b

struct RentAMovieSystem {
std: :shared_ptr<Renter> createRenter() {
return std: :shared_ptr<Renter>(new Renter);

Version: 0.3a 97 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

}

void rentAnyMovieTo(std: :shared_ptr<Renter> &renter) {
Movie *someMovie = new Movie;
renter->movie.reset(someMovie);
someMovie->checkedOutBy = renter;
}
}s

#include <CppUTest/TestHarness.h>

TEST_GROUP(CircularReference) {
B

TEST(CircularReference, Broken) {
RentAMovieSystem system;
std: :shared_ptr<Renter> renter = system.createRenter();
system.rentAnyMovieTo(renter);

}

Line | Description

01

Include the required header file.

03

Forward-declare the Movie class, so it can legl us line 05.

04

For this example, usstruct . Everything ispublic by default.

05

A Renter has a single movie. This is a simplifrersion of the diagram where
a Renter can either 0 or 1 movies rented rather @@ many. Adding a
collection here simply complicates the example autthmaking it any more
broken.

07

Observation, this single file has both a detilamaof Movie and Definition.
That's OK, as stated above, declarations can regefnitions cannot.

08

A movie knows who it was checked out by, whgld by default.

13

This is like a simulated lookup method. Jusatng rather than looking up a
Renter object.

16

This is where the magic happens

17

Create a new movie

18

Store the newly-created movie in the std::shatdreplacing the current
value in that object. It was built using its no4amgent constructor, which sets
its internal pointer to 0, and its count to 0.

19

Now set the movie’s Renter shared_ptr backdcathrent Renter. This is the
line that creates the circular reference. At tlumf) unless the circle is broken,
neither object will be released from memory.

29

Create a rental system used in the rest oktte t

30

Ask the rental system to create a Renter. BHike a lookup, | just didn’t wan
to have to simulate too much to demonstrate thecyplie.

Version: 0.3a

98 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description
31 Call the method that forms the circle. Now memaill not be deallocated.

What follows are some logic views of memory aticait points in the code.
After Line 30 Completes

Stack Heap

renter *

:shared_ptr<Renter>

:Renter

movie
:shared_ptr<Movie>

Line 30 requests the creation of a Renter by aalireateRenter, which returns an
std::shared_ptr. The method first creates aRewter , which is on the heap. A renter
holds an instance of atd::shared_ptr<Movie> . That object is fully contained
within the Renter object, but that object itselfdsoa shared count, initially 0 and a
pointer to a Movie, initially assigned t6°0The return std::shared_ptr object is then
copied (via the copy constructor) into a local &bl calledenter , which is wholly

on the stack, but it holds a shared counter, I #fteline completes (but for a short time
2) and a pointer to dynamically allocated Rentgectb Remember, these are logical
views. The actual implementation of tstel::shared_ptr is different. This
representation is analogous.

Next, the test calls rentAnyMoveTo. Internally tbreates a new Movie, stores that
pointer (thereby resetting the Renter’'s mate:shared_ptr) and then tells the
Movie who the renter is checking it out.

% This is logical; an implementation won't allocate the shared count until necessary, typically.

Version: 0.3a 929 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

After rentAnyMovieTo Completes

Stack Heap

-f 2 =
renter 14
:shared_ptr<Renter>

:Renter

movie
. < ie>
. shared_ptr<Movie

:Movie

checkedOutBy:
shared_ptr<Renter>

When all of this is done, the renter’s shared @it a Movie has a count of 1 and it
now refers to a newly-created Movie. That Movigvl®lly on the heap. It physically
contains an std::shared_ptr<Renter>, which hasegedlcount of 2 and refers back to the
first (and only) renter object created.

After The Test Finishes

Stack Heap

(1

:Renter

movie
. shared_ptr<Movie

:Movie

checkedOutBy:
shared_ptr<Renter>

The test finishes and its program stack is clearbd.renter variable goes out of scope,
which means its destructor is called. During desion, it decrements the shared count
from 2 to 1. While you may have expected the Remitethe heap to be released, its count
is 1, so it is still around. It holds a referenc&tMovie, with a count of 1. These objects
are forever pegged in memory.

3.20.2 Options
There are several ways to fix this.

e Change your design to remove the circular reference
e Use a std::weak_ptr

Version: 0.3a 100 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

e Use araw pointer
Changing you design

Circular references are real problems. They araicdy a code smell, meaning they are
worth reviewing. If it happens to be possible togly break the circular reference then
that is your best option. This may not be a viaiggon for any number of reasons, so
what can you do if that is not an option?

Fixing With weak_ptr

One option is to use an std::weak_ptr on one dideeorelationship. Make a decision
about which side is the primary side. This is tide shat tends to be the primary or most
common path of access. If there’s not a clear winthen go back and review your
design. In this example, assume that Renter iprihgary side of the relationship:

:Renter

:weak_ptr<Renter> :shared_ptr<Movie>

:Movie

One issue with this is that to create a weak_pjmires the original shared_ptr. We have
this handy, in the rentAnyMovieTo method, so heeeafew changes to fix the circular
reference:

struct Movie {
std: :weak_ptr<Renter> checkedOutBy;

3

So long as you have the original shared_ptr availamply changing from the type of
checkedOutBy from a shared_ptr to a weak_ptr ftkegproblem. However, this solution
happens to have the correct shared_ptr arounddid not, then you’d need to find it
first. So using a weak_ptr can be easy if your @ogmakes it easy.

If for some reason getting access to the origihated_ptr of Renter is difficult or
impractical, then use a raw pointer.

Fixing with raw pointer
The diagram is even easier with a raw pointer:

Version: 0.3a 101 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.21

3.22

ishared_ptr<Movie>

:Movie

And the code is nearly the same:

struct Movie {
Movie() : checkedOutBy(®) {}
Renter *checkedOutBy;

i
And:

void rentAnyMovieTo(std: :shared_ptr<Renter> &renter) {

someMovie->checkedOutBy = renter.get();

}

Even though these two solutions are not too badoveng circular references will make
your code age better over time.

Recap

The standard library offers a shared pointer tomatically release memory at the right
time. It does this by keeping a reference countelhe reference count goes to 0, the
memory is released.

However, you need to be careful:

e Do not give an address to a shared pointer thanetsreated using new (not malloc,
or address-of, just new)

e Do not give the same address to two different shpoénters you create yourself.
They will copy correctly if passed around, but dx create two different shared
pointers that both point to the same address.

e Do not have circular references between sharedgrsirEither remove the circularity
or break the shared pointer chain with a weak poiot a raw pointer.

If you use shared pointers and follow these ryjes,can remove quite a bit of manual
memory releasing and you're more likely to haveedl Wwehaved system.

What's Coming Up?

Now we’ll have a look at refactoring by using bdiltfeatures of the standard library to
improve the implementation of the Cup class. Spedlf, we'll look at:

e std::for_each
e std::accumulate

Version: 0.3a 102 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

e std::bind to call member functions
e Pointers to member functions
e std::trl::placeholders and _1

This section introduces a few of the build-in altfons in the standard library.
3.23 A Few Built-In Algorithms
3.23.1 Updated roll()

Here is Cup::roll() in its current form:

void Cup::roll(Q) {
for(iterator i = dice.begin(); i != dice.end(); ++1i)
*1)->rollQ);
3
There is a method in the standard library calleddach that accomplishes something
like this. It takes two iterators, dice.begin() &elend() and a function or function object
that should be applied to each element in the ciidie.

Here is an example of just that:
#include <algorithm>
static void rollADie(Cup::spDie &die) {

die->rollQ);
}

void Cup::roll(Q) {
std: :for_each(dice.begin(), dice.end(), rollADie);
}

Line | Description
01 Include the header file that contains, amongrathings, std::for_each

03 — | Define a function that will be used by std::for_lean each element in its

05 collection. This method is declared static, meairitimgonly available in this
compilation unit. It takes a reference to an elenoéthe vector containing
shared_ptr to dice. Luckily, there’s already a egdypedef, so use it.

This is a place where you can use a referencediol avaking an unnecessary
copy of an std::shared_ptr. If you do not use aregfce, then when rolie is
called from the for_each method, it will pass aycofhis will increase the
reference count and copy the pointer. Then thetimmailtimately calls roll via
a pointer to a die and returns. Upon return, thpyaj the std::shared_ptr is
removed, its destructor is called, it decremergsréierence count by one.
So while not using a reference will work becausettiing being copied is a
handle to a pointer tolie object, it required unnecessary work.

04 Actually roll a die. Remember, die is an std::sdapdr toDie . This uses the
overloadedperator-> method, which returns@ie *, to which the built-in
-> operator applies to tHaie * and invokes the roll method.

Version: 0.3a 103 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description

08 Call a template function callestd::for_each . This function starts at the
first parameterdice.begin()), an iterator, and continues while its interna
copy of the iterator does not equal the secondnpetex (lice.end()). For
each element in the collection, call the functioi&Die .

Make this change
This change is relatively self-contained. Make tthiange and get to green.
Removing the rollADie method

The third parameter tatd::for_each is either a pointer to a function or an object
that has an operator() method defined on it. Yorelseen such a beast in the engine
clas$’. Here is a hand-rolled version of that, which Wetfigrate into the final form
using more built-in standard library features.

Here is the same code, with the function writtea &snction object, or a functor:

#include <algorithm>

struct RollFunctor {
void operator()(Cup::spDie &die) {
die->rollQ);
}

B

void Cup::roll(Q) {
std: :for_each(dice.begin(), dice.end(), RollFunctor());
}

Line | Description

03 Define a struct called RollFunctor. It has aggrmethod, operator() taking the
same parameter type as the previous function. &tample uses struct since
want everything to be public by default.

05 This is the same code as the previous fundtigrjust represented as a
member function instead of a stand-alone function.

10 For the third parameter, do not pass in a potota function, instead pass in an
instance of the class RollFunctor. The expresRioltFunctor() creates a
temporary instance, which the compiler passesthestd::for_each

method. This works because ttd::for_each method requires something
that can respond {9 in its third parameter. A pointer to a functioredpbut
so does an object with an overloadgedrator() method. The input
parameter type must match the type stored in thenlying vector.

11%

Try this version. Make the change and confirm yolutson is green

I Review the code in Updated Source on page 53. Specifically the discussion of the line including
uniform(engine)

Version: 0.3a 104 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Removing even the functor

The boost library introduced the bind library tokaahis kind of thing a bit more
automatic. The standard library had some builtbipp®rt for this that was seldom used.
Those classes still exist, but trl recommendedntiasion of the boost::bind
functionality, which is a bit clearer, having thdvantage of being second instead of first.

Here’s the same thing using bind:

#include <algorithm>

#include <trl/functional>

using namespace std::trl;

using namespace std::trl::placeholders;

void Cup::rollQ {
std: : for_each(
dice.begin(), dice.end(), bind(&Die::roll, _1));

Line | Description
02 This is the header file that provides std::hihd and std::trl::placeholders.

07 Use the bind function to build a function objedittballs the methoBie ::roll.
_1 represents the parameter passed from the staafth function into the
operator() method.

Give this a try, verify that it also works. Makerswour solution is green before trying
the final version.

Using lambdas

All of this leads up to something that many comgligo not yet support, and even the
ones that do support it are not quite “there” #ten so, this gives you an idea of what
this will look like with modern compilers maybe B912%

void Cup::roll(Q) {
std: : for_each(
dice.begin(),
dice.end(),
[1(spDie &die){ die->roll(Q); 1);

Line | Description

05 Pass in a lambda expression. There are threetpdhis expression (there ca

be more):

» [] —this is a way to refer to local variables; s no need in this example
use, so it is empty. It's required.

» (spDie &die) — this is the signature of the method, lilsepredecessors, it

—

2 This code requires gcc 4.5 or later or VS 2010. So it might not work with your configuration.

Version: 0.3a 105 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description
takes a reference to anl¥p .
» { ...} — the body of the code, which has been tansthroughout

This is one place where you might not be able tkenhis example work in your system.
If you are using gcc 4.5 or later, it will work

3.23.2 Updated total()

The total method can also be improved a bit. LK) there’s an appropriate template
function for accumulating (Ssumming values):

#include <numeric>

int sumIt(int currentSum, const Cup::spDie &die) {
return currentSum + die->faceValue();

}

int Cup::total() const {
return std::accumulate(dice.begin(), dice.end(), 0, sumIt);

}

Line | Description

01 Include the header file that includes, amongotémplate functions,
std::accumulate.

02 The accumulate method takes a function withgarameters. The first
parameter is the kind of value we are accumulatitgy an int. The second
parameter is an element type of the underlyingectithn type, a vector. Since
this method is called from total, which i€@anst method, the value type is
actually aconst Cup::siie .

03 Take whatever the current total is (it start8 as we’ll see), add to that value
the current die’saceValue and return that value. The value returned is
passed in the next time through the loop.

07 Use std::accumulate to sum up theeValue ’s of all of the die objects. This
method takes 4 parameters:

» The beginning of the collection

» The end of the collection

» A seed value, sums start at 0, so O is the seeé val

» A function taking two parameters, as described abov

For the first element in the collection, std::acclete calls sumit with two parameters:

e (O —the seed value
e dice[0]

The sumlt method returns - + dice[OfaeeValue . Let's say for argument the first die
has a face value of 6 and the second has a fage &B. At the second element in the

% Most of this book is written using gcc 4.4, but for this example | used 4.5. | stick to 4.4 throughout
the book because it represents a good middle ground in what you can expect in modern compilers.

Version: 0.3a 106 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

collection, std::accumulate passes in the valuegmet! from the first time through the
loop and dice[1]:

e 6 —the value of the seed and dice[@geeValue
e dice[l]

The result of that addition is 9, which is returddsumlit. Since this is the last time
through the loop (there are only ZD8p in the vector), the current sum, 9, is returned.
That value is then immediately returned from Cuyai().

The bind version

The version of this using bind is nearly univergalunned. So I'll provide it for your
review and then point you to a discussion of howendve at it:

int Cup::total() const {
return std::accumulate(
dice.begin(),
dice.endQ),
0,
std::trl::bind(
std: :plus<int>Q),
-1,
bind(&Die: :faceValue, _2)
)
Dls
}

For a detailed description of this, please review:
http://schuchert.wikispaces.com/cpptraining.Summnector

The lambda version *

The lambda version fairs much better:

int Dice::total() const {

return std::accumulate(

dice.begin(),

dice.endQ),

9,

[JCint v, const spDie &d){ return v + d->faceValue(Q); }
Dls
}

In this case, the lambda takes two parametersagugte original sumlt function. The
body of the code is the same. This may seem dbtuwe. Here is a version similar to
the original method using std::for_each instead:

int Dice::total() const {
int sum = 0;
std: :for_each(

% As with the previous lambda version, this example requires gcc 4.5 or later or Visual Studio 2010. It
might work with other compilers as well, your mileage may vary.

Version: 0.3a 107 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

dice.begin(),

dice.endQ),

[&sum](const spDie &die){ sum += die->faceValue(); }
d;
return sum;

}

This version may seem more familiar. The only ngnitax is [&sum], which makes the
sum local variable by reference into the lambdas Tiakes the lambda a so-called block
closure because access data in its containing scope

3.23.3 Recap

This section introduces two template functions fithi standard library. Both of these
functions operate over some range of elementsoilection. You define the range by
passing in the starting element and the endingezienThe range is closed on the left
side and open on the right side, meaning it indude first element, but it excludes the
right element. It goes just up to but does notudelthe end element.

The first template method is std::for_each. Ude iterate over a collection and do
something to or with each element. We looked a¢isdforms:

e In the first form, you provided the name of a fuot(rollADie) that the template
function calls on each element in the collection.

e In the second form, you accomplished the same tinsinty a so-called function
object, or functor, which is a class that declame®perator() method.

e The third form uses the std::bind method to catleanber function directly. This was
taken from the boost library. The standard impletagon is a bit more long-winded
than the original boost version, but it's certaingable for simple examples.

e The final form uses a lambda expression, whicleis to C++0x. You may not have
access to a compiler that supports this syntakest this as what's ahead in the near
future for C++.

In all cases, the final parameter was:

e Something that can respond to (), either a funatioan instance of a class with an
operator() method.

e The parameter passed into either the functionmethr you provided is a reference to
the element type in the vector.

Next, you worked with std::accumulate. This templaiethod takes an additional
parameter, a seed, to start the accumulation.addgional parameter means that the
function passed in (or function object) needs ke tavo parameters, the seed value, and a
reference to the element type in the vector.

For std::accumulate, you saw three forms:

e The first form took a function called sumlt, whicalculates the current total and
returns it.

e The second form went directly to the bind versidke std::for_each, you can hand-
write a function object taking the same signatwé¢ha sumlt function.

e The third form uses a lambda expression.

Version: 0.3a 108 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

There are many more functions in the standardrijhegood place to start is Effective
STL by Scott Meyers.

3.24 Improved Test Writing?

Review theDiceGame'’s constructor, here’s what you have right now:
DiceGame(Die *dl1l, Die *d2);

Looking at this constructor, there is no way td tteht those die objects must be
dynamically allocated. You have tests that demaitestthat. This one signature exposes a
few issues with the design of the class:

e Strongly suggests the number of die objects usaihws a weak DRY violation
because of the implied rules for win, lose, push.

e There’s no clear way to guarantee that the actgalnaents are dynamically
allocated, exposing the class to a failure at destm time. This fails another design
principle: fail fast — it doesn’t fail until longfi@r the defect is introduced.

How can you improve upon this?

One way to improve at least part of this is to dinghange the signature of the
constructor to take shared pointers:

DiceGame(std: :shared_ptr<Die> d1, std::shared_ptr<Die> d2);

This addresses the ambiguity of memory allocat®that the std::shared_ptr class is not
only well defined, but specified as part of a sedd Rather than take that approach,
however, we’ll instead use a factory.

3.24.1 Pass a factory into DiceGame

For better or worse, the implementation requiresadyic allocation. Rather than force
that requirement out to the calling class, we cateiad force the client to provide an
object that does that work instead. Of coursegthveent design supports testability in the
form of providing test doubles, so we don’'t wantdse that ability in a redesign. Here is
one such design using an object called a factory:

1: create()

—=
f: DieFactory
: dice:
$ executeTest() i vector<spDie>
? ‘ 2.1: d1 := build(): spDie 0
, 2.2: d2 := build(): spDie 2.3.1: create
TestClass | 2.3.2: push_back(d1) ?
1 2.3.3: push_back(d2)
—=
:DiceGame :Cup
2: create(f) —_—

2.3: create(d1, d2)

Version: 0.3a 109 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.24.2 Oh Wait, testability

The existing solution allowsoadedDie orDie objects during construction. To mimic
this, we either need to construct both kind®@ Objects in a single factory, or, better
yet, have two different kinds of factories:

3.25

i <<interface>>
bt < IDieFactory
LoadedDie | DieFactory '-‘l’:zcé‘:ggle
A ;

Die is a base claskpadedDie is a derived class. TheadedDie class is really part
of the test solution. When you created this refetiop, it was an example of inheriting
from a concrete class, which has its issues. Tier @iption is to inherit from an abstract
class, or a class that cannot be instantiated. i@nanheriting from a concrete class is
more fragile than inheriting from an abstract clagty?

Concrete things, by their very nature, have moteailde So more things can change,
increasing the likelihood of something breaking ddhe road.

Abstract classes tend to be stable both becaugd#ive fewer details to change but
also by their very nature. Since they are abstadbgr classes depend on them. Since
other classes depend on them, they are stabl#;falé#ing prophecy. Since classes
depend on them, they have a certain amount ofinterresist change; changing them
might break dependent classes. This is calledtdidesdependencies principles.
Things are stable because they are depended upon.

As this diagram shows, there will be an interfagked Die Factory. It will serve as an
API only. It contains the stereo type <<interfacem*ch says that this class will not
have any concrete methods. How can we accompl&hi fiso, this is going to require
quite a bit of change. How can we manage to migatkis new solution while still
living in our production house?

Before we get into all of that, let’s digress imthy re refactor code as we do.

The 4-contact points of software development

The three laws of TDD are:

Write no production code without a failing test
Write just enough of a test to fail
Write just enough production code to get the tegass

This list doesn't include refactoring, which is tgglly an assumed activity. In fact, some
people refer to these rules as “red, green, rafadkm even older version of this, from
the Smalltalk community, is Red, Green, Blue. (Vhye for refactor? | think someone
was thinking RBG for a color space, luckily thegwlt try to use CMYK or LAB!)

Version: 0.3a

110 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

In this simple model, there two kinds of code: >roduction. There are two kinds of
activity: writing & refactoring. Interestingly, @ne level it is all code. The thing that
distinguishes both sets is intent.

The intent of a test is to demonstrate or maybei§pleehavior. The intent of production
code is to implement (hopefully) business-releyanttionality.

The intent of writing code is creation. The intehtefactoring code is to change
(hopefully improve) its structure without changitg behavior (this is oversimplified but
essentially correct).

If you mix those combinations you have the 4-linobslevelopment:

Writing a test

Writing production code
Refactoring a test
Refactoring production code

An important behavior to practice is doing only @i¢hese at a time. That is, when you
are writing tests, don’t also write production co8ere, you might use tools to stub out
missing methods and classes, but the heart of ychaare doing is writing a test. Finish
that train of thought before focusing on writinggguction code.

On the other hand, if you are refactoring producttode, do just that. Don’t change tests
at the same time; try to only do one refactoring time, etc.

3.25.1 Why?

First an analogy that almost always misses sincg gdevelopers don’t additionally rock
climb.

When rock climbing, a good general bit of adviceisnly move one contact point at a
time. For this discussion, consider your two haauis$ two feet as your four contact
points. Sure, you can use your face or knee, hthareare much fun. So just considering
two hands and two feet, that suggests that ifex@mple, you move your right hand, then
leave your left hand and both feet in place.

This gives you stability, a chance to easily recdmesimply moving the most recent
appendage back in place and, when the inevitalgpemes, another appendage slips, you
have a better chance of not eating rock face.ufrpove more than one thing at a time,
you are in more danger because you've taken a askgn and reduced the number of
points of contact, or stability.

Will you sometimes move multiple appendages? RRuenot as a habit. Sometimes you
need to take risks. The rock face may not alwafes ofp movement patterns that make
applying this recommendation possible. Since yaakthe environment will
occasionally work against you, you need to mainsaime slack for the inevitable.

Practicing Test Driven Development is similar. éfuychange production code and tests
at the same time, what happens if a test fails?t\Wgharong? The production code, the
test, both, neither? An even more subtle problethastests pass but the test is fragile or
heavily implementation-dependent. While not neaglgsan immediate threat, it
represents design debt that will eventually caueblpms. (This also happens frequently

Version: 0.3a 111 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.26

when tests are written after the production codé€saseductively easy to write tests that
exercise code, expressing the production’s codéemmentation but fundamentally hiding
the intent.)

Notice, if you had only refactored code, then yoow the problem is in one place.
When you change both, the problem space actualg fTom 1 to 3 (4 if you allow for
neither). Furthermore, if you are changing bothdpiation and test code at the same time
and you get to a point where you’ve entered a hd#ss pit, you'll end up throwing

away more work if you choose to restore from thgosgory.

Are there going to be times when you change botii®. Sometimes you may not see a
clear path that gives you the option to do only thmieg at a given time. Sometimes the
tests and code will work against you. Often, yob#lworking in a legacy code base
where there are no tests. Given that the envirohmiroccasionally (or frequently)
work against you, you need to maintain some slack.

Essentially, be focused on a single goal at angrgiime: write a test. then get it to pass.
clean up production code & keep the tests firshanging and then passing.

| find that this is a hard thing both to learn @aadpply. | frequently jump ahead of
myself. Unfortunately I'm “lucky” enough when I gomp ahead that when I fail, |
thoroughly fall flat on my face.

This approach is contextual (aren’t they all?). iy¢ene you start working on code,
you'll be faced with these four possibilities. Edthe you are, you need to figure out
what is the most important thing in the moment, dadhat one thing. Once you've taken
care of the most important thing, you may have pusmoted the second most important
thing to first place. Even so, reassess. Whatasribst important thing now? Do that.

Create a concrete Factory

We have existing tests and the solution is greerw&lI start by writing a new test to
create a concrete factory. Which one, fhe Factory or Loadeldie Factory? We have
automated tests that require the creatiobaafdedDie , so that's where we will start.

3.26.1 First Test against the Factory

Here’s a test that confirms we can builshdedDie out of a factory. This uses several
things you've already seen:

#include "LoadedDieFactory.h"
#include "Die.h"

#include <memory>

#include <CppUTest/TestHarness.h>

TEST_GROUP(LoadedDieFactoryShould) {
};

TEST(LoadedDieFactoryShould, ReturnLoadedDie) {
LoadedDieFactory factory(5);
spDie d = factory.build(Q);
LONGS_EQUAL(5, d->faceValue());

}

Version: 0.3a 112 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

This shows the creation of a Load@®ée Factory that returns LoadBie objects always
rolling 5. This is a good start, what of its implentation?

3.26.2 Define the class: LoadedDieFactory

The header file has nothing you've not already seether examples at this point:

#pragma once
#ifndef LOADEDDIEFACTORY_H_
#define LOADEDDIEFACTORY_H_

class Die;
#include <memory>
typedef std::shared_ptr<Die> spDie;

class LoadedDieFactory {
public:
LoadedDieFactory(int value);
virtual ~LoadedDieFactory();
spDie build(Q);
private:
int faceValue;
}s

#endif
3.26.3 Define the methods: LoadedDieFactory
The implementation offers no surprises either:

#include "LoadedDieFactory.h"
#include "LoadedDie.h"

LoadedDieFactory: :LoadedDieFactory(int value) :
faceValue(value) {
}

LoadedDieFactory: :~LoadedDieFactory() {
}

spDie LoadedDieFactory: :build() {
return spDie(new LoadedDie(faceValue));
}

Create the new test, header and source file. Gatsalution to green.
3.27 Update the cup

The Cup needs to be created using shared pointie tbjects, so it's time for a new
test.

3.27.1 The Test

Here’s a simple test that grows the Cup by reqgian overloaded constructor:
#include "Cup.h"

Version: 0.3a 113 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include "LoadedDieFactory.h"
#include <CppUTest/TestHarness.h>

TEST_GROUP(CupShould) {
5

TEST(CupShould, BeConstructableWithSharedPointers) {
LoadedDieFactory factory(3);
Cup cup(factory.build(), factory.build());
LONGS_EQUAL(6, cup.total());

}

Notice that this is a new test file. The Cup came existence as a refactoring exercise.
Now there’s a simple test file for it. This clasgésted, just not in a classical unit test
style. If this class becomes more heavily useahigiht be a good idea to remediate the
missing tests. For now, all we’ll do is test thevreode for this class.

3.27.2 A new constructor

The constructor looks almost the same as the test{and in fact, it could be written
using the same code):

class Cup {
public:

Cup(spDie d1, spDie d2);

The constructor declaration uses the existing degpedef . The constructor
definition is just a few lines:
Cup: :Cup(spDie d1, spDie d2) {
dice.push_back(dl);
dice.push_back(d2);
}

Create the new test and missing constructor. Gz tmagreen before moving on.
3.28 Dice Game Instantiation

Now is where we need to move slowly, choosing t&emane change at a time before
moving to another change. There are three testsrify the game’s rules when rolling
greater than, less than and equal to 7. Rathertthaa fix all of those at once, we’ll
change one. This will force us to add a constrydtor it will allow the old and new
approach to co-exist, keeping code compiling aststpassing more often.

3.28.1 First a test
Update the first test iDiceGame Test.cpp:

#include "LoadedDie.h"

#include "DiceGame.h"

#include "LoadedDieFactory.h"
#include <CppUTest/TestHarness.h>

Version: 0.3a 114 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

TEST_GROUP(DiceGame) {};

TEST(DiceGame, BalanceDecreasesForLoss) {
LoadedDieFactory factory(3);
DiceGame game (factory);

game.play(Q;
LONGS_EQUAL(-1, game.getBalance());

}

This test refers to a to-be-defined constructor.
3.28.2 Notice a pattern? New Constructor

We're adding a lot of constructors all over thecplaThis is pretty standard since we are
dealing with object creation. Here’s the updatexstactor:

class Die;
class LoadedDieFactory;

class DiceGame {
public:
DiceGame(LoadedDieFactory &factory);

The new constructor takes in a reference to a LaidigeFactory. References are
primitive, so the header file only needs to forwdetlare Loadddie Factory rather than
include the header file.

Of course, that defers the including the headertéilthe source file:

#include "DiceGame.h"
#include "LoadedDieFactory.h"
#include "Cup.h"

DiceGame: :DiceGame(LoadedDieFactory &factory) : balance(@) {
spDie dl1 = factory.build();
spDie d2 = factory.build(Q);
cup.reset(new Cup(dl, d2));

The last line of the constructor uses the resehateto replace the existing pointer stored
by the shared pointer with a new pointer. The egspointer is 0.

Update the test, add the constructor declaratidndafinition and get back to green.
3.28.3 Update the second test
With the work form the first test, the second s&stuld smoothly translate:

TEST(DiceGame, BalancelncreasesForWin) {
LoadedDieFactory factory(5);
DiceGame game (factory);
game.play(Q;
LONGS_EQUAL(1, game.getBalance());
}

Get your solution to green.

Version: 0.3a 115 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

You might have noticed that this test is actualigaking for a different value. The
original test used 4 and 5, for a total of 9. Tthist uses 5 and 5. That’s OK since those
values are in the same range of values for the afithe game; they are in the same
equivalence-class. Even so, it suggests a prolbemhé next test.

3.28.4 Oops, not there yet

The next logical thing to try is conversion of tihéd and final test, but we hit a brick
wall. The current test uses 7 for a total. Theeniri. oade®ie Factory class doesn’t
support that, so before we change that test, we toeextend the definition of the
Loadedie Factory to support this.

3.29 Extending Loaded Die Factory

This class is a test double. This doesn’t meanusevrite bad code and get it over with,
but it does suggest that we only have to makefieatle as the tests require. That is,
you already have a good idea of what you need:

e Creating a factory with one value is convenient.
e Creating a factory that can produce two differeaded die, one for 3 and one for 4,
is all the flexibility we need.

You could create an entirely different Loa@gel Factory, or just update the current one
in place. Assuming you want to update in placenine thing is a test.

3.29.1 Here’s a test

TEST(LoadedDieFactoryShould, BeAbleToTakeTwoValues) {
LoadedDieFactory factory(3, 4);
spDie d1 = factory.build();
spDie d2 = factory.build();
LONGS_EQUAL(3, di->faceValue());
LONGS_EQUAL(4, d2->faceValue());
}

This test expresses one way that will give us wieaheed. Notice that it introduces
(adds) a constructor rather than changing theiegisbnstructor. Why? Fewer moving
parts; change a test, get it to work. Then consfdemoving the old constructor makes
sense or not (we’re not going to).

3.29.2 The Updated Class
This was the first solution | came up with:

#pragma once
#ifndef LOADEDDIEFACTORY_H_
#define LOADEDDIEFACTORY_H_

class Die;
#include <memory>
typedef std::shared_ptr<Die> spDie;

class LoadedDieFactory {
public:
LoadedDieFactory(int firstValue, int secondValue);

Version: 0.3a 116 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

LoadedDieFactory(int value);
virtual ~LoadedDieFactory();
spDie buildQ);

private:
int values[2];
int lastIndex;

I
#fendif

The class will hold an array of two values andratek indicating the last one returned.
The idea is that it will toggle between the firatlasecond values. The original
constructor will still work; it will just populatéhe two values with the same value.

#include "LoadedDieFactory.h"
#include "LoadedDie.h"

LoadedDieFactory: :LoadedDieFactory(int value) : lastIndex(-1) {
values[@] = value;
values[1l] = value;

}

LoadedDieFactory: :LoadedDieFactory(int firstValue, int secondValue)
: lastIndex(-1) {

values[@] = firstValue;

values[1] = secondValue;
}
LoadedDieFactory: :~LoadedDieFactory() {
}

spDie LoadedDieFactory: :build() {

lastIndex = (lastIndex + 1) % 2;

return spDie(new LoadedDie(values[lastIndex]));
}

3.29.3 Return to green

This is a bit of a jump from the previous versibowever the recommendation of doing
the simplest thing that could possibly work is $guations where you don’t know how to
proceed. I've used this kind of thing before, s®rgally not complex to me.

Get your solution back to green.
3.29.4 Back to that final test
Now you can update the final testDiceGame Test.cpp:

TEST(DiceGame, BalanceRemainsSameForPush) {
LoadedDieFactory factory(4, 3);
DiceGame game (factory);
game.play(Q;
LONGS_EQUAL(@, game.getBalance());

Version: 0.3a 117 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Since the factory works, this test should work. ke change, get to green.
3.29.5 Why modify this final test at all?

The goal is to migrate the design to a new apprdactio that all existing code
depending on the old constructor needs to be ugdii@w that it is, you can remove the
old constructor can generally clean up the coderbahoving to the next section.

3.30 Final Cleanup

The current implementation requires a little hoesglng. It might seem that more
methods make a class more flexible but the exgubgife can be true depending on what
you're trying to manage. If you want to build systethat are easier to maintain over
time, smaller classes with minimal interfaces aggebp than large classes. Generally, the
vast majority of time and money over the life gfraject is spent in so-called
maintenance, so anything you can do to help maamtemwill be a big win. Keeping
things clean is certainly a big help. Bigger ssila trail of automated tests as you work.

With that in mind, it's time to clean up unnecegsarde.
3.30.1 DiceGame
There are three unnecessary things in the class:

e Forward declaration ddie ;
e Declaration of a constructor taking two die poister
e Definition of that same constructor.

Make these changes and confirm your solution isrgre
3.30.2 Cup
Once you've cleaned up tidceGame, this enables cleaning up Cup:

e Cup has an unused constructor
e Cup has a duplicated typedef for std::shared Oner<>

For now, we can safely remove the constructor takivo Die pointers.
Make these changes and confirm your solution isrgre
3.30.3 Common typedef

Now there’s the duplicate typedef. While it does$ cause problems, it is a DRY
violation. So first introduce a new header filedgp .h):

#pragma once
#ifndef SPDIE_H_
#define SPDIE_H_

#include <memory>
class Die;
typedef std::shared_ptr<Die> spDie;

#endif
Now include that where that type is needed and ventiee duplicated typedef:

Version: 0.3a 118 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

e Cup.h
e Cup.cpp (replace Cup::Be with sDie)
e |oadedie Factory.h

Make these changes and get back to green.
3.31 s this better?

So is this better? Constructing with a factory eattmat twoDie objects? What about
hiding the dynamic memory allocation deeper indygem?

3.31.1 Can we even play a real game

Right now there is a definitive answer, the curmitition is clearly worse in one key
respect. It's not possible to build a system wehlDie objects! By making the most
recent changes, it's no longer possible to busgstem without a factory and there’s
only one kind of factory, Load&ie Factory.

3.31.2 Problem with Test Doubles

This represents something you need to watch owfi@n using test doubles; you can
build a system with missing real code. That's wieatains and along the way you’ll see
an important feature of C++, pure virtual memberchions.

3.32 Refactor: Extract Interface
To get started, we need to build e Factory. Before doing so, review the class

diagram:
Die = <-- <<interface>>
IDieFactory
LoadedDie L DieFactory L‘I’:zc::‘t’gg'e
R |

This shows a top-level interface as the base ofwtbeconcrete factories. This is the
common form of the abstract factory design pattareommon abstraction, which one or
more concrete classes implement. We have a leg tip®because we have a working
class already in place, so we can extract an axterf

3.32.1 The Class Definition
First, create a new clasfié Factory by extracting what needs to be common:

#pragma once

#ifndef IDIEFACTORY_H_
#define IDIEFACTORY_H_
#include "spDie.h"

class IDieFactory {

Version: 0.3a 119 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

public:
virtual ~IDieFactory() = 0;
virtual spDie build() = 0;
};

#endif

Line | Description

09 This is a base class, so declare a virtual destruthe= 0 syntax at the end
indicate this as a pure virtual function. This makee method abstract and it
also makes the class abstract; it is not possibheake an instance of this class.
Normally, a subclass will have to provide a dediaraand definition of all
pure virtual methods or it too will be abstractitie special case of destructors,
this is not true. More on this with the source.file

10 The build method also pure virtual. Subclassésave to provide a
declaration and definition of this method or betedrs.

3.32.2 Implementing the pure virtual destructor

#include "IDieFactory.h"

IDieFactory: :~IDieFactory() {
}

Notice the definition of the destructor? If you wiat include such a definition for a pure
virtual destructor, the subclasses will be foraegrovide one. To be safe, a base class
should declare a virtual destructor. Why make repurtual?

In this particular case, the intention of this sl&sto serve as a behavior-only abstraction
— an interface. C++ does not have interfaces,ttman have a class with all pure virtual
methods, the next best thing.

So a pure virtual destructor declaration suggéstsrtent of the class. Providing a
definition for the destructor minimizes the requents for a base class; they will not
have to write a destructor, but if they do, therectr one will get called.

3.32.3 Update LoadedDieFactory

3.33

With an extracted interface, it's quick to updateatedie Factory to implement that
interface:

#include "IDieFactory.h"

class LoadedDieFactory : public IDieFactory {
Make these changes and get your solution backetengr
Now DieFactory

Time to create the class we need to build a prepstem, théie Factory. As with other
examples, we’ll start with a test. This will usemn€++ syntax.

Version: 0.3a 120 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.33.1 First the test

#include "DieFactory.h"

#include "Die.h"

#include <typeinfo>

#include <CppUTest/TestHarness.h>

TEST_GROUP(DieFactoryShould) {
};

TEST(DieFactoryShould, ReturnOnlyDie) {
DieFactory factory;
spDie die = factory.buildQ);

CHECK(typeid(Die) == typeid(*die.get()));

There’s something new in this code, the ustypéid . The typeid operator returns
back a think called a type_info object. This conmgaar verifies that the kind object held
onto by the shared pointer returned from the fgamactually eDie and not a
LoadedDie .

3.33.2 The Implementation
Here’s a minimal implementation Bfie Factory. First the header file:

#pragma once
#ifndef DIEFACTORY_H_
#define DIEFACTORY_H_

#include "IDieFactory.h"

class DieFactory: public IDieFactory {
public:

spDie build();
i

#tendif

Now for a source file:
#include "Die.h"
#include "DieFactory.h"

spDie DieFactory::build() {
return spDie(new Die);
}

That's it. You can certainly add:

A no-argument constructor
A destructor

A copy constructor

An assignment operator

Version: 0.3a 121 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

This will give you a canonical form for the class.

3.33.3 Get to Green

3.34

Create this next to final test and he Factory class. Make sure your source is green
before moving on.

A Smoke Test

Can you build a real system? It's time for a diferkind of test. Here’s a simple test to
exercise a system as it is meant to be used:

#include "DiceGame.h"

#include "DieFactory.h"

#include <stdio.h>

#include <CppUTest/TestHarness.h>

TEST_GROUP(DiceGameSmokeTest) {
3

TEST(DiceGameSmokeTest, StandardUse) {
DieFactory factory;
DiceGame game(factory);

for(int i = @; i < 33; ++1)
game.play(Q);

char balance[32];
snprintf(balance, 64, "Balance = %d", game.getBalance());
UT_PRINT(balance);

}

This test attempts to creat®aeGame using aDie Factory. Try to create this test,
you'll find that it's a good idea you did so, besatthis won’t compile.

3.34.1 Make the required updates

The signature of the constructor is incorrecteieds to refer taie Factory:

#include <memory>
class Cup;
class IDieFactory;

class DiceGame {
public:

DiceGame(IDieF R f)
You'll also need to update the definition:
#include "DiceGame.h"

#include "IDieFactory.h"
#include "Cup.h"

DiceGame: :DiceGame(IDieFactory &factory) : balance(@) {

Version: 0.3a 122 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.34.2 Back to green

Make these changes and confirm that your systdradk to green.

3.34.3 Where does this test belong?

3.35

This test is different in a few ways.

e |t uses a new macro, UT_PRINT, to output some médion.
e It uses only production classes, no test doubles

This is a fully-wired system. You will need to veitests like these to make sure anything
about the configuration of your system that mightioken is discovered automatically.

This particular test takes little time to run. Evem it might be a good idea to organize
tests with different intentions into different peojs. As a developer, | want to be able to
run all the various automatic tests on my persorathine. | want to be able to do that
and not have to worry about shared resources dkabases or message queues. This
suggests certain kinds of design consideratiortdehd to good test isolation.

In any case, if you decided to include this testnrautomated test suite meant to be run
by developers often throughout the day, removethput. Why? In practice, output has
a few negative consequences:

e |t slows test execution. Anything that unnecesgatibws tests leads to tests getting
run less frequently, which reduces their value merably. You won't find failures
fast.

e |t encourages manual checking of something thapecalably be automated.

e |t leads to weaker testing. If there’s output, tpeople can check things just in case.

This does not suggest that a production systemiégimma have logging. I'm just saying
that unit tests should produce no output in general

In any case, you've finished this project. Condegtans
Wrap-up

This last section was primarily about experimentinth a design pattern and the down-
stream ramifications associated with that. It wilas about refactoring in small steps,
keeping the code compiling and the tests passinig whanging the structure of your
solution.

There were a few new things as a result:

Term Description

Abstract Factory Designate a class whose primayarsibility is to build one or g
family of objects. Create an abstract class thaptucas the
interface and then have multiple implementatiomsiftierent
situations.

Pure Virtual A virtual method can be pure virtukthis has several effects
* The method is abstract

* The class is abstract

* The class cannot be instantiated

= Subclasses must implement the pure virtual metiod o

Version: 0.3a 123 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Term Description
themselves be abstract

= |f you have a pure virtual destructor, it can bérdal in the
base class and subclasses will not have to impleimen

We made all methods in one class pure virtualirttest of which

is to suggest that a class is not just abstracdshatfact an
interface.

typeid An operator used to determine the type daflgact. You can only
use typeid on classes with at least one virtuahooktWe used thi
to confirm that the kind of object retrieved fronDee Factory was
in fact an actuaDie and not a subclass.

12}

3.36 Final Recommendations

C++ is a huge language and if you're just startingor even if you've been using it for a
few years, consider it an ever expanding projeceadly learn the language. We have
skipped most of the language in this project, yet know enough to get starting writing
decent Object Oriented solutions using the langu&lge rest of this section is a
collection of next steps and recommendations.

3.36.1 Books

There are many books you might consider reading theenext several months and
years. Here’s a short list of some you might wartdnsider:

e Exceptional C++: 47 Engineering Puzzles, Programgrroblems, and Solutions

e More Exceptional C++: 40 New Engineering PuzzlesghRamming Problems, and
Solutions

e Accelerated C++: Practical Programming by Example

e Effective C++: 55 Specific Ways to Improve Your Brams and Designs (3rd
Edition)

e Effective STL: 50 Specific Ways to Improve Your Usfethe Standard Template
Library

Here are a few more books you might want to comsideyou dig a bit deeper, or to give
you some context:

e Advanced C++ Programming Styles and Idioms

e Ruminations on C++: A Decade of Programming Insayid Experience
e C Traps and Pitfalls

e The Design and Evolution of C++

3.36.2 Katas

A common practice is to take a simple problem amdfxe it over and over. I've
collected a number of katas from other people afedvd’'ve developed myself. Have a
look at: http://schuchert.wikispaces.com/Katas

3.36.3 Practice

That goes without saying; you need to practice withlanguage. Learning the language
only while on the job, while useful, might actudliiyit your learning. | started using the

Version: 0.3a 124 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

3.37

language August if 1989 and | used it nearly daittil around June of 1990. | then took
the summer off and did not do any programming bmud 2 months. In that 2-month
interval, | was able to figure out many things lyoknew by rote. Because | was buried
in the problem and worried about deadlines, itteaiwhat | was learning about the
language.

A way to mitigate that is to practice with katas Aven better way is to pick one
substantial problem and practice it over and oveking slight variations on your
approach each time. The idea is to become famifidr the domain to the point where
you are able to take individual variables and clesthgm. For example, there’s a design
recommendation called “tell don’t ask.” You migimhply do a problem and universally
apply this one design idea. You'll find doing tkiad of active experimentation will give
you a deeper appreciation of the language. Italsib translate to other languages as
well, so you're not really just learning C++.

What's coming up?

It's time to start a new problem. The approach dlsimilar, but the design forces will
be a bit more important. In this next problem, yowbn’t encounter much new C++,
instead you’ll be reapplying what you've alreadgrsén the dice game to a problem with
richer design issues.

Version: 0.3a 125 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

RPN Calculator

According to Wikipedia (http://en.wikipedia.org/iiReverse_Polish_notation) Reverse
Polish Notation was created in 1954 by Burks, Waraed Wright. In reverse polish
notation, also known as postfix notation, operaaqujsear before an operator. Here are a
few examples of such notation:

Expression Result
304 + 34
304 - 26

At the beginning of the century | was taking arerntl class on Test Driven
Development where the instructor used a “regulattdator as the main example. For
some reason, | chose to implement an RPN calculatgad. While working in the
class, it occurred to me that my pairing partnet kwere having an easier time at it than
the other students. In fact, this is because iee&s write an RPN calculator than a
“regular” calculator. An RPN calculator:

e Does not require as much “memory” — when the uslecss an operator, you can
immediately perform a calculation. Contrast thishvad regular calculator where upon
entering a number and an operator, the calcul@®itiremember both and wait for
the next number before doing any work.

e Does not require () — operators happen immediately

In fact, according to HP Museurt{p://www.hpmuseum.org/hp9100.hxthis is what
made it possible for HP to build the first elecimRPN calculator in 1968. The first HP
calculator:

e Weighted about 40 pounds
e Cost around $5,000 USD
e And was considered a modern miracle

We are going to use a problem similar to an HPutalor as the basis for our second
problem. Whereas in the first problem we were laghkprimarily at C++, the purpose of
this problem is to look at:

e Object Oriented Design
e Design Principles
e Design Patterns

Also, unlike the first problem where we worked battup, in this problem we will work
top down, or out to in. We will start with a serigfsexamples for a first iteration. We’'ll
create automated checks for those examples anadl gpethe code as we work our way
through the problem.

Side Note: I've used the problem many times. I'wrked it with “raw” TDD — no
design up front, see where students take the problee also used it as a design
problem where, | have students work on up-frontaitkrl design. For this book | had to
choose one path through the problem and | someavhatarily decided on raw TDD.
We will go from examples to tests. As we develgtdel’ll mention design decisions
you need to make or consider.

Version: 0.3a 126 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.1 Project Description

For this problem you will create a programmable Rialulator. Your calculator will
have:

e Several functions,
« Basic functions such as add, subtract, multiplyiddi, less than, greater than
« Bigger functions such as sum, factorial, primedest
« Stack operations such as duplicate, drop, rotateotgte down

e It should be easy to add new operations to theulztar

e The calculator should be “programmable”, meaning gan create a new operation
that is a combination of any existing operations
e Those new operations should execute in the samesvéhye built-in operations
« It should be possible to have one program refantither program as well

The calculator will deviate from a standard HP ghltor in at least the following ways:

e Our calculator will allow more than 4 numeric ee$rion its stack
e We will use integer math for simplicity

4.2 What's Coming Up?

Given this preliminary problem description, it's& to get started on the problem Here’s
what to expect:

e Story selection
e Example development
e Automated check writing

To do this well, we’'ll also consider

e GRASP patterns to help with developing automatestks
e Actor-system interaction and its impact on top-leA@l design
e The lost-art of system events

4.3 Biting off just enough
This problem already has a number of potentiaietancluding:

e Operators: Adding numbers, calculating factoridigision
e Stack Manipulation: dropping values, duplicatingt jud the stack
e Programming

This is too much to attempt all at once so we ghpidk a small set of stories for a first
demonstration. Story writing and selection is baltite scope of this book. However,
here are thoughts on a first cut:

e Add, Subtract — these are easy to understand ealtaator without these features
would be too surprising. If we were to only pickeoid choose subtract. Why?
Because unlike add, the order of the numbers igiitapt. However, these are close
enough that we’ll do both of them.

e Multiply, Divide — these two finish off the set operations that even the most basic
calculators include.

Version: 0.3a 127 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know 08/04/11

4.4

e Factorial, Drop — these may seem like odd choicewever, they have a fundamental
difference from the previous four operations; faielconly needs one operand, drop
needs one operand as well, but it produces notsesul

Given this list of operations, the next thing toisladevelop some concrete examples for

each of these stories.
Develop Examples

What is the difference between a story and an elehi story describes a use of the
system. An example fills in that story with speciialues. Often, we write these
examples using a standard language, or set of kelgwblere are some examples for

each of our chosen stories:

Given the user enters When the user selects Then the result is
30 4 + 34

30 4 - 26

4 6 * 24

8 2 / 4

5 ! 120

531 drop 53

These are all “happy-path” examples. They are spgimplete and represent successful
scenarios. What are some examples that represemttiad failures? One example might
be overflow, another underflow. In a more compkstample we would not use integers
but some numeric library to provide better precisi®o overflow and underflow, while
legitimate test cases, are out of consideratiocesive’re using integers to keep things
simple; what we’d write is an artifact of a simplifig decision.

What about the following situations:

e Using any of these with “too few” parameters
e Divide by zero with division
e Factorial of a value less than 1

An artifact of a real HP calculator is that there always 4 numbers available. When you
turn on the calculator, you have 4 values. Thoseesacould be all O or they might be
values from the last time you used the calculdtoeither case, there’s no such thing as
“too few parameters”. This can be assumed knowleoig@e can capture a few
examples to demonstrate this idea:

Given the user enters

When the user selects

Then the result is

4 + 4
4 - -4
4 * 0
4 / 0
+ <or> - <or>* 0

/

<error: divide by 0>

Version: 0.3a

128 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know

drop

1

These examples are still incomplete (they alwaysb&). There’s only one example that
shows what happens where there are more than énet’ number of values available.

What happens when you attempt to add values amd #ne extra values?

Given the user enters

When the user selects

Then the result is

32672

+

3269

32672

3265

Given these examples, it seems that a user cansaveral values. Using add or subtract
works with the two most recent values. Also, whemdrder matters, the most recent
value is on the right side of the operator andptte¥ious value is on the left.

This seems like a good start. We will probably epdvith more examples, but we’ll
consider this first release done when all of treesamples work in automated checks.

4.5 Project Setup
This is a new project so it's time to create a peaject setup from scratch. If you need
assistance, please refer to section 2.2.1 stastiqzpge 10.

4.6 The first unit check
It's time to start writing our first unit check. ®art writing it, we need to make a few
decisions. Here are some guestions and answers:
Question: What are we writing this first unit chexgainst?
Answer: Since this is an RPN calculator problend we are working out to in, we will
target the RPN calculator class with our first whieck. This is an example of using the
Controller GRASP pattern (ref). The controller pattis unfortunately named; it would
have better been called facilitator or coordina¥de have messages coming in from the
outside via some actor. The actor could be a husoasince we are using TDD, the
actor is a test.
Question: What are the logical steps of this unéak?
Answer: Enter a number, enter a second numbempegome operation, and verify the
results.
Question: Does “enter a number” mean a full numésy, 30, or just one digit of a
number?

Version: 0.3a 129 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

By Digits By Numbers
@) @)
Rpn
Calculator
| T |
} Digit(3) } Enter(30) }
! Digit(0) } Enter(4) !

} Enter() } }
i | |
1 Digit(4) 1 1
| | |
| | |

Answer: This is a somewhat arbitrary decision. Bgtthe answer is somewhat arbitrary,
making the decision is necessary. We could:

e Enter individual digits like pressing buttons onadculator
e Enter full numbers, like collecting digits in a tdox in the Ul and only presenting
the final number to the calculator

I have done this problem both ways and for howM@arare going to take the problem,
there won’t be much of a difference. From persexglerience, collecting individual
digits leads to making it easier to maintain tfaesof the system in a single location.
This becomes important when you start using a ngntibrary as opposed to using built-
in (primitive) numbers. It makes more work for @igve take in individual digits but that
initial work isn’t really too much.

Notice, as with most questions, experience candmod guide. When | use this problem
in a class setting, | let the students decide.&limon’t have someone to make the
decision, | flipped a coin and it came up “numbess’for this example, we’ll be taking
in full numbers.

Here’s another problem to consider. If we builbaplete system with some kind of user
interface, the values coming into system would phiy not be numbers but instead be
strings of digits. In fact, one of the things atrolter does is translate requests from the
outside world into something the system can undeadstlt then decides where to send
the request and delegates the rest of the wordne kind of plain old C++ object (a
POCO). This is another decision | let the studemg&e. This is another thing that comes
from writing many systems and having to designsystem-level interaction. While this
is a necessary problem, the work actually requsetependent on something that is out
of the scope for this problem. So in addition tirtg in numbers as opposed to digits,
the representation of those numbers will in facinbegers and not strings.

Question: How will we select add, versus subtreict,?

Version: 0.3a 130 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Named Parameterized
I
Calculator
Add() ‘ Perform(“+”)
Subtract() Perform(“-“)
Multiply() Perform(“*”)

Factorial() Perform(“!”)

Drop() Perform(“drop”)

[[
[[[
[[[
| | |
| | |
l l l
} Divide() } Perform(“/”) }
\ | |
| | |
L | |
[[|

Answer: What may seem obvious is to have one namettod for each operation. This
approach has a few characteristics:

e It leads to an API that is open-ended. As you gitesvsystem, the API will continue
to expand.

e Additionally, the client has to know which methaddall. If the user types “+” or
clicks the “+” button, both of these actions mustrbapped to the “Add()” method.
As the API grows, this mapping also grows.

e If the code compiles, you know you'll be callingarticular method, which in a
sense is like static (compile-time) checking.

e Itis easy to understand.

e This kind of interface will not work very well wheme consider programming the
calculator.

While this is typical, familiar even, that doesniean it’'s a good idea.
Using the parameterized approach:

e The APl is locked down — this is an example of @cted variation and it also is an
example of applying the open-closed principle ®phoblem.

e The client can allow the user to type “+” or pradsutton with “+” as the label. The
mapping is now done deeper in the system.

e Even if the code compiles, you don’t know until yromn it if a particular operation
will happen.

e This approach maps better to the requirement tioarams run the same as other
operations.

We could choose either solution, but we must cho@oge This is probably one of the
most important lessons: Picking a “wrong” solutismoften better than waiting to pick
the “right” solution. To have a chance seeing hadesign can move from one API
design to another, we’ll choose the named methpdoagh.

Question: How do we know the most recent result?

Answer: An HP calculator has 4 registers: x, \armj t. The x register is the “top” or
most recent value. This register is also knowrhasatcumulator. To keep things simple,
we could simply ask for either the x register @& #tcumulator. Both terms are

Version: 0.3a 131 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

46.1

4.6.2

mentioned in an HP calculator manual, so they cogh from the domain. For
simplicity, we’ll use getX();it comes right fromefdomain.

Was all of this necessary?
The short answer is yes. If you agree, skip tante section.

If you are still here, then ask yourself the questi'What is our goal?” We are trying to
write an executing piece of code that will showaeae add two numbers. For this to
work, it will have to compile. That means we neettethake all of those decisions. We
could just write the first test and see what happénpractice, you'll be doing that.
However, as you get more experience, the firstvidstake more and more into
consideration. Even when we practice “raw” TDD, ptevious experience feeds into the
overall approach. So when I'm working on problethsse kinds of things are going
through my head either consciously or subconscyo&s you really do need to make
these decisions. You can do so as you write alestever, since I'll be writing the test
for you, you'll be missing out on some of this didn’t take the time to walk through it.

Add: The First Test

Having setup your project, it's finally time to ate a first test. Here is one such test that
takes the previous section into consideration:

RpnCalculatorShould.cpp
#include <CppUTest/TestHarness.h>

TEST_GROUP(RpnCalculatorShould) {
RpnCalculator *calculator;
void setup() {
calculator = new RpnCalculator;

void teardown() {
delete calculator;
3

b3

TEST(RpnCalculatorShould, AddTwoNumbers) {
calculator->enter(30);
calculator->enter(4);
calculator->addQ);

LONGS_EQUAL(34, calculator.getX());

3
A quick recap from the previous project may beriaeo:

e To use CppUTest you need a TEST_GROUP for a selated tests and a TEST for
an individual test.

e The TEST_GROUP is more commonly known as a tegiri We put things in the
test fixture that are common for all tests.

e In a language with refactoring tools, I'd normadhart with just a test method and
refactor my way into a common test fixture.

Version: 0.3a 132 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

e Additionally, CppUTest does memory leak detectidowever, if your class uses any
kind of dynamic memory allocation, you might gdséapositives on memory leaks.

e Given this, I typically start my test code with EST_GROUP that has an instance of
the thing it is testing stored as a pointer. Thasd setup and teardown to allocate
and release that object. This avoids most of tise fpositives that might be recorded
by CppUTest.

The body of the TEST is a direct interpretationthef previous few pages of discussion.
To make this work we’ll need to create the missilags, RpnCalculator. To do that,
we’ll probably want to follow some basic C++ guiels. With that in mind, here’s a
header file for RpnCalculator:

RpnCalculator.h

#pragma once
#ifndef RPNCALCULATOR_H_
#define RPNCALCULATOR_H_

#include "RpnCalculator.h"

class RpnCalculator {
public:
RpnCalculator();
virtual ~RpnCalculator();
void enter(int value);
void add(Q);
int getX() const;

private:
RpnCalculator(const RpnCalculator&);
RpnCalculator &operator=(const RpnCalculator&);

s

#endif
There is nothing new in this header file if youhead the rest of the book. There’s no
good reason to copy objects of this class so eeand 17 make that unlikely. The
destructor, linel0, is virtual because | used Eelifp create the class and that’s its

default setting. It is unlikely we’ll create a sld®s of this class, so the virtual on the
destructor is not necessary. | did it anyway.

The test required enter(), add() and getX(), lides13. This header file with no source
file will allow the test to compile (but not link).

To get the code to link — and the test to pas®’derfirst cut at an implementation:
RpnCalculator.cpp

#include "RpnCalculator.h"

RpnCalculator: :RpnCalculator() {}

RpnCalculator: :~RpnCalculator() {}

void RpnCalculator::enter(int value) {}
void RpnCalculator::add() {}

Version: 0.3a 133 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.7

int RpnCalculator::getX() const {
return 34;

3
Sure enough, this gets passing results:

OK (1 tests, 1 ran, 1 checks, @ ignored, @ filtered out, @ ms)

Before moving on, we need to check if there arefdages where we might refactor the
code. There’s not much right now. Sometimes we teatlow code to fester a bit before
there’s enough to know how to generalize it. Solwebve on to the next example.

Subtract: The Second Test

The second example is subtraction. We can takértt@utomated check as a baseline
and create our second one:

TEST(RpnCalculatorShould, SubtractTwoNumbers) {
calculator->enter(30);
calculator->enter(4);
calculator->subtract();
LONGS_EQUAL(26, calculator->getX());

}

For this to compile, we need to update the heal#erTio get the code to link we’ll need
to update the source file:

Added to RpnCalculator.h
void subtract();
Added to RpnCalculator.cpp

void RpnCalculator::subtract() {
}

This gets us to the new test failing while the réd test passes. Now the challenge, we
must update the code to keep the original testpgssd get the new test passing as
well.

One thing we can do is covert the hard-coded vatwened by getX() into a variable. A
variable will allow us to generate different resulfhose different results can be
performed by the add() and subtract() methods. KNpftiom a hard-coded value to either
a calculated value or introducing a variable i®adysecond step as you build solutions.
In fact, you might consider reviewing a recommeiaataby Robert Martin he called the
transform priority premisehtp://cleancoder.posterous.com/the-transformapioority-

premise.
In our case, we need to make four changes:

Add a variable

Set the result in add()

Set the result in subtract()
Return the result in getX()

Version: 0.3a 134 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

While not strictly necessary, we should also itig&athe member data value in the
constructor because C++ won't do it for us. Herethose updates:

Added to RpnCalculator.h
private:

int x;
Updated Constructor

RpnCalculator: :RpnCalculator() : x(@) {
}

Updated add(), subtract(), getX()
void RpnCalculator::addQ) {

X = 34;

3

void RpnCalculator::subtract() {
X = 26;

}

int RpnCalculator::getX() const {
return x;

}

These changes will return you to compiling, linkiangd tests passing.
4.8 What about Actual Values?

Right now the implementation does not use the &ealaes provided when calling the
enter() method. When you are working on a probhgm, will often come across these
challenges. A quick review of the examples showas e first six each describe the use
of a different operation. Nothing in those exampl@sforce use to actually store any
values. The first time that occurs is when we waitgecond automated check against an
operator that already has an implementation. Bh@iunsatisfying result to many
programmers. We could jump ahead in the list ofrgdas, but the next example that
duplicates the use of an operation is add wherre tlseonly one item provided. This
would force us to tackle two problems at the same:treally writing add(), dealing with
the situation when there are less than two providddes.

A danger at this point is speculative design. Wie@qust do something and see where it
goes. However, if we start that, we’ll probably emqwriting code that has no automated
checks for it. Alternatively, we could write anetitest for add() or subtract() that uses
two different values. A problem with that is thaetsecond test is a duplicate of the first
test. Duplication is not a good thing. Duplicatedts represent rework when things
change. Too much duplication might lead to enougiitia to make a change seem too
costly.

Referring back to the transform priority premigé://cleancoder.posterous.com/the-
transformation-priority-premigethe recommendation is to pick automated cheuds t
will choose simple code changes over more compbebe changes. Based on that, we
want to either consider one of the provided examptecreate another example that will
help us. We currently have an empty implementatioenter(), so something that will

Version: 0.3a 135 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

force us to grow the implementation of enter() #rat also make sense to for the other
operators seems to be warranted.

In an earlier discussion we noted that the mostintdyg entered value was on the right
side of the operator while the previously enteralli® was on the left side. What if we
simply write that test? We will enter two valueslanake sure we can get back those two
values.

Here is one such test:

TEST(RpnCalculatorShould, ReturnValuesInReverseOrderOfEntry) {
calculator->enter(30);
calculator->enter(4);
LONGS_EQUAL(4, calculator->getX());
calculator->drop();
LONGS_EQUAL(30, calculator->getX());

}

This is OK, but notice that it also forces us tvaduce drop. That might be OK, let’s see
what we can do to make this work:

Add member function declaration to RpnCalculator.h
void dropQ);
Update enter() and drop()

void RpnCalculator::enter(int value) {

x = value;

3

void RpnCalculator::drop() {
x = 30;

}

Try this, you will see the following execution résu

OK (3 tests, 3 ran, 4 checks, @ ignored, @ filtered out, 1 ms)

Not quite enough. However, what if we simply wiite example for drop? Doing so will
force drop to become more complicated; maybe italglo force us to remember all the
values entered as well.

49 Drop
Here’s an automated example for drop:

TEST(RpnCalculatorShould, SupportDroppingValues) {
calculator->enter(5);
calculator->enter(3);
calculator->enter(l);
calculator->drop();
LONGS_EQUAL(3, calculator->getX());

Version: 0.3a 136 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.9.1

This automated check fails. Also, it will be haodake this work without doing some
“real” work. In fact the work we’ve been doing mat. Once you’ve been practicing TDD
for some time, you’ll probably agree. Even so, thiekes things more interesting.

Notice that we enter several values but we onlgestioe last. That's a clue for what we
could do next. Convert our single value, x, intoagnaalues, some kind of collection.
That seems like not too much of a leap. We neelbtilhat in such a way as to keep
existing tests passing, get the failing test tes@asd we don’t want to spend too much
time doing it.

Before we jump in and change it, what collectioodtd we use? The values need to
come out in the reverse order entered. That suggestack. Conveniently, C++ has a
stack class, so we can use that.

Changing from a simple variable to a collectionnsgdike refactoring. We have a failing
test. Refactoring with a failing test is frownedunpas we discuss elsewhere. So before
we start making that change, let’s first “remova’sttest by replacing TEST with
IGNORE_TEST:

IGNORE_TEST(RpnCalculatorShould, SupportDroppingValues) {
Now we have all passing tests and we are readiyange our implementation.
First introduce the stack

Here’s an updated RpnCalculator.h introducing theks Notice that the x attribute is
still there. When we are done, we’ll remove it.

#include <stack>

class RpnCalculator {
public:

private:
typedef std::stack<int> RpnStack;
RpnStack values;
int x;

Now we can update all of the existing methods ®hth the stack and x:

void RpnCalculator::enter(int value) {
x = value;
values.push(value);

}

void RpnCalculator::add() {
X = 34;
values.push(34);

3

void RpnCalculator::subtract() {
X = 26;
values.push(26);

Version: 0.3a 137 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

}

void RpnCalculator: :drop() {
x = 30;
values.pop(Q);

Run your automated checks, verify that everythgngassing with one ignored test:
Hooc

OK (4 tests, 3 ran, 4 checks, 1 ignored, @ filtered out, 1 ms)

Now you can remove X from the header file and setite; you'll also need to update
getX() to return the top of the stack:

RpnCalculator.cpp minus x member data
RpnCalculator: :RpnCalculator() {
3

RpnCalculator: :~RpnCalculator() {
}

void RpnCalculator::enter(int value) {
values.push(value);

void RpnCalculator::add() {
values.push(34);
3

void RpnCalculator: :subtract() {
values.push(26);

}

void RpnCalculator: :drop() {
values.pop(Q);

int RpnCalculator::getX() const {
return values.top(Q);
}

Interestingly, if you simply update the INGORE_TE®Ibe a TEST again and execute
your tests:

OK (4 tests, 4 ran, 5 checks, @ ignored, @ filtered out, @ ms)
That worked out pretty well.

Version: 0.3a 138 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.10 Getting Factorial Working

We only have one example for factorial: 5 -> 12BeTactorial of 0 is 1. For anything
less than 1, we do not have any examples. Forutmopes of this example, we’ll say that
anything less than 0, the result is simply consurhisnle’s a sequence of tests for those
examples:

TEST(RpnCalculatorShould, CalculateTheFactorialOf5As120) {
calculator->enter(5);
calculator->factorial();
LONGS_EQUAL(120, calculator->getX());

}

To get this to pass we’ll update the header file:
void factorial();
And add a member function definition to the source:

void RpnCalculator::factorial() {
values.push(120);
}

Not to worry, the next text makes us do a littlerenavork:

TEST(RpnCalculatorShould, CalculateTheFactorialOf@Asl) {
calculator->enter(0);
calculator->factorial(Q);
LONGS_EQUAL(1, calculator->getX());

3
At this point, we can simply write a simple facanimplementation:

void RpnCalculator::factorial() {
int operand = values.top();
int result = 1;
whileCoperand > 1)
result *= operand--;
values.push(result);

}

And finally, what happens if the value is negative?

TEST(RpnCalculatorShould, ConsumeValueForFactorialOfNegative) {
calculator->enter(-4);
calculator->factorial();
LONGS_EQUAL(@, calculator->getX());

}

Before looking at the implementation, why 0? Rementbat the calculator always has
values. The real calculator has 4 hardware regisédirinitially O (or whatever value they
had when you last used the calculator). So theralarays values. This calculator is
brand new and only had ever had a single valueeht&herefore, upon consuming that
value, there should be “no entered numbers”, whielans the calculator will have only
Os available.

Here’s one way to do this:

Version: 0.3a 139 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

void RpnCalculator::factorial() {
int operand = values.top();
values.pop();
if (operand >= @) {
int result = 1;
while (operand > 1)
result *= operand--;
values.push(result);
}
}

int RpnCalculator::getX() const {
if(values.size() > @)
return values.top(Q);
return 0;

}

In the factorial() method, we actually consumehkie entered by calling values.pop().
However, this leaves the stack empty for our mesemt test. If you simply run the test,
it will fail in some way that may not be obviousturns out that if you call top() on an
empty stack, the method throws an exception.

411 Revisit Add

Now that we have finally written an actual implertagion for factorial, let’s revisit the
other operators before adding new ones. First\Adhave another example for add,
here’s a test for that example:

TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {
calculator->enter(4);
calculator->addQ);
LONGS_EQUAL(4, calculator->getX());

}

This test fails because the underlying add() hadks the result to 34. It is time to fix
this. However, to fix this we’ll have to considehat factorial did: it called top() and
pop() for one operand, so we'll need to do thataidd as well:

void RpnCalculator::add() {
int vl = values.top(Q);
values.pop();
int v2 = values.top(Q);
values.pop(Q);
values.push(vl + v2);

}

Whoops, this fails. Problem is, top() and pop()lye@eed to be guarded like in the
getX() method. Rather than calling top(), we calhgetX() and then guard pop():

void RpnCalculator::add() {
int vl = getX(Q);
if(!values.empty())
values.pop(Q);
int v2 = getX(Q);

Version: 0.3a 140 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

if(!values.empty())
values.pop(Q);
values.push(vl + v2);

3
This works, which is a qualified success.

4.11.1 Feature Envy

412

Looking at the add() method it makes 4 direct dallgalues, which is a stack.
Furthermore, it makes two calls to getX(), whichke®s2 calls to the stack as well. All
told, that's 8 calls to a stack from add(). You easume that we’ll have to do the same
thing in subtract(), factorial(), etc., all opeaats that use the stack.

When one method makes heavy use of data or meth@d®ther object, this is called
feature envylfttp://c2.com/cgi/wiki?FeatureEnvySmkelMartin Fowler describes feature
envy as “...a method that seems more interesteal@sa other than the one itis in.”
This seems to fit that description well. How canfixet? Luckily, Martin Fowler has
something to say about that as well. His first reoceendation is move method. That is,
move the method into the target class.

What does this mean for us? It means we want tcerttoy check for size into the stack.
But the stack is not our class; we are using inftbe standard library. Fine, we will
create our own stack class that is built upon taedard stack class. That's the next
section.

Resolving Feature Envy: Writing Our Own Stack

This is not a surprising result to me. Collectitasses are handy and they are also a
common source of duplicated code. Why? Collectguth as the stack class can only
have general behavior. That behavior should belsianpd complete. The stack is a good
example. You can push until it is full, which talekt of values. You can pop values off
it or look at its top only when in has values qgntf size is not zero. That's a typical stack
data type behavior, but we are using a stack téeiment something that does not behave
exactly like a stack. In our case, the valuesastih, first out (LIFO) like a stack. Unlike
a stack, however, we always have values. The ilempty() doesn’t really apply. When
a user has not entered any values onto a calcutagcalculator has 0s.

This discrepancy between our domain and what buittasses have for default behavior
is actually the norm in my experience. | saw orggqat where an effort to remove
duplication just within individual source files ass a 15,000,000 million line source
base of C++ resulted in a 30% reduction of code.sldst over half of that reduction
related to the use of collections. Does that medleations are bad? No, it just means
that they serve as a starting point only.

In our case, we want something that behaves lgtack but one that is never empty. We
can do this in a number of ways:

e Roll our own implementation
e Use an existing one

Version: 0.3a 141 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

RpnStack std::stack

e Inherit from an existing one

std::stack

RpnStack

The first option is obvious, create the solutiamirscratch. The next two options are
more typical. The last option, inheritance, is nallsnthe one I'd choose last. Inheritance
is the single highest form of coupling in C++.Hete are methods in the base class you
do not want exposed, you have other options sughnaiected or private inheritance, but
| do not use these language features. If, for s@ason, you want to change method
signatures, you might find it hard to do so (depeg@n the change). In this case, the
base class does not expose any virtual methoaesoif we do use inheritance, we
won’'t want to pass around a reference or pointéneédase class when using the derived
class. Inheriting from concrete class such asdlscause problems such as calling the
wrong method.

The middle option, an RpnStack holds onto an irtganf an std::stack, is an example of
using delegation instead of inheritance has meeation the book Design Patterns.
There’s no chance to confuse an RpnStack withdirs&ick because the types would not
be compatible, whereas using inheritance, they dvbal So with no other reason, and in
general, I'd pick the second option over the tloipdion.

In this case, however, I'm going to demonstratetiirel option to show how to inherit
from template classes and also how to invoke bss-enethods.

4.12.1 First test: top works on an empty stack

Before jumping in, we’ll use tests to verify ourptamentation. Then we’ll go back and
update the RpnCalculator to use our custom RpnSkésie’s a first test:

RpnStackShould.cpp
#include <CppUTest/TestHarness.h>

#include "RpnStack.h"

TEST_GROUP(RpnStackShould) {
RpnStack *values;
void setup(Q) {
values = new RpnStack;

}

Version: 0.3a 142 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

void teardown() {
delete values;
}

b3

TEST(RpnStackShould, HaveATopAfterCreation) {
LONGS_EQUAL(Q, values->top());
}

To get this to compile, link and pass:
RpnStack.h

#pragma once
#ifndef RPNSTACK_H_
#define RPNSTACK_H_

#include <stack>

class RpnStack : public std::stack<int> {
public:

RpnStack();

virtual ~RpnStackQ);

int top() const;

private:
RpnStack(const RpnStack&);
RpnStack& operator=(RpnStack&);

I

#endif
RpnStack.cpp
#include "RpnStack.h"

RpnStack: :RpnStack() {}
RpnStack: :~RpnStack() {}

int RpnStack::top() const {
if(lempty(Q)
return std::stack<int>::top(Q);
return 0;

}

Line 8 demonstrates how to call a base-class metodversion of top() returns O if the
stack is empty otherwise it returns whatever treeldass top() method would have
returned.

To get pop() well behaved is more of the same:

TEST(RpnStackShould, HaveASizeOf@AfterPopWhenEmpty) {
values->pop();
LONGS_EQUAL(Q, values->size());

}

Version: 0.3a 143 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

If you run this test without updating RpnStackaiis:

. ./RpnStackShould.cpp:21: error: Failure in TEST(RpnStackShould,
HaveASizeOf@AfterPopWhenEmpty)

expected < 0 0x0000000000000000>

but was <-1 Oxffffffffffffffff>
Now update pop() as well, add a method declaration:
void popQ);
And definition:

void RpnStack: :pop() {
if(lempty())
std: :stack<int>::pop();
}

4.12.2 Update RpnCalculator
Now simply update the RpnCalculator header filese RpnStack:
#include "RpnStack.h"

class RpnCalculator {

private:
RpnStack values;
Now it should not be necessary to check the sigevhere in the source file:

void RpnCalculator::addQ) {
int vl = getX(Q);
values.pop(Q);
int v2 = getX(Q);
values.pop();
values.push(vl + v2);

}

int RpnCalculator::getX() const {
return values.top(Q);

}

And you may have noticed that factorial() called(avithout checking the size. There
was a bug there, we just had not yet noticed it.

4.13 Finish subtract

Now we can write a test for subtract that starth yuist one value instead of two on the
stack:

TEST(RpnCalculatorShould, SubtractWhenTheresASingleValue) {
calculator->enter(4);
calculator->subtract();
LONGS_EQUAL(-4, calculator->getX());

}

Version: 0.3a 144 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

This test fails when you run it. Now you can updaee subtract implementation. Try just
copying add() and replacing the + with -:

void RpnCalculator::subtract() {
int vl = getX(Q);
values.pop(Q);
int v2 = getX(Q);
values.pop();
values.push(vl - v2);

}
Run the tests:

../RpnCalculatorShould.cpp:72: error: Failure in
TEST(RpnCalculatorShould, SubtractWhenTheresASingleValue)

expected <-4 Oxfffffffffffffffc>
but was < 4 0x0000000000000004>

../RpnCalculatorShould.cpp:26: error: Failure in
TEST(RpnCalculatorShould, SubtractTwoNumbers)

expected < 26 0x000000000000001a>

but was <-26 Oxffffffffffffffeo>

Not only did that not work, it caused another tedtil! In this case we need to reorder
the operands:

valuespush(v2 - v1);

That fixes it. This makes sense. Subtract carestdhe order of operands whereas add
does not. But this gives us something ugly: twohoes that are almost duplicates of
each other:

void RpnCalculator::add() { void RpnCalculator::subtract() {

int vl = getX(Q); int vl = getX(Q);

values.pop(); values.pop(Q);

int v2 = getX(Q); int v2 = getX(Q;

values.pop(); values.pop();

values.push(vl + v2); values.push(v2 - vl);
} }

If this were the only duplication, then it might ble. We have multiply and divide as

well for our first release. They will be exactlyeteame as well. Four copies of the same
code is not a good idea. It leads to duplicatechteaance. It is also error prone. For
example, what happens if someone forgets to popdbend value? The operation will
appear to work but the next operation will be Weth the wrong values on the stack. This
is a problem with attributes in general. Everyibttte is a means of one method causing
another method to fail. In this case, the methodsat exact duplicates, which means
we might miss it as well as tools that look for licgted code.

Version: 0.3a 145 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.14 Dreaded Duplication or DRY

A fundamental principle of software developmerD@n’t Repeat Yourself — DRY. We
have duplication between add and subtract, but menerally we’ll have this problem
across all operations that consume two values eodlipe a single value.

There are several ways to fix this problem, heeeagiew ideas:

e Ignore it, we're paid by the number of lines so ldgtion is a good thing
e Write a utility method that does everything butr+and pass in a pointer to a
function which does just the + or —, e.g.:
void binaryOp(RpnStack &values, int (*pf)(int, int)) {
int vl = values.top(Q);
values.pop();
int v2 = values.top(Q);
values.pop(Q);
int result = pf(v2, vl);
values.push(result);
3
int addIt(int lhs, int rhs) {
return lhs + rhs;
}
void RpnCalculator::add() {
binaryOp(values, addIt);

e Create a class that does + or — instead of a pdmte member function:
class BinaryOperator {
virtual int calculate(int lhs, int rhs) = 0;
5
class Add : public BinaryOperator {
int calculate(int lhs, int rhs) { return lhs + rhs; }
5
class Subtract : public BinaryOperator {
int calculate(int lhs, int rhs) { return lhs - rhs; }
5
void binaryOp(RpnStack &values, BinaryOperator &op) {
int vl = values.top(Q);
values.pop(Q);
int v2 = values.top(Q);
values.pop(Q);
int result = op.calculate(v2, vl);
values.push(result);

}

This last option has a name; it is called the TatepMethod Pattern. Its name is
unfortunate as it was named before template metiveds added to C++. Even so, this
last option is moving in a good direction. Howeveatice that we’ll have to do
something special for each of the different kintlegerators. The method binaryOp
above does not belong to RpnCalculator. In facteihonstrates feature envy. In this
case, however, it does not make sense to movedtieohinto RpnStack as in the last
case with top() and pop(), but we can still lookeatture envy for ideas. There are three
suggestions to resolve feature envy:

Version: 0.3a 146 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

e Move method, which is what we did with RpnStack
e Extract method, which is what binaryOp is an exanggl
e Extract class, which is what we are going to do

The calculator has a number of operations. Eachatipa:

e Consumes a number of operands (0 or more)
e Optionally performs a calculation
e Produces a number of operands (0 or more)

We need to put the responsibility where it beloagd it best belongs with the operation.
Feature envy suggests extracting a class, andajessignment of responsibility
suggests what that class should do. We can al&adoine GRASP patterns for
inspiration. One of the GRASP patterns is “inforimatexpert” — put the responsibility
with the thing that has the data. This does nottxanatch because we are not talking
about who has the data so much as the thing tredts¢he variation — the operation.
Another GRASP pattern might match better: protegtathtion — put the responsibility
where it varies.

Notice that we can do this for each of our operetidf each of our operations becomes a
class and we treat them as variations on a getienale, then we are using a design
pattern known as the Strategy Pattern. This migbit something like this:

Math
Operation

A\
| |

Add Subtract Drop

This is a good intermediate step. This alone do¢saive the duplication problem. If we
combine this with the example of the binary operate get this:

Math
Operation

i

Binary
Math Drop
Operation

Add Subtract

Wow, that is a lot to do. How can we possibly dis thhile keeping our tests passing?
4.14.1 Extract Classes

We start by extract classes, one for each exisioggation. Notice that we’ll be doing
this by refactoring. When we are done, we mightsater moving automated checks
around.

Version: 0.3a 147 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Since we are taking an existing member functionvaedvant to extract it to another
class, a good first start is to simply extract@ldunction and get it to compile:

void addIt(RpnStack &values) {
int vl = values.top(Q);
values.pop(Q);
int v2 = values.top(Q);
values.pop();
values.push(vl + v2);

}

void RpnCalculator::add() {
addIt(values);
3

Now that we’ve made this method have no direct dépecy on the RpnCalculator class,
we can easily extract a class called Add right ftbemadd method:

Add.h

#pragma once
#ifndef ADD_H_
#define ADD_H_

class RpnStack;

class Add {
public:

void perform(RpnStack &values);
};

#endif

Notice the name change from addlIt to perform. Tle¢hwd name makes more sense for
all operations.

Add.cpp
#include "Add.h"

#include "RpnStack.h"

void Add: :perform(RpnStack &values) {
int vl = values.top(Q);
values.pop(Q);
int v2 = values.top(Q);
values.pop(Q);
values.push(vl + v2);

3
And a final update to RpnCalculator:

#include "Add.h"

void RpnCalculator::add() {
Add op;
op.perform(values);

Version: 0.3a 148 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

}

All tests should pass.
4.14.2 Keeping it the same

Now that we have one example of what all operatwitidook like in the Add class, we
can extract an interface and then use that asatbestfor the other operations. Here is
such an interface extracted:

MathOperation.h

#pragma once
#ifndef MATHOPERATION_H_
#define MATHOPERATION_H_

class RpnStack;

class MathOperation {
public:
virtual ~MathOperation() = 0;
virtual void perform(RpnStack &values) = 0;

}s

#endif

The destructor is a so-called special member fanctiVe’ll need to define it:
MathOperation.cpp

#include "MathOperation.h"

MathOperation: :~MathOperation() {
}

Now that this interface exists, we can update adgse it:
#include "MathOperation.h"
class Add : public MathOperation {
public:
void perform(RpnStack &values);
i
4.14.3 Updating Subtract
Making the change for Subtract is nearly a copad:
Subtract.h

#pragma once
#ifndef SUBTRACT_H_
#define SUBTRACT_H_

#include "MathOperation.h"

class Subtract : public MathOperation {
public:

Version: 0.3a 149 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

void perform(RpnStack &values);
};
#endif
Subtract.cpp
#include "Subtract.h"

#include "RpnStack.h"

void Subtract::perform(RpnStack &values) {
int vl = values.top(Q);
values.popQ);
int v2 = values.top(Q);
values.pop(Q);
values.push(v2 - v1);

}

RpnCalculator::subtract

#include "Subtract.h"

void RpnCalculator: :subtract() {
Subtract op;
op.perform(values);

4.14.4 Drop
The changes for drop follow the same pattern:
Drop.h

#pragma once
#ifndef DROP_H_
#define DROP_H_

#include "MathOperation.h"
class Drop : public MathOperation {

public:
void perform(RpnStack &values);
}s

#endif
Drop.cpp
#include "Drop.h"

#include "RpnStack.h"

void Drop: :perform(RpnStack &values) {
values.pop(Q);

Version: 0.3a 150 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

RpnCalculator::drop

#include "Drop.h"

void RpnCalculator::drop() {
Drop op;
op.perform(values);

4.14.5 Factorial

And finally, the changes for factorial are also siaene thing. Practicing class extraction
is a useful thing. You'll often do it in new devploent. It tends to be even more useful
when working with legacy code. You want to get fwoint where doing it is second
nature; practice, practice, practice.

Factorial.h

#pragma once
#ifndef FACTORIAL_H_
#define FACTORIAL_H_

#include "MathOperation.h"

class Factorial : public MathOperation {
public:

void perform(RpnStack &values);
}s

#endif
Factorial.cpp

#include "Factorial.h"
#include "RpnStack.h"

void Factorial::perform(RpnStack &values) {
int operand = values.top();
values.pop();
if (operand >= @) {
int result = 1;
while (operand > 1)
result *= operand--;
values.push(result);

}
}

4.15 Removing Duplication

Now we have enough in place to remove the dupboabetween add and subtract. While
this is overkill for 2 copies, we’re going to haveny more than 2, so this effort will be
time well spent.

We need a class that:
e Acquires two values from the stack

Version: 0.3a 151 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

e Defers the actual calculation to a subclass
e Stores the result

There are at least a few paths we could take tingehis done:

e Refactor — Copy code from Add or Subtract and chahg inheritance structure in
place. The existing tests will keep us on track.

e Check First — Develop a number of automated chewmie for each of the
requirements of this base class.

e Hybrid — Create the class using a copy of codevenité all of the tests we’ll need
anyway.

Any of these ways will get us where we need tolg@lass people generally prefer the
check first approach, so that's what I'll go witérh.

4.15.1 It consumes two values
Here’s a quick recap of an earlier suggestion:
First, the BinaryOperator class:

class BinaryOperator {
virtual int calculate(int lhs, int rhs) = 0;
};
class Add : public BinaryOperator {
int calculate(int lhs, int rhs) { return lhs + rhs; }
};

Notice that in this simple hierarchy, the base<lasabstract and the derived class has
one method. The one method, calculate, has twornedess. Here's where we use it:

void binaryOp(RpnStack &values, BinaryOperator &op) {
int vl = values.top(Q);
values.pop(Q);
int v2 = values.top(Q);
values.pop(Q);
int result = op.calculate(v2, vl);
values.push(result);

}

The calculate() message is sent on line 6. Notiaethe object receiving the calculate()
message does not have access to the RpnStaclkyquisit parameters.

Here are our challenges:

e We are going to create an abstract class, how earheck an abstract class?

e The real subclasses don’t yet exist — that isAithé and Subtract do exist, but they do
not yet use the abstract base class.

e Even if these classes did exist, they do not ireggrhave access to the RpnStack, but
we want to check its size. Unfortunately, the whs#quence both consumes and
produces values, if we check the size, the cheridigect.

This is a common problem. It is one of the costmbéritance; testing extensions of
abstract classes can require more work. Howevecanereate a testing subclass to fix
the problem:

Version: 0.3a 152 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

<<abstract>>

Math
This is what we are
Operator creating, so it’s what

we want to check.

<<abstract>>
Binary Math

We will write

Operator automated checks
against a test-only

__| class to check things
Testing
Subclass

What does this offer?

e We can create the testing subclass before chaAgldgr Subtract; thereby isolating
the work until we have what we think is a finishgrdduct.

e We can give our testing subclass access to thirajsatnormal production class
would be able to access, opening up possibilitiegeasonably available to a
production subclass.

However, it does have some cost:

e |t takes getting used to — this is resolved withetiand experience.

e It might seem like we are testing test code as spgpdo production code. If that's
actually the case, then we’ve failed in our effosts we must be vigilant to this
possibility.

e We have to create a test-only class, this mighindée work. There are some tools
for doing this in C++; some free, some commer&ather that introduce more
moving parts, we’'ll just create them by hand.

Even with these disadvantages, this is still adsgition. More importantly, this is
something you'll use often in adding automated &kdo legacy code, so it's good to
practice this technique.

Here’s our first test for this new BinaryMathOpévatclass:
#include <CppUTest/TestHarness.h>

#include "BinaryMathOperation.h"
#include "RpnStack.h"

TEST_GROUP(BinaryMathOperationShould) {
RpnStack *values;
void setup() {
values = new RpnStack;
values->push(4);
values->push(2);

void teardown() {
delete values;

Version: 0.3a 153 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

1

}

struct BinaryMathOperationSpy : public BinaryMathOperation {

};

BinaryMathOperationSpy(RpnStack &values)
: values(values), size(-1) {}

int calculate(int lhs, int rhs) {
size = values.size();
return 13;

}

RpnStack &values;

int size;

TEST(BinaryMathOperationShould, ConsumeTwoValues) {

}

BinaryMathOperationSpy spy(*values);
spy .perform(*values);
LONGS_EQUAL(Q, spy.size);

Line

Description

01-
16

Mostly boilerplate code. Create a test group. Thests will need an RpnStac
So store it as a pointer, allocate and releasetita TEST_GROUP.
Additionally, put two known values on it. Thesewas will be used to check
that the right values are getting sent in the abmmeder to the eventual
subclasses.

==

18

Introduce a testing subclass. This is callegyal#&cause it will be watching
what happens and recording. The automated chetksalthis class to record
what happens and then verify that what was supposkdppen actually
happened. As a testing subclass it must inhernih fBanaryMathOperation — th
class we are really trying to create. Rather themaiclass use a struct so tha
everything is public by default.

11

t

19

This is a constructor. Notice that this clasgires an instance of an RpnStag
This is the special sauce we add that a normalyostaxh subclass would not
have. Doing this allows this testing subclass tmre things that normally
would not be accessible to a production subclass.

20

Use member-wise initialization to hold onto #t@ck and initialize a size
attribute to -1. Since -1 is never a valid stadesit represents a good initial
value. We could have used #include <limits.h> @%@ IMIN instead.

21

Subclasses have an extension point called eddctiiat takes two integer
parameters.

22

Our implementation will record the size of ti@ck just after the call to
calculate() from the abstract base class.

23

This method has a return value so | pick omaypfavourite numbers 13.

29

Finally an automated check.

30

Create the spy and give it a reference to theSRyek created just before this

code executes (remember, it is allocated in thgpgemethod and released in

Version: 0.3a

154 Author: Brett L. Schuchert (schuchert@yahoo.com)

k?

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Line | Description
the teardown() method). The setup method always twd values on it, so we
know at this point the size is 2. The test as emijuarantees/controls that.

31 Call perform on the base class. Note: we armegrp verify that the perform
method is well behaved. Even though we are seralimgssage to a testing
subclass, the method we invoke is in the base.dfdssare actually exercising
code in the base class, which is our ultimate goal.

32 The stack started with a size of 2. The spyrocthe size upon entry into the
calculate() method. Presumably, the lhs and rharpeters will be the values
removed from the stack, but that is another autechaeheck we have yet to
write. If the size is 0, then, apparently, two \edwere taken off the stack

Now that we have this complex test written, we htaverite some code to get it to
compile:

BinaryMathOperation.h

#pragma once
#ifndef BINARYMATHOPERATION_H_
#define BINARYMATHOPERATION_H_

#include "MathOperation.h"

class BinaryMathOperation: public MathOperation {
public:

void perform(RpnStack &values);

virtual int calculate(int lhs, int rhs) = 0;

b
#endif

BinaryMathOperation is our intermediate, abstrasebclass. All operations that take
two parameters and produce a single result wikiitlirom this base class. Examples
might include: add, subtract, multiply, divide,ddban, greater than, y to the x, etc. Line
9 is the method all MathOperation classes musewfihat's what we are checking now.
All subclasses will ultimately need to write a edéte method to do the actual work of
calculation. Notice that this is a pure virtual hred. There is no reasonable default
behavior and we want subclasses to write this meifibetion. That is exactly what pure
virtual methods do, along with making the classlitabstract.

To get it to link:
#include "BinaryMathOperation.h"

#include "RpnStack.h"

void BinaryMathOperation: :perform(RpnStack &values) {
}

Now that the code compiles and links, you can cliedee that the automated check is
failing. Next, to get it to pass:

Version: 0.3a 155 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

void BinaryMathOperation: :perform(RpnStack &values) {
values.pop(Q);
values.pop(Q);
calculate(@, 0);

}

This is enough code to get our first automated kipassing. We could have copied code
from Add, | somewhat arbitrarily chose not to batrd) so would have been fine. So long
as we verify all of this method’s responsibilitiegh automated checks, we have lots of
options on getting to the final version.

4.15.2 It calls an extension point with the correct parameters

One of the responsibilities of our method is taialty call an extension point,
calculate(). We have done this indirectly becausdast check would fail if it were not
called. Even so, we need to verify that the pararsedre correct.

The setup() method pushes two values, 4 and 2vdle pushed first should be treated
as the left hand side value while the value pusieednd should be treated as the right
had side value. We can make a few changes to astimextest subclass to support this
idea or we can create an entirely new testing sisiscl

If I use a language with better tool support driive some kind of library that supports
making these so-called test doubles (though thmarlds are typically called mocking
libraries), then | make more fine-grained classesa per-test basis. Since | am and
writing my test classes by hand I'll tend towardsrenchunky testing classes. With that
in mind, here’s an updated version of our testungctass:

struct BinaryMathOperationSpy : public BinaryMathOperation {
BinaryMathOperationSpy(RpnStack &values)
: values(values), size(-1), actualLhs(@), actualRhs(@) {}
int calculate(int lhs, int rhs) {
size = values.size(Q);

actualLhs = lhs;
actualRhs = rhs;
return 13;

}

RpnStack &values;

int size;

int actuallhs;
int actualRhs;

b
This update introduces three changes:

e Introduction of two attributes, actualLhs and atiins

e Both of those new attributes are initialized to O

e Both of those attributes are updated in the caleuteethod with the actual
parameters passed in at runtime.

Notice that these changes leave the class workiegdr the existing test. Now a test to
use this updated class:

Version: 0.3a 156 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

TEST(BinaryMathOperationShould, SendTwoParametersInCorrectOrder) {
BinaryMathOperationSpy spy(*values);
spy.perform(*values);
LONGS_EQUAL(4, spy.actuallLhs);
LONGS_EQUAL(2, spy.actualRhs);

}

Run this test, it fails. Now to update the prodmetcode to passing:

void BinaryMathOperation: :perform(RpnStack &values) {
int rhs = values.top(Q);
values.pop(Q);
int lhs = values.top(Q);
values.pop(Q);
calculate(lhs, rhs);
}

Back to all checks passing.
4.15.3 It stores the result

Finally, the result returned from calculate musstmed. To get the original version of
the testing subclass to compile without warninlgs,dalculate method had to return a
value. | chose 13, so now we can check for that:

TEST(BinaryMathOperationShould, StoreCalculatedResult) {
BinaryMathOperationSpy spy(*values);
spy.perform(*values);

LONGS_EQUAL(13, values->top());

}

This test initially fails, a quick update to penfu() fixes it;

void BinaryMathOperation::perform(RpnStack &values) {
int rhs = values.top(Q);
values.pop();
int lhs = values.top(Q);
values.pop(Q);
int result = calculate(lhs, rhs);
values.push(result);

3
Success.
4.15.4 Updating Add and Subtract
Now we can update Add and Subtract, one at a tvhée keeping the tests passing:
Add.h
#include "BinaryMathOperation.h"
class Add : public BinaryMathOperation {
public:

int calculate(int lhs, int rhs);
3

Version: 0.3a 157 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Add.cpp
#include "Add.h"

int Add::calculate(int lhs, int rhs) {
return lhs + rhs;
}

Check that your checks are still passing.
Subtract.h
#include "BinaryMathOperation.h"
class Subtract : public BinaryMathOperation {
public:
int calculate(int lhs, int rhs);
b
Subtract.cpp
#include "Subtract.h"

int Subtract::calculate(int lhs, int rhs) {
return lhs - rhs;
}

Check your checks are still passing.

4.15.5 Not updating drop

4.16

Notice that drop is not included in this updataldes not behave the same as Add or
Subtract. Also, there is no need for an intermedoaise class for it. The hierarchy is
asymmetrical — this is a sign of a healthy hieraréfew problems collapse into a fully-
balance tree. If we find duplication later than raats another intermediate base class
we’ll add it then.

All those methods

The next thing might seem like adding multiply atidde. However, notice how the API
of this class continues to grow? It is an open-drdass that has too much responsibility.
Now is a good time to lock down the API. We know ave going to continue to add new
operations. The API and underlying class keepsghgnlt is time to close this class to
changes but open up the system to adding new opesagasier. We already have much
of the required infrastructure in place. We needdame up with how we want the new
class to look, using an automated check, and thgrata tests over to that new approach
— preferably one at a time.

4.16.1 An example based migration

We’'ll begin by copying an existing test and makinigok like we want it to look. Notice
we are not getting rid of the old test. We wantht® new and old to coexist until we have
the new in place.

TEST(RpnCalculatorShould, AddTwoNumbers_v2) {
calculator->enter(30);
calculator->enter(4);

Version: 0.3a 158 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

calculator->execute("+");
LONGS_EQUAL(34, calculator->getX());
}

This won’t compile yet because the method doe®rist. Notice the name. It needs to
be unique. Once this test works, | will remove dhiginal test. In general, refactoring
starts with a “copy” operation and not a “move” gi®n.

To get this to compile, link and pass:
Declare new member function

#include <string>

class RpnCalculator {
public:

void execute(const std::string &operatorName);
And a “complete” implementation — complete forthk tests requiring it that is:

void RpnCalculator::execute(const std::string &operatorName) {
addQ;

}
Verify that this gets the test passing and then:

e Delete the original test
e Rename the new test by removing the _v2

Now update the test “AddWhenTheresASingleValuelise the new approach:

TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {
calculator->enter(4);
calculator->execute("+");
LONGS_EQUAL(4, calculator->getX());

Now that we have migrated all uses of add() wereamove it but caution. If we were in
a legacy setting where the class we are changiagegd by other applications in a library,
you cannot so easily remove public methods. Incase, we know all the uses of our
class, so we have the freedom (luxury?) of beirlg tlochange its public API. In a
legacy environment, it's more of a migration — ouydo it all yourself. In any case, let's
make that transition after we've completed writthg execute() method.

4.16.2 Migrating the subtract() method

This is more of the same. However, we could chamgexisting test rather than copy.
The method we want to call is already there, wewast to use it. So updating the test in
place seems OK to me:

TEST(RpnCalculatorShould, SubtractTwoNumbers) {
calculator->enter(30);
calculator->enter(4);
calculator->execute("-");
LONGS_EQUAL(26, calculator->getX());
}

Version: 0.3a 159 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Now you have a failing test, time to fix it:

void RpnCalculator::execute(const std::string &operatorName) {
if(operatorName == "+")
addQ);
else if(CoperatorName == "-")
subtract(Q);
}

And like that, we are back to passing. While | dicinge a test in place, notice | only
changed one. This is a simple enough example wid change everything in one fell
swoop. However, you tend to continue as you s$artjo better time than the present to
do things carefully. In your real projects the codl be more complex and probably less
familiar, so learning how to do things carefullgrn the beginning is the way to go.

There is only one more test using subtract(), SubtvhenTheresASingleValue. Update
it and get back to passing.

4.16.3 Finish the transformation

Continue this until you've also updated the tesiag drop() and factorial(). You'll end
up with something like the following:

void RpnCalculator::execute(const std::string &operatorName) {
if(operatorName == "+")
addQ);
else if(operatorName == "-")
— ll!ll)

subtract(Q);

else if(operatorName
factorial(Q);

else if(operatorName == "drop")
dropQ);

}

Now you can safely make the methods add(), sul}rdattorial(), drop() private. But do
those methods even need to be there in the fisgtZcHow about we “inline” those
methods — simply copy their contents into the etefgunethod and remove them
altogether:

#include "Add.h"
#include "Subtract.h"
#include "Drop.h"
#include "Factorial.h"
void RpnCalculator::execute(const std::string &operatorName) {
if (operatorName == "+") {
Add op;
op.perform(values);
} else if (operatorName == "-") {
Subtract op;
op.perform(values);

} else if (operatorName == "!") {
Factorial op;
op.perform(values);

} else if (operatorName == "drop") {

Version: 0.3a 160 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Drop op;
op.perform(values);
}
}

Notice that we have much of the work necessargtommodate polymorphism across a
hierarchy of math operations but we are not actuading it? What is more important?
Getting an ever-growing API locked down or impraythe internal design? I'm not sure
there’s a clear winner. My preference is lockingvddhe API first.

4.17 Type un-safe

A nice thing about the perform method is thatmgslifies the API, so problem solved,
right? The first rule of solving problems accordingWeinberg is “Every solution
introduces problems.” What happens when you attéongxecute an unknown
operation? In our case, the code silently doesimgth prefer “fail-fast”, so let's add a
check that expects such a situation to generatenownMathOperationException”:

The Test

#include "UnknownMathOperationException.h"
TEST(RpnCalculatorShould, ThrowAnExceptionForUnknownOperation) {

try {
calculator->execute("--unknown--");
FAILC"Should have thrown UnknownMathOperationException");
} catch(UnknownMathOperationException &e) {
CHECKCD);
}
}

And to get it to compile:
UnknownMathOperationException.h

#pragma once
#ifndef UNKNOWNMATHOPERATIONEXCEPTION_H_
#define UNKNOWNMATHOPERATIONEXCEPTION_H_

#include <exception>

class UnknownMathOperationException: public std::exception {
public:

UnknownMathOperationException();

virtual ~UnknownMathOperationException() throw();

b
#endif
UnknownMathOperationException.cpp

#include "UnknownMathOperationException.h"

UnknownMathOperationException: :UnknownMathOperationException() {

}

Version: 0.3a 161 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.18

UnknownMathOperationException: : ~UnknownMathOperationException() throw
Of
}

To get this test to pass, we need to update theuexenethod:

#include "UnknownMathOperationException.h"
void RpnCalculator::execute(const std::string &operatorName) {
if (operatorName == "+") {

} else {
throw UnknownMathOperationException();
}

}

This is an example of closing down an API to chamagethe expense of runtime
checking. This is often a hard sell. Try it and geéfits. It is often overkill. If you have
a small number of named methods, 5, 10, maybe bavlarger APl makes sense.
Eventually, the changing API becomes a burdenuhrcase we only have 4, but we
know two things:

e There are more on the way — even in this firste¢ask”
e We are going to want macros as well; this API suspiive execution of macros in
the same way as the built-in operations, which avatated requirement.

Long Method

A long method might be one that has a large nurobknes. While the execute() method
is not long in terms of number of lines yet, itMié. Another interpretation of Long
Method is one that exists at different levels dftediction. Finally, a method that does
three different things is long even if it doesréwve a lot of lines:

e Mapping — a string to a MathOperation
e Construction — instantiates a MathOperation toqrerfthe work
e Delegation — sends a message to a MathOperatiactually do the work

Independent of that, however, is this notion of piag from a string to an object. This is
a common problem that arises at the boundary géts. The RpnCalculator class is a
controller object; it waits for systems events @ssages from actors. There is yet
another design pattern to solve this exact probRstract Factory
(http://en.wikipedia.org/wiki/Abstract_factory patt¢ The abstract factory pattern
typically serves to build a suite of objects fagigaen environment. In our case we want to
select from one of many objects for a string. We mw@ve towards such a solution by
first extracting the part of the method that ddesdelection from the part that does the
execution. Once we’ve done that, we can extratassdo do that work.

Here is a stab at such a refactoring:
Copy the entire method and make it a function:

void findOperationNamed(const std::string &operatorName) {
if (operatorName == "+") {
Add op;
op.perform(values);

Version: 0.3a 162 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

} else if (operatorName == "-") {
Subtract op;
op.perform(values);

} else if (operatorName == "!") {
Factorial op;
op.perform(values);

} else if (operatorName == "drop") {
Drop op;
op.perform(values);
} else {
throw UnknownMathOperationException();
}

}

This won't compile as it refers to values, whichmember data. However don’'t want to
both select and perform, so remove all referenzéisat member data:

MathOperation& findOperationNamed(const std::string &operatorName){
if (operatorName == "+") {
Add op;
return op;
} else if (operatorName == "-") {
Subtract op;
return op;
} else if (operatorName == "!") {
Factorial op;
return op;
} else if (operatorName == "drop") {
Drop op;
return op;
} else {
throw UnknownMathOperationException();
}
}

This function compiles with warnings (or maybe esre somewhat compiler dependent).
The code returns reference to temporary objecthdiirst project we saw a quick way
to get this working using the static keyword. Lettsthat here:

MathOperation& findOperationNamed(const std::string &operatorName){
if (operatorName == "+") {
static Add op;
return op;

} else if (operatorName
static Subtract op;
return op;

} else if (operatorName
static Factorial op;
return op;

} else if (operatorName
static Drop op;
return op;

} else {

- ") {

="1") {

= "drop") {

Version: 0.3a 163 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.19

throw UnknownMathOperationException();

}
}

Now we can update the execute() method to use it:

void RpnCalculator::execute(const std::string &operatorName) {
MathOperation &op = findOperationNamed(operatorName);
op.perform(values);

All checks should be passing. This method is nased to new operations. Meaning, as
new math operations are added, this code doeseedtto change. The code in the
extracted function does, but we’ll fix that as wélefore we do, however, it is time to
move that code into its own class.

A Concrete Factory

As written, the findOperationNamed() function catbme a member function simply by
copying it as is. You might be tempted to makestadic method, but do not. Generally,
static methods make writing automated checks miffieudt. Why? If you need to swap
one out at runtime for a particular check, it's possible in the language to do so. You
can link in a different version of the static mettand there are other things you can do
as well. Even so, what might seem convenient iéyraaking for trouble as the road to
hell (supporting legacy code) is paved with coneanes.

Here’s a simple extract class refactoring appleethat code:
MathOperationFactory.h

#pragma once
#ifndef MATHOPERATIONFACTORY_H_
#define MATHOPERATIONFACTORY_H_

#include <string>
class MathOperation;

class MathOperationFactory {
public:
MathOperationFactory();
virtual ~MathOperationFactory();
virtual MathOperation&
findOperationNamed(const std::string &name);
}s

#endif

MathOperationFactory.cpp

#include "MathOperationFactory.h"

#include "UnknownMathOperationException.h"
#include "Add.h"

#include "Subtract.h"
#include "Drop.h"

Version: 0.3a 164 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include "Factorial.h"

MathOperationFactory: :MathOperationFactory() { }
MathOperationFactory: :~MathOperationFactory() { }

MathOperation& MathOperationFactory: :findOperationNamed(
const std::string &operatorName) {
if (operatorName == "+") {
static Add op;
return op;

} else if (operatorName == "-") {
static Subtract op;
return op;

} else if (operatorName
static Factorial op;
return op;

} else if (operatorName == "drop") {
static Drop op;
return op;

} else {
throw UnknownMathOperationException();

}

}

4.19.1 Actually using the factory

= "1") {

The class is easily extracted — we copied some, dndét while it compiles and links, it
is not getting used. This factory class should degendent object in the RpnCalculator
class. Traditionally, the abstract factory pattevhich we are yet to fully follow since we
do not have an abstract class, has variations. W# dave a need for variations yet, but
it might come up. To follow that pattern, we shohtwbk the factory back into the
calculator in a way that allows for overriding.

We do not have to do this, however all the patteribe Design Patterns book were
found in real applications so to not follow somaththat has worked seems a bit “not
build here” ish. An intermediate compromise isttre a pointer and use new and delete
for now. Later, if we find a need for variations thre factory, we can introduce an
interface and change the pointer type.

With this in mind, here is an updated version ohRalculator:
RpnCalculator.h

class MathOperationFactory;
class RpnCalculator {
private:

RpnStack values;
MathOperationFactory *factory;

Version: 0.3a 165 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.20

RpnCalculator.cpp (the whole thing as it has shrunk)

#include "RpnCalculator.h"
#include "MathOperationFactory.h"
#include "MathOperation.h"
RpnCalculator: :RpnCalculator()

: factory(new MathOperationFactory) {

RpnCalculator: :~RpnCalculator() {
delete factory;
}

void RpnCalculator::enter(int value) {
values.push(value);

}

int RpnCalculator::getX() const {
return values.top();
}

void RpnCalculator::execute(const std::string &operatorName) {
MathOperation &op = factory->findOperationNamed(operatorName);
op.perform(values);

Notice that because we chose a pointer, the hdééaglenly mentions the type in a
forward declare rather than including the header Tihat's a good thing. Minimizing
header file inclusion in other header files leadmbre maintainable systems.

Retargeting Automated Checks

Something that should happen as you refactor caitheewisting automated checks is
checking to see if they are still against the riglass. How do you know?

In general, the “closer” an automated check isothing it is checking, the simpler and
more focused it can be. For example, considerdhewing automated check:

TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {
calculator->enter(4);
calculator->execute("+");
LONGS_EQUAL(4, calculator->getX());

}

What is this checking exactly? It appears to beckimg that there will be values

available to the “+” Math Operation even when valbave not been entered. Remember
that we introduce the RpnStack class to handle linéct, we have the following test to
make sure that is the case:

TEST(RpnStackShould, HaveATopAfterCreation) {
LONGS_EQUAL(@, values->top());

Version: 0.3a 166 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Since we know that an RpnStack will always haveiesland we know that the
RpnCalcualtor in face uses RpnStack, are we sadesnming that the above check is no
longer necessary?

The answer is, “it depends.” If you view what yae doing as strictly black-box, than
you need both checks. This is a tricky questiomwit clear answer. If we treat what we
are doing as a way to:

e Drive development
e Reduce the risk of releasing a defect into the wild

Then it might be OK.

If you think we should have the check, then it seaa should have that check for every
operation, which is currently: add, subtract, daog factorial. In fact we should have it
for every future operation as well. Maybe a reabtseniddle ground is one or two
smoke-like tests that verify the basic featurenifact there but not do it for all
operations.

What about moving the checks for each operatiamanta specific source folder for each
Operation? E.g., AddShould, SubtractShould, Faait®hiould, DropShould?

This seems like the right place to put it, howewvbat about making sure the actual
operations are in the factory? Should that be enfélctory, the calculator or with the
checks on the math operation itself? Is the caloul@sponsible for knowing which
operations it supports? Does it even know its sttpdaperations?

There are no clear answers to these question® theck in the first place, that's a great
thing. If we have duplicated checks, that is prdyp&letter than no checks. Duplicated
checks, however, represent waste or inertia ageefesttoring. Checking the same thing
multiple times really doesn’t add to a sense otisgcabout the system.

Even though there is no clear answer, | want tcgsttike in the ground for this project.
Here are a few recommendations:

e Examples created at the beginning of the overilefsprint) will have direct
corollaries in automated checks. Essentially wétwaht these as Rejection Checks
(acceptance tests in older terminology).

e We will create automated checks for each produdatiass. We are currently missing
several.

e One case where we may deviate is not writing dichetks against exception classes.
If those classes have logic, sure. Right now weplinmstantiate and throw them.
That’s not worth checking directly; it’s built intbe langugae.

This will lead to duplication of some checks butmany cases we might be able to more
directly check the inner classes differently, seytiwon’t be direct copies.

Given this set of rules, it is now time to remeeliebhecks. In the current solution, we are
missing direct checks against the following clasgeisl, Drop, Factorial,

MathOperation, MathOperationFactory, and SubtrHeat's quite a list, no better time
than now to plant a tree.

Version: 0.3a 167 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.20.1 Add

Before we write an automated check for add, we meedk a question: Should we check
against the API published in MathOperation or BywathOperation? The only thing

that is essential is the calculate() method, sbgkems more direct. It happens to be
public, so we can do that. Is that a reasonabtgyttu have done? Personally, | like

public extension points precisely because | caclchser to the thing | care about.

That being said, this is a point of contentionrf@ny people. In C++ | could have made
the method public, private or protected; virtuabsies orthogonal to access. If the method
were protected, would | consider making it pubtietake checking easier? In C++ |
would make the methods public. In Java | wouldhreote to because access rules are
different. So | am going to check Add through éécalate method because | can:

AddShould.cpp
#include <CppUTest/TestHarness.h>

#include "Add.h"

TEST_GROUP(CAddShould) {
Add op;

};

TEST(AddShould, AddTwoNumbers) {
LONGS_EQUAL(12, op.calculate(5, 7));
}

This is simple and direct. What about verifyingttAdd is registered in the Factory? This
is again something for which there is no definitareswer. This is something worth
checking. If we put the check here, we have alhefchecks associated with the work on
Add in one place. We could put the check in anopifece, say:
RegisteredOperationsAre.cpp. That opens that fileowcontinual changes and, more
importantly, it becomes a bottleneck. We could @asecond check source file such as
AddRegistered.cpp. This keeps it small and focasetlit really is a separate concern.
This increased the number of files but once wrjttbat file won't need to be recompiled
say if we decide to add another check for Add. Beams like the way to go:

AddShouldBeRegistered.cpp
#include <CppUTest/TestHarness.h>

#include "Add.h"
#include "MathOperation.h"
#include "MathOperationFactory.h"

#include <typeinfo>
TEST_GROUP(AddShouldBeRegistered){};

TEST(AddShouldBeRegistered, IsIt) {
MathOperationFactory factory;
MathOperation &op = factory.findOperationNamed("+");
CHECK(typeid(op) == typeid(Add));

}

Version: 0.3a 168 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

This check verifies that Add is registered as “atldhat the actual type is correct. This
may seem like a bit of duplication; however we edher use a base class, utility class or
macro to remove all of the duplication. We will that after in just a bit.

4.20.2 Drop

Unlike Add, Drop directly inherits from MathOperai. To check it, we will need to use
an RpnStack.

DropShould.cpp
#include <CppUTest/TestHarness.h>

#include "Drop.h"
#include "RpnStack.h"

TEST_GROUP(DropShould) {
1

TEST(DropShould, DecreaseStackSizeByOne) {
RpnStack values;
values.push(4);
values.push(2);
Drop op;
op.perform(values);
LONGS_EQUAL(1, values.size());
3

ShouldBeRegistered.h
This is a bit unwieldy. Even so, it removes duglma so I'm going with it.

#pragma once
#ifndef SHOULDBEREGISTERED_H_
#define SHOULDBEREGISTERED_H_

#include <CppUTest/TestHarness.h>
#include <typeinfo>

#include "MathOperation.h"

#include "MathOperationFactory.h"

#include "UnknownMathOperationException.h"

#define CHECK_REGISTRATION(ClassName, OperationName) \
TEST_GROUP(ClassName##ShouldBeRegistered){}; \
\
TEST(ClassName##ShouldBeRegistered, IsIt) { \
try { \
MathOperationFactory factory; \
MathOperation &op = factory.findOperationNamed(OperationName);\
CHECK(typeid(op) == typeid(ClassName)); \
} catch(UnknownMathOperationException &e) { \
FAIL(#ClassName " not registered as " OperationName); \
F AN

Version: 0.3a 169 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#endif

DropShouldBeRegistered.cpp

The result of using the macro seems good:

#include "Drop.h"

#include "ShouldBeRegistered.h"

CHECK_REGISTRATION(Drop, "drop")

You can also update AddShouldBeRegistered to usertacro as well:

#include "Add.h"
#include "ShouldBeRegistered.h"

CHECK_REGISTRATIONCAdd, "+")
4.20.3 Factorial
Like Drop, Factorial requires an RpnStack to chieck
FactorialShould.cpp
#include <CppUTest/TestHarness.h>

#include "Factorial.h"
#include "RpnStack.h"

TEST_GROUP(FactorialShould) {
3

TEST(FactorialShould, Calculatel2@For5) {
RpnStack values;
values.push(5);
Factorial().perform(values);
LONGS_EQUAL(120, values.top());

}

TEST(FactorialShould, ConsumeValueWhenValuelLessThan®) {
RpnStack values;
values.push(-1);
Factorial().perform(values);
LONGS_EQUAL(Q, values.size());

}

TEST(FactorialShould, CalculatelFor®) {
RpnStack values;
Factorial().perform(values);
LONGS_EQUAL(1, values.top());

FactorialSholdBeRegistered.cpp

#include "Factorial.h"
#include "ShouldBeRegistered.h"

Version: 0.3a 170 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

CHECK_REGISTRATION(CFactorial, "!");
4.20.4 MathOperation

MathOperation has no implementation. It is the esvshing C++ has to an interface.
This is another exception to our simple set ofsule

4.20.5 MathOperationFactory

Given that we've decided to check registration pérations in other places, what is left
for this class? Right now it throws an exceptiorewlan operation is not found, so that
will do for now. As we grow our system, there vii# opportunities to add features. As a
result, we will add additional automated checks.

MathOperatorFactoryShould.cpp
#include <CppUTest/TestHarness.h>

#include "MathOperationFactory.h"
#include "UnknownMathOperationException.h"

TEST_GROUP(MathOperationFactoryShould) {
i H
TEST(MathOperationFactoryShould,

ThrowExcpeptionForUnknownOperation) {
MathOperationFactory factory;

try {
factory. findOperationNamed("--bad_unknown--");

FAILC"Should have thrown exception");

} catch(UnknownMathOperationException &) {
CHECK(D);

}

3
4.20.6 Subtract
There is nothing new for Subtract:
SubtractShould.cpp
#include <CppUTest/TestHarness.h>

#include "Subtract.h"
TEST_GROUP(SubtractShould) {

3
TEST(SubtractShould, SubtractTwoNumbers) {

LONGS_EQUAL(C-2, Subtract().calculate(5, 7));
}

SubtractShouldBeRegistered.cpp

#include "Subtract.h"
#include "ShouldBeRegistered.h"

Version: 0.3a 171 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.21

CHECK_REGISTRATION(Subtract, "-")
Adding Multiplication

We have finished remediation for now. Should weeheansidered doing this as we
refactored the code? Yes. This is going to hapPerthe plus side, all of the refactoring
was supported by existing tests.

The automated check for Multiplication looks muike IAdd:
MultiplicationShould.cpp
#include <CppUTest/TestHarness.h>

#include "Multiplication.h"
TEST_GROUP(MultiplicationShould) { };

TEST(MultiplicationShould, MultiplicationTwoNumbers) {
LONGS_EQUAL(35, Multiplication().calculate(5, 7));

3
We need to write the Multiplication class. It lodkse Add or Subtract:
Multiplication.h

#pragma once
#ifndef MULTIPLICATION_H_
#define MULTIPLICATION_H_

#include "BinaryMathOperation.h"

class Multiplication : public BinaryMathOperation {
public:
int calculate(int lhs, int rhs);
i
#endif
Multiplication.cpp
#include "Multiplication.h"

int Multiplication::calculate(int lhs, int rhs) {
return lhs * rhs;
}

For this to be usable by the calculator, it mustdggstered:
MultiplicationShouldBeRegistered.cpp

#include "Multiplication.h"
#include "ShouldBeRegistered.h"

CHECK_REGISTRATION(Multiplication, "*")
For this to pass, you will need to update MathOjp@n&actory.cpp:
#include "Multiplication.h"

Version: 0.3a 172 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

MathOperation& MathOperationFactory: : findOperationNamed(
const std::string &operatorName) {
if (operatorName == "+") {

} else if (operatorName == "*") {
static Multiplication op;
return op;
} else {
throw UnknownMathOperationException();
}

To finish Multiplication, we need to add the migsichecks from the preliminary
rejection checks. We wrote this bottom-up and chddsoth the functionality of
Multiplication as well as its registration, so teescceptance checks should pass:

Added to RpnCalculatorShould.cpp

TEST(RpnCalculatorShould, BeAbleToMultiplyTwoNumbes) {
calculator->enter(4);
calculator->enter(4);
calculator->execute("*");
LONGS_EQUAL(16, calculator->getX());
}

TEST(RpnCalculatorShould, MultiplyWhenTheresASingleValue) {
calculator->enter(4);
calculator->execute("*");
LONGS_EQUAL(@, calculator->getX());

4.22 Adding Division

Division is similar to the other BinaryOperatotsptigh there is one additional test,
divide by Zero. We'll start with the happy pathstiand add the divide by zero check
second:

DivisionShould.cpp
#include <CppUTest/TestHarness.h>
#include "Division.h"
TEST_GROUP(DivisionShould) {

Division op;
i
TEST(DivisionShould, DivideTwoNumbers) {

LONGS_EQUAL(5, op.calculate(15, 3));
}

We need to create the Division class for this t&spa
Division.h

#pragma once
#ifndef DIVISION_H_

Version: 0.3a 173 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#define DIVISION_H_
#include "BinaryMathOperation.h"

class Division : public BinaryMathOperation {
public:
int calculate(int lhs, int rhs);
}s
#endif
Division.cpp

#include "Division.h"

int Division::calculate(int lhs, int rhs) {
return lhs / rhs;

}
Once this test passes, it's time to add a chec#ifading by zero:
DivisionShould.cpp

#include "DivideByZeroException.h"
TEST(DivisionShould, ThrowExceptionForDivideByZero) {

try {

op.calculate(l, @);

FAIL("Should have thrown DivideByZeroException");
} catch (DivideByZeroException &) {

CHECK(D);

}
DivideByZeroExceptoin.h (note, no .cpp)

#pragma once
#ifndef DIVIDEBYZEROEXCEPTION_H_
#define DIVIDEBYZEROEXCEPTION_H_

#include <exception>

class DivideByZeroException : public std::exception {
i
#endif

The automated check will fail. Note that how it$as somewhat platform dependent. On
my platform, the entire test suite simply stopsning. You will need to update
Divide.cpp:

Updated Division.cpp
#include "Division.h"

#include "DivideByZeroException.h"
int Division::calculate(int lhs, int rhs) {

Version: 0.3a 174 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

if(rhs == 0)
throw DivideByZeroException();

return lhs / rhs;

3
Finally, we need to make sure that Divide is rege in the factory:
DivisionShouldBeRegistered.cpp

#include "Division.h"
#include "ShouldBeRegistered.h"

CHECK_REGISTRATION(Division, "/™)
Update the factory to make to get your check t@pas

#include "Division.h"

MathOperation& MathOperationFactory: :findOperationNamed(
const std::string &operatorName) {
if (operatorName == "+") {

} else if (operatorName == "/") {
static Division op;
return op;
} else {
throw UnknownMathOperationException();
}

}

To complete work on Division, we need to add thesimg rejection checks. As with
Multiplication, we've worked bottom up so everytgishould be in place for these
checks to immediately pass:

Added to RpnCalculatorShould.cpp

TEST(RpnCalculatorShould, BeAbleToDivideTwoNumbes) {
calculator->enter(4);
calculator->enter(4);
calculator->execute("/");
LONGS_EQUAL(1, calculator->getX());
}

TEST(RpnCalculatorShould, DivideWhenTheresASingleValue) {
calculator->enter(4);
calculator->execute("/");
LONGS_EQUAL(@, calculator->getX());

}

4.23 MathOperationFactory refactoring: Storing Math Oper ations

Notice how you need to keep adding to a long ifiteése structure for every new math
operation? That is somewhat error prone, repetitine it won’t support adding new
math operations while the system is running (pnognable calculator). There is a simple

Version: 0.3a 175 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

class in the standard library that can do thisebe#t map. In this section you will migrate
the current solution to use a map. The numberepssinay be more than you expect to
keep the code compiling and test passing more dtffigam otherwise:

Updated MathOperationFactory.h: introduce map

#include <map>
class MathOperation;

class MathOperationFactory {

private:
typedef std::map<std::string, MathOperation*> OperationMap;
OperationMap operationsByName;

3

Update MathOperationFactory constructor

MathOperationFactory: :MathOperationFactory() {
operationsByName["+"] = new Add;
operationsByName["-"] = new Subtract;
operationsByName["drop"] = new Drop;
operationsByName["!"] = new Factorial;
operationsByName["*"] = new Multiplication;
operationsByName["/"] = new Division;

}

Run your automated check suite. There are manyrésj memory leaks are causing
those failures. Update the header file by addirglaer nested typedef:

class MathOperationFactory {

private:
typedef std::map<std::string, MathOperation*> OperationMap;
typedef OperationMap::iterator iterator;
OperationMap operationsByName;

i

Update the destructor to use this new typedef:

MathOperationFactory: :~MathOperationFactory() {
for(iterator i = operationsByName.begin();
i != operationsByName.end();
++1)
delete (*i).second;

3
Now we can update the findOperationNamed methaéathe map:

MathOperation& MathOperationFactory: :findOperationNamed(
const std::string &operatorName) {
iterator candidate = operationsByName.find(operatorName);

if(candidate == operationsByName.end())
throw UnknownMathOperationException();

Version: 0.3a 176 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.24

return *(*candidate).second;

}

Now this member function is closed to adding nevitMaperations. The constructor is
still an issue, but that’s the subject of the resdtion.

MathOperationFactory refactoring: Automatic Math Op eration Registration
Adding a new Math Operation requires several things

e Create automated check(s) for the behaviour ofitath operation

e Create the math operation header and source file

e Create an automated check to verify that the mpénation is registered in the
factory

e Update the constructor to add the registration

e \Write a rejection check to cover any examples glediat the start of the sprint

We can make registration a bit more automatic nibre importantly, we can make it so
the factory is closed to change when adding nevin mpérations by using a touch of
static magic.

4.24.1 An object for registration

What if we could write a new operation and not hivapdate the factory? Automatic
registration is possible with a few tricks. Ondlod standard parts of this trick is to have
a static variable in the body of a method. We rsmen this a few times now. However,
now we want to do this for something that is baimplex and meant to remain in the
code. We will use a series of automated checketidogan end product:

#include <CppUTest/TestHarness.h>

#include "Add.h"
#include "MathOperationRegistrant.h"

TEST_GROUP(MathOperationRegistrantShould) {
i

TEST(MathOperationRegistrantShould, RecordObjectUponCreation) {
std: :string name("+");
Add *op = new Add;
MathOperationRegistrant register_add(name, op);

MathOperationRegistrant::iterator candidate =
register_add.beginQ);

CHECK((*candidate).first == name);
CHECK((*candidate).second == op);
}

To get this to pass:

#pragma once
#ifndef MATHOPERATIONREGISTRANT_H_
#define MATHOPERATIONREGISTRANT_H_

Version: 0.3a 177 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include <map>
#include <string>
#include "MathOperation.h"

struct MathOperationRegistrant {
typedef std::map<std::string, MathOperation*> RegistrationMap;
typedef RegistrationMap::iterator iterator;

const std::string name;
MathOperationRegistrant
(const std::string name, MathOperation *op) : name(name) {
registered()[name] = op;

~MathOperationRegistrant() {
delete registered()[name];
registered() .erase(name);

iterator begin() { return registered().begin(); }

private:
static RegistrationMap ®istered() {
static RegistrationMap registeredOperations;
return registeredOperations;
}
i

#fendif
static considered harmful

Static code makes writing reliable automated chéekd. In this case we need a static
map somewhere, so the registered() method is\ifeejust have too many direct
dependencies upon it. This is quickly fixed usindeéault argument:

RegistrationMap ↦
const std::string name;
MathOperationRegistrant(const std::string name,
MathOperation *op, RegistrationMap &map = registered())
: map(map), name(Cname) {
map[name] = op;

}

~MathOperationRegistrant() {
delete map[name];
map .erase(name);

}

iterator begin() { return map.begin(Q); }

Version: 0.3a 178 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Now this code can be overridden if necessary ritdwut it may be necessary, but there’s
nothing obvious about this. Consider the purpog#isfclass: operations will be
registered here automatically, when we create tid iwperation factory, it will get its
operations from here rather than building thenifit3éere’s no guarantee that the static
map stored in registered() will in fact be emptyantihis test executes. We'll eventually
come across this problem. Given that we know tlseagiotential problem, let’s fix it

now. Note, the only reason | notice this now isyfrprevious experience using this kind
of automatic registration feature in other applmag in C++.

MathOperationRegistrant: :RegistrationMap testMap;
MathOperationRegistrant register_add(name, op, testMap);

That'’s it. The change before made it so that ndrieeomethods directly refer to the
static reference and allow for dependency injecfidns injects a dependent object so
that this automated check has no direct connettidime underlying static map. The
production code has a single path of executias;unaware of the particular map with
which it works, just that it works with the sameprtaroughout its life.

We have a few more things to check:
Do not allow the same name to be used twice

Since people can now create math operations indepdy, there’s a possibility that two
operations will attempt to use the same name. R#the silently ignore this, let's
disallow that:

#include "NameInUseException.h"
TEST(MathOperationRegistrantShould, DisallowDuplicatedNames) {
std: :string name("+");
Add *op = new Add;
MathOperationRegistrant: :RegistrationMap testMap;
MathOperationRegistrant register_add(name, op, testMap);
try {
MathOperationRegistrant r2(name, op, testMap);
FAIL("Should have thrown an exception");
} catch(NameInUseException &) {
CHECKCD);
}
}

For this to compile, we’ll need a new exceptiorssla
NamelnUseException.h

#pragma once

#ifndef NAMEINUSEEXCEPTION_H_

#define NAMEINUSEEXCEPTION_H_

#include <exception>

class NameInUseException : public std::exception {};

#endif
This test initially fails. We need to update th@stuctor:

Version: 0.3a 179 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include "NameInUseException.h"
struct MathOperationRegistrant {

MathOperationRegistrant(const std::string name,
MathOperation *op, RegistrationMap &map = registered())
: map(map), name(name) {
if(map.find(name) == map.end())
map[name] = op;
else
throw NameInUseException();
}

Do not allow for 0 (null) math operations
Next, let's make sure that the arguments are O#st,Rhe passed-in math operation:

#include "InvalidArgumentException.h"
TEST(MathOperationRegistrantShould, DisallowANullMathOperation) {
try {
MathOperationRegistrant register_add("name", 0);
FAIL("Should have thrown exception");
} catch(InvalidArgumentException &e) {
CHECK(e.name == "mathOperation™);
}
}

This needs another exception class:

#pragma once
#ifndef INVALIDARGUMENTEXCEPTION_H_
#define INVALIDARGUMENTEXCEPTION_H_

#include <string>
#include <exception>

struct InvalidArgumentException : public std::exception {
InvalidArgumentException(const std::string name) : name(Cname) {}
~InvalidArgumentException() throw() {}
const std::string name;

1

#endif

Getting this to pass requires another change to the registrant:
#include "InvalidArgumentException.h"

struct MathOperationRegistrant {

MathOperationRegistrant(const std::string name,
MathOperation *op, RegistrationMap &map = registered())
: map(map), nameCname) {
ifCop == @)
throw InvalidArgumentException("mathOperation");

Operations must have a non-zero length
TEST(MathOperationRegistrantShould, DisallowAZerolLengthName) {

Version: 0.3a 180 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Add a;

try {
MathOperationRegistrant register_add("", &a);
FAIL("Should have thrown exception");

} catch(InvalidArgumentException &e) {
CHECK(e.name == "name");

}
}

And a final update to get this automated checkipgss

MathOperationRegistrant(const std::string name,
MathOperation *op, RegistrationMap &map = registered())
: map(map), name(Cname) {
ifCop == 0)
throw InvalidArgumentException("mathOperation™);
if(name.size() == 0)
throw InvalidArgumentException("name");

This code has some room for cleaning it up, thigftsas an exercise to the reader.
4.24.2 Automatically Register Multiplication

Now we need to try this with an existing math opiera To make this happen, remove
the following lines from MathOperationFactory.cpp:

#include "Multiplication.h"

operationsByName["*"] = new Multiplication;
This will case the automated check suite to fathvain exception. Update Multiplication:
#include "Multiplication.h"

int Multiplication::calculate(int lhs, int rhs) {
return lhs * rhs;

}

#include "MathOperationRegistrant.h"
MathOperationRegistrant register_multiply("*", new Multiplication);

Running your automated checks at this point witidurce an interesting result. The
problem is the destructor of the MathOperationFgcagsumes it is OK to delete
everything but it did not allocate everything. Somore change:

MathOperationFactory: :~MathOperationFactory() {
MathOperationRegistrant r;
for(MathOperationRegistrant::iterator i = r.begin(Q);

i !l=r.endQ; ++i)
operationsByName.erase((*i).first);

This removes any operations registered from thistragt; those objects will be removed
automatically when the system shuts down.

Version: 0.3a 181 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Now all of your checks should be passing. It isetitm apply this change to all of your
math operations so that they are all registeredeir source files rather that in the
factory.

Once you’'ve made these updates, the factory simgilif

#include "MathOperationRegistrant.h"
MathOperationFactory: :MathOperationFactory() {
MathOperationRegistrant r;
for(MathOperationRegistrant::iterator i = r.begin();
i = r.endQ); ++1)
operationsByName[(*i).first] = (*1).second;

3
4.24.3 Split registrant

One final change is in order. Rather than haveytlmg for the registrant in its header
file, let's split the header into a header and seur

MathOperationRegistrant.h

#pragma once
#ifndef MATHOPERATIONREGISTRANT_H_
#define MATHOPERATIONREGISTRANT_H_

#include <map>
#include <string>
class MathOperation;

struct MathOperationRegistrant {
typedef std::map<std::string, MathOperation*> RegistrationMap;
typedef RegistrationMap::iterator iterator;

RegistrationMap ↦
const std::string name;
MathOperationRegistrant(RegistrationMap &map = registered());

MathOperationRegistrant(
const std::string name,
MathOperation *op, RegistrationMap &map = registered());

~MathOperationRegistrant();
iterator begin();
iterator end();

private:
static RegistrationMap ®istered();

b

#endif

MathOperationRegistrant.cpp

#include "MathOperationRegistrant.h"

Version: 0.3a 182 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include "MathOperation.h"
#include "NameInUseException.h"
#include "InvalidArgumentException.h"

MathOperationRegistrant: :MathOperationRegistrant(
RegistrationMap &map) : map(map) {
}

MathOperationRegistrant: :MathOperationRegistrant(
const std::string name, MathOperation *op, RegistrationMap &map)
: map(map), name(name) {
if (op == @)
throw InvalidArgumentException("mathOperation™);
if (name.size() == 0)
throw InvalidArgumentException("name");

if (map.find(name) == map.end())
map[name] = op;
else
throw NameInUseException();
}

MathOperationRegistrant: :~MathOperationRegistrant() {
delete map[name];
map.erase(name);

}

MathOperationRegistrant::iterator MathOperationRegistrant::begin() {
return map.begin();

}

MathOperationRegistrant::iterator MathOperationRegistrant::end() {
return map.endQ);

}

MathOperationRegistrant: :RegistrationMap

&MathOperationRegistrant: :registered() {
static RegistrationMap registeredOperations;
return registeredOperations;

3
4.25 Add Missing Examples

There are a few missing examples from the oridisgl

TEST(RpnCalculatorShould, AddWithNoValuesProvided) {
calculator->execute("+");
LONGS_EQUAL(@, calculator->getX());

TEST(RpnCalculatorShould, SubtractWithNoValuesProvided) {
calculator->execute("-");
LONGS_EQUAL(@, calculator->getX());

}

Version: 0.3a 183 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

4.26

TEST(RpnCalculatorShould, MultiplyWithNoValuesProvided) {
calculator->execute("*");
LONGS_EQUAL(@, calculator->getX());

#include "DivideByZeroException.h"
TEST(RpnCalculatorShould, GenerateDivideByZeroWhenNoValuesProvided) {
try {
calculator->execute("/");
} catch (DivideByZeroException &) {
CHECKCD);
}

}

TEST(RpnCalculatorShould, OnlyAddTwoMostRecentValues) {
calculator->enter(3);
calculator->enter(2);
calculator->enter(6);
calculator->enter(7);
calculator->enter(2);
calculator->execute("+");
LONGS_EQUAL(9, calculator->getX());
calculator->execute("drop");
LONGS_EQUAL(6, calculator->getX());

}

TEST(RpnCalculatorShould, OnlySubtractTwoMostRecentValues) {
calculator->enter(3);
calculator->enter(2);
calculator->enter(6);
calculator->enter(7);
calculator->enter(2);
calculator->execute("-");
LONGS_EQUAL(5, calculator->getX());
calculator->execute("drop");
LONGS_EQUAL(6, calculator->getX());

}

Sprint Summary

The sprint is complete, all examples pass and @@ number of unit checks to back
up the rejection checks. We covered a lot of ground

Initial project creation

Adding a few operations

Removing duplication

Several examples of extracting class
Strategy Design Pattern

Template Method Design Pattern
Factory Design Pattern

Automatic registration of new Operations

Version: 0.3a 184 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

e Single Responsibility Principle

e Open/Closed Principle

e Calling base-class member functions from a deridlads method of the same name
e Checking for exceptions in automated checks

e Writing basic exception classes and code to thieemt

e std::exception class

e std::map

e std::pair

[J

Delegation versus inheritance

The next sprint is not as feature rich; insteadmieadd a few new operations and look
at another style of writing automated unit checks.

Version: 0.3a 185 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

5 Rpn Calculator — Sprint 2 — Growing Features
The description of this sprint will be strictly the form of examples. There are several

new operations:

Given the user enters When the user selects Then the result is
32672 sum 20
41 < 0

34 < 1

44 < 1

32 == 0

33 == 1

31 > 1

44 > 0

47 > 0

351 swap_Xxy 315
341 dup 3411
432152 n_dup 43215215
any value < 2 pf

2 pf 2

3 pf 3

4 pf 22

5 pf 5

6 pf 23

7 pf 7

8 pf 222

9 pf 33

5.1 Adding Sum

Sum consumes all values on the stack and produsiegla result. This operation maps
many values to one; it consumes all values ontdmek sadds them up and puts a single
value back. We saw something like this using stduenulate back on page 103, section
3.23. What are things we want to check:

e |t consumes all and produces 1

e |t adds correctly

e Overflow would be reasonable but there’s a gerd®aision to ignore overflow

e That this operation is registered — this applieslitoperations

With that in mind, we can check each of these thimgainst the same sequence. A
guestion to ask is should we put all of the chealane place or many. In other places we
tend to keep to one or a maybe a few checks togéthes will be no different:

#include <CppUTest/TestHarness.h>

Version: 0.3a 186 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include "Sum.h"
#include "RpnStack.h"

TEST_GROUP(SumShould) {

RpnStack *values;

void setup(Q) {
values = new RpnStack;
values->push(5);
values->push(3);
values->push(2);
values->push(9);
Sum op;
op.perform(*values);

void teardown() {
delete values;
}
i H

TEST(SumShould, AddAllValues) {
LONGS_EQUAL(19, values->top());
}

TEST(SumShould, ProduceASingleValue) {
LONGS_EQUAL(1, values->size());

}

Notice how all of the work happens in setup() dmelttvo methods simply check
different results. It is possible that both of #aesuld fail, either one or could fail or,
eventually, none of them fail. The granularity maker better targeting of problems
when the occur.

For this to work:

Sum.h

#pragma once
#ifndef SUM_H_
#define SUM_H_

#include "MathOperation.h"

class Sum: public MathOperation {
public:

void perform(RpnStack &values);
};
#endif
Sum.cpp

#include "Sum.h"

Version: 0.3a 187 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

5.2

#include "RpnStack.h"
void Sum: :perform(RpnStack &values) {
int result = 0;
while(values.size() > @) {
result += values.top();
values.popQ);

values.push(result);

Sum Registration

Sum needs to be registered; that work is done im.&p. Rather than creating a separate
source file for that automated check, let's expentrwith putting it in the
SumShould.cpp:

Added to bottom of SumShould.cpp:

#include "ShouldBeRegistered.h"
CHECK_REGISTRATION(CSum, "sum");

Added to bottom of Sum.cpp:

#include "MathOperationRegistrant.h"
MathOperationRegistrant register_sum("sum", new Sum);

Less Than
What are the cases for Less Than:

e One value less than another

e One value greater than the other

e Two equal values

e Less than is actually registered

Less than consumes two values and produces a sialgle, so it behaves like a binary
math operation and will therefore inherit from tlekss instead of MathOpeation:

LessThanShould.cpp
#include <CppUTest/TestHarness.h>

#include "LessThan.h"

TEST_GROUP(LessThanShould) {
LessThan op;

1

TEST(LessThanShould, BelFor2Versus4) {
LONGS_EQUAL(1, op.calculate(2, 4));

LessThan.h

#pragma once
#ifndef LESSTHAN_H_
#define LESSTHAN_H_

Version: 0.3a 188 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

5.3

5.4

#include "BinaryMathOperation.h"

class LessThan: public BinaryMathOperation {
public:
int calculate(int lhs, int rhs);
i
#endif
LessThan.cpp

#include "LessThan.h"

int LessThan::calculate(int lhs, int rhs) {
return lhs < rhs ? 1 : 0;

}
A few more checks:
Added to LessThanShould.cpp

TEST(LessThanShould, Be@For4Versus4) {
LONGS_EQUAL(@, op.calculate(4, 4));
}

TEST(LessThanShould, Be@For4Versus2) {
LONGS_EQUAL(@, op.calculate(4, 2));
}

It should be registered:
Added to LessThanShould.cpp

#include "ShouldBeRegistered.h"
CHECK_REGISTRATION(LessThan, "<");

Add the required registration to LessThan.cpp:

#include "MathOperationRegistrant.h"
MathOperationRegistrant register_lessThan("<", new LessThan);

Equal To and Greater than

Equal to and greater than have the same set okglasdess than, the actual results are
different. Both of these consume two values andypce a single result, as with Less
Than. Given that information, create the requireeoks for these classes and make sure
they are registered.

Swap XY

Swap XY consumes two values and produces two vadeeis does not fit under the
Binary Math Operation class. Here is another exarmpbln automated check where all
of the setup and execution happens in the setugif)od, followed by a number of
checks, each in their own method:

#include <CppUTest/TestHarness.h>

#include "SwapXy.h"

Version: 0.3a 189 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include "RpnStack.h"

TEST_GROUP(SwapXyShould) {

RpnStack *values;

void setup(Q) {
values = new RpnStack;
values->push(-3);
values->push(5);
values->push(1);
SwapXy() .perform(*values);

void teardown() {
delete values;
}
};

TEST(SwapXyShould, ResultInSameStackSize) {
LONGS_EQUAL(3, values->size());

TEST(SwapXyShould, MakeXEqualTo5) {
LONGS_EQUAL(5, values->top());
}

TEST(SwapXyShould, MakeYEqualTol) {
values->pop();
LONGS_EQUAL(1, values->top());

}

TEST(SwapXyShould, LeaveNegative3WhereItWas) {
values->pop();
values->pop();
LONGS_EQUAL(C-3, values->top());

3

#include "ShouldBeRegistered.h"
CHECK_REGISTRATION(SwapXy, "swap_xy");

The implementation is straightforward:
SwapXy.h

#pragma once
#ifndef SWAPXY_H_
#define SWAPXY_H_

#include "MathOperation.h"

class SwapXy: public MathOperation {
public:

void perform(RpnStack &values);
};

Version: 0.3a 190 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#endif
SwapXy.cpp

#include "SwapXy.h"
#include "RpnStack.h"

void SwapXy: :perform(RpnStack &values) {
int x = values.top(Q);
values.pop(Q);
int y = values.top(Q);
values.pop();
values.push(x);
values.push(y);
}

#include "MathOperationRegistrant.h"
MathOperationRegistrant register_swapXy("swap_xy", new SwapXy);

55 Dup
Dup is left as an exercise.
5.6 N Dup

This operation uses the top of the stack as a @nohthe duplicates that many items
from the remainder of the stack back on top ofstiaek:

#include <CppUTest/TestHarness.h>

#include "NDup.h"
#include "RpnStack.h"

TEST_GROUP(NDupShould) {

RpnStack *values;

void setup(Q) {
values = new RpnStack;
values->push(4);
values->push(3);
values->push(2);
values->push(1);
values->push(5);
values->push(2);
NDup() .perform(*values);

void teardown() {
delete values;
}

1

TEST(NDupShould, HaveSameTwoValuesAtTop) {
LONGS_EQUAL(5, values->top());
values->pop(Q);

LONGS_EQUAL(1, values->top());

}

Version: 0.3a 191 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

TEST(NDupShould, StillHaveOriginalTwoValues) {
values->pop(Q);
values->pop(Q);
LONGS_EQUAL(5, values->top());
values->pop();
LONGS_EQUAL(1, values->top());

}

TEST(NDupShould, LeaveRemainderOfStackAlone) {
values->pop();
values->pop();
values->pop();
values->pop();
LONGS_EQUAL(2, values->top());
values->pop(Q);
LONGS_EQUAL(3, values->top());
values->pop(Q);
LONGS_EQUAL(4, values->top());
values->pop(Q);

}

TEST(NDupShould, IncreaseStackSizeCorrectly) {
LONGS_EQUAL(7, values->size());

#include "ShouldBeRegistered.h"
CHECK_REGISTRATION(NDup, "n_dup");

NDup.h

#pragma once
#ifndef NDUP_H_
#define NDUP_H_

#include "MathOperation.h"

class NDup: public MathOperation {
public:

void perform(RpnStack &values);
i H
#endif

NDup.cpp

#include "NDup.h"
#include "RpnStack.h"

#include <vector>

void NDup::perform(RpnStack &values) {
int count = values.top(Q);
values.pop(Q);
std: :vector<int> toCopy;
for (int 1 = 0; 1 < count; ++i) {

Version: 0.3a 192 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

toCopy . push_back(values.top());
values.popQ);

for (int 1 =0; 1 < 2; ++1i)
for (std::vector<int>::reverse_iterator i = toCopy.rbeginQ;
i != toCopy.rend(); ++i)
values.push(*i);

}

#include "MathOperationRegistrant.h"
MathOperationRegistrant register_nDup("n_dup", new NDup);

57 Prime Factors

For this operation, we will take a slower approanld attempt to get back to check
driven development. We’'ll start with a single checid try to minimally modify the code
to get the next check working. This will also dersivate yet another way to express
automated checks:

PrimeFactorsShould.cpp

#include <CppUTest/TestHarness.h>

#include "PrimeFactors.h"
#include "RpnStack.h"

TEST_GROUP(PrimeFactors0f) {
RpnStack *values;
void setup() {
values = new RpnStack;

void teardown() {
delete values;
}

void givenTheValue(int value) {
values->push(value);

void whenCalculatingItsPrimeFactors() {
PrimeFactors().perform(*values);
}

void expectNoResults() {
LONGS_EQUAL(Q, values->size());

}
b3

TEST(PrimeFactorsOf, 1lAreEmpty) {
givenTheValue(l);
whenCalculatingItsPrimeFactorsQ);
expectNoResults();

3
To get this passing:

Version: 0.3a 193 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

PrimeFactors.h

#pragma once
#ifndef PRIMEFACTORS_H_
#define PRIMEFACTORS_H_

#include "MathOperation.h"

class PrimeFactors: public MathOperation {
public:
void perform(RpnStack &values);
i
#endif

PrimeFactors.cpp

#include "PrimeFactors.h"
#include "RpnStack.h"

void PrimeFactors: :perform(RpnStack &values) {
values.pop(Q);

571 Of2 ...
TEST_GROUP(PrimeFactors0f) {

Qé{d expect(int value) {
LONGS_EQUAL(value, values->top());

}
void andThen() {
values->pop();

}

s

TEST(PrimeFactorsOf, 2Are2) {
givenTheValue(2);
whenCalculatingItsPrimeFactorsQ);
expect(2);
andThen();
expectNoResults();

}

Updated PrimeFactors.cpp

void PrimeFactors: :perform(RpnStack &values) {
int value = values.top();
values.pop(Q);

if(Cvalue == 2)
values.push(2);

Version: 0.3a 194 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know

08/04/11

5.7.2

5.7.3

5.7.4

5.7.5

Of 3...

TEST(PrimeFactorsOf, 3Are3) {
givenTheValue(3);
whenCalculatingItsPrimeFactors(Q);
expect(3);
andThen();
expectNoResults();

}

Updated PrimeFactors.cpp

if(value >= 2)
values.push(value);

Of 4 ... multiple values

TEST(PrimeFactorsOf, 4Are2And2) {
givenTheValue(4);
whenCalculatingItsPrimeFactors(Q);
expect(2);
andThen();
expect(2);
andThen();
expectNoResults();

}

Updated PrimeFactors.cpp — starting to get ugly

if (vdlue >= 2) {
if (value % 2 == 0) {
values.push(2);
value /= 2;

}
if (value > 1)
values.push(value);

Oof5 ...
This one just works because it's the same as 3.

TEST(PrimeFactorsOf, 5Are5) {
givenTheValue(5);
whenCalculatingItsPrimeFactorsQ);
expect(5);
andThen();
expectNoResults();

}
Of 6 ... two values, but they are different

TEST(PrimeFactorsOf, 6Are3And2) {
givenTheValue(6);
whenCalculatingItsPrimeFactors(Q);
expect(3);
andThen();
expect(2);

Version: 0.3a 195 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know

08/04/11

5.7.6

5.7.7

5.7.8

andThenQ);
expectNoResults();
3

Surprisingly, or not, this one also works.
As will 7 ...

TEST(PrimeFactorsOf, 7Are7) {
givenTheValue(7);
whenCalculatingItsPrimeFactors(Q);
expect(7);
andThen();
expectNoResults();

3
But 8 is different, 3 values, instead of just 2.

TEST(PrimeFactorsOf, 8Are2And2And2) {
givenTheValue(8);
whenCalculatingItsPrimeFactorsQ);
expect(2);
andThen();
expect(2);
andThen();
expect(2);
andThen();
expectNoResults();

}

Finally an update to PrimeFactors.cpp

while (value % 2 == 0) {
Simply changing the if to a while fixes this.
Is 9 different?

TEST(PrimeFactorsOf, 9Are3And3) {
givenTheValue(9);
whenCalculatingItsPrimeFactors(Q);
expect(3);
andThen();
expect(3);
andThen();
expectNoResults();

}

This requires that we vary the divisor:
if (value >= 2) {

for (int divisor = 2; divisor <= value; ++divisor)

while (value % divisor == 0) {
values.push(divisor);
value /= divisor;

}
if (value > 1)

Version: 0.3a 196 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

values.push(value);

}
But wait, the loop starts at 2, so do we need tlieraf statement? Not at all.

for (int divisor = 2; divisor <= value; ++divisor)
while (value % divisor == 0) {
values.push(divisor);
value /= divisor;

}
if (value > 1)
values.push(value);

What about the bottom if statement?

void PrimeFactors: :perform(RpnStack &values) {
int value = values.top();
values.pop();

for (int divisor = 2; divisor <= value; ++divisor)
while (value % divisor == 0) {
values.push(divisor);
value /= divisor;
}
}

It was also not necessary, and that finishes yjtwith a few larger values.
5.7.9 Register It

We spent so much time on checking the operationeeely forget to make sure it is
registered in the factory:

One more automated check in PrimeFactorsOf.cpp

#include "ShouldBeRegistered.h"
CHECK_REGISTRATION(PrimeFactors, "pf");

Actual Registration in PrimeFactors.cpp

#include "MathOperationRegistrant.h"
MathOperationRegistrant
register_primeFactors("pf", new PrimeFactors);

5.8 Examples as Rejection Checks

Notice that all of the automate checks writtenéted the implementation class directly?
If we follow the stated policy, then we should haeseral more checks written against
the RpnCalculator class. Before you write any oty do you expect any of them to
fail? If not, how might you work this informationto your project work?

In writing these checks, | observed a lot of dugdiien but also a lot of unnecessary
detail. | spend just a touch of time removing sataplication:

TEST_GROUP(RpnCalculatorShould) {
RpnCalculator *calculator;
void setup(Q) {
calculator = new RpnCalculator;

Version: 0.3a 197 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

void teardown() {
delete calculator;
3

void topWas(int value) {
LONGS_EQUAL(value, calculator->getX());
calculator->execute("drop");

void enter(int value) {
calculator->enter(value);
}
void execute(const std::string &opName) {
calculator->execute(opName);
}
};

TEST(RpnCalculatorShould, AddTwoNumbers) {
enter(30);
enter(4);
execute("+");
topWas(34);

TEST(RpnCalculatorShould, SubtractTwoNumbers) {
enter(30);
enter(4);
execute("-");
topWas(26);
}

TEST(RpnCalculatorShould, NDupCorrectly) {
enter(4);
enter(3);
enter(2);
enter(l);
enter(5);
enter(2);
execute("n_dup™);
topWas(5);
topWas(1);
topWas(5);
topWas(1);
topWas(2);
topWas(3);
topWas(4);
topWas(0);

}

TEST(RpnCalculatorShould, CalculatePrimeFactors0f10@Correctly) {
enter(100);
execute("pf"™);
topWas(5);

Version: 0.3a 198 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

topWas(5);

topWas(2);

topWas(2);

topWas(0);
}

The remainder of the missing automated rejecti@cks$iis left as an exercise.

Version: 0.3a 199 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know

08/04/11

6 Rpn Calculator — Sprint 3 — Macros

It is finally time to begin programming the caldda First some examples:
Example 1 Example 2 Example 3 | Example 4 | Example 5
start start start start start

+ save macro3 | A% + /

& <error> <error> + !

- too few unknown save + save ml
save macrol | steps operation | <error> start

6 4 operation | swap_xy

4 2 name in ml

9 + use save m2

3 6 2

macrol 8

-42 m2

24

This is not a complete description of macro reaugdiut it is a good start.

e Example 1 demonstrates a simple macro. Create eomath three math operations,
enter 4 values and execute that macro. The rekulPshows that the execution of
the steps is in the order entered.

e Example 2 demonstrates that there must be atlestsp in any macro — a somewhat
arbitrary requirement, but one nonetheless. Gemaraerror if this condition is not
met.

e Example 3 demonstrates that a macro can only beviith known operations; if an
unknown operation is provided, stop recording. Thisimple behavior. It makes
creating a circular set of macros more difficult.

e The fourth example demonstrates that you cannoa useme that is already in use.
This particular example only demonstrates that withuild-in operation, but it
applies for the ones you create yourself. Notia#) this additional limitation, it is
not possible to create circular macros (the predéft as an exercise).

e The final example demonstrates that one macroefen to another. Since there is a
requirement that macros should execute like regaparations, this may not seem
significant. What is significant, however, is thia¢re are 2 macros in the system. In
general, a user can create any number of macre$'sMhat this example suggests.

If we take these examples at face value, whatreradtual messages coming into our
system? It looks like the follow methods must bdeatl start, save. Are these methods on
the Rpn Calculator, on a different facade or aeg gimply new kinds of math

operations? Any of the above will work. For now, ke the easier road and say these
are new methods on the RpnCalculator. What of gegations, do we need to create a
new method or can we use the existing one? Theidadsn’t arbitrary: add a new
method, change an existing method, but both wilkwRather than belabor the decision,
we’ll use the existing method and see what happens.

6.1 Happy Path
Here’s a happy path rejection check:

Version: 0.3a 200 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

6.1.1

Added to RpnCalculatorShould.cpp

TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro) {
calculator->start();
calculator->execute("+");
calculator->execute("*");
calculator->execute("-");
calculator->save("macrol");
enter(6);
enter(4);
enter(9);
enter(3);
calculator->execute("macrol™);
topWas(-42);

}

Get to compiling: Update RpnCalculator.h

void start(Q);
void save(const std::string ¯oName);

Get to linking: Update RpnCalculator.cpp

void RpnCalculator::start() {
3

void RpnCalculator::save(const std::string ¯oName) {

}

Now we have a failing rejection check. We haveve dgtions:

e Get this working out-to-in
e Get this working in-to-out

There are a number of moving parts to this andlveady have several things in place:

e This new construct should operate like a regulahrogeration, so it should inherit
from the math operation interface (abstract baagsg!

e Math operations reside in the math operation fgctohich is also where they are
looked up. So it seems that any new operationsidlemd up there.

e Currently, math operations self-register. This apis for ones that are known when
the system is written, not when it is executingn&omight need to update the factory
to allow for new operations while the system isning.

Rather than getting this check to pass out-toei’s ktart working in-to-out (or bottom-
up). We have a decision; do we leave this chediggaivhile we do our other work or do
we “remove” it somehow? There’s an easy way to tateas “not ready to check yet”:

IGNORE_TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro) {

When we execute our automated checks, the summbushaw one ignored check.
We'll leave this in place until we think we’re reatb give it a go.

A Macro

First, we need to create something that can hold @anrnumber of math operations but
itself behaves like a math operation. Here’s orah ®xample:

Version: 0.3a 201 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include <CppUTest/TestHarness.h>

#include "Macro.h"
#include "RpnStack.h"
#include "Add.h"

TEST_GROUP(MacroShould) {
};

struct MathOperationSpy : public MathOperation {
MathOperationSpy() : performCount(@) {}
void perform(RpnStack &values) {
++performCount;

}

int performCount;

b3

TEST(MacroShould, HandleMultipleMathOperations) {
MathOperationSpy spy;
Macro op;
RpnStack values;
op.append(spy) ;
op.append(spy) ;
op.perform(values);
LONGS_EQUAL(2, spy.performCount);
3

This check verifies that we can add multiple mgtbrations to a macro and that each is
sent the perform message.

Macro.h

#pragma once
#ifndef MACRO_H_
#define MACRO_H_

#include "MathOperation.h"
#include <list>

class Macro: public MathOperation {
public:
void perform(RpnStack &values);
void append(MathOperation &op);

private:
typedef std::list<MathOperation*> MathOperationlList;
typedef MathOperationList::iterator iterator;
MathOperationlList operations;

b3
#tendif

Version: 0.3a 202 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

6.1.2

Notice that this class uses the <list> class imstéavector>. This is more for you to be
aware of the class that for a compelling desigsaraOther than std::list versus
std::vector, you won'’t notice any difference instBimple example.

Macro.cpp

#include "Macro.h"

void Macro: :perform(RpnStack &values) {
for(iterator i = operations.begin(); i != operations.end(); ++1)
(*i)->perform(values);

void Macro: :append(MathOperation &op) {
operations.push_back(&op);
}

This is a minimal implementation of Macro that ges automated check passing.
Adding to factory

Now we need to be able to add one of these tceitterfy. Here is an automated check for
that:

Added to MathOperationFactoryShould.cpp

#include "MathOperation.h"
struct MathOperationStub : public MathOperation {
void perform(RpnStack &values) {}

1

TEST(MathOperationFactoryShould, AllowRegistrationOfNewMathOperations)
{
MathOperationFactory factory;
MathOperationStub *op = new MathOperationStub;
factory.add("newop", op);
try {
CHECK(Cop == &factory.findOperationNamed("newop"));
} catch(UnknownMathOperationException &) {
FAIL("Should have found a math operation™);
}
}

This almost works. The check passes, but thererisraory leak. The factory gets most
of its operations from the math operation regidtralh but this one. We need to update
the destructor of the factory to remove this menteak:

MathOperationFactory: :~MathOperationFactory() {
MathOperationRegistrant r;
for(MathOperationRegistrant::iterator i = r.beginQ);

i l=r.endQ); ++1i)
operationsByName.erase((*i).first);
for(iterator i = operationsByName.begin();
i != operationsByName.end(); ++1i)
delete (*i).second;

Version: 0.3a 203 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

}

This is quite a bit, remove the operations in #etdry that come from the math
operation registrant and then delete anythingtaiseis left over. While this does seem to
work, it's a bit of a mess:

e Allocation in the calculator is passed to the fagtand then released: what happens if
save() is not called?

e The factory has to include MathOperation.h agacahee of the destructor.

e The destructor is ugly.

Auto-registration is to blame for some of this; thestructor is more complex because of
it. The split of allocation and deallocation is piematic; we could have the factory
perform the allocation and deallocation or pubithewhere else. We could update the
factory to use the auto registration rather thgsyéb Then the factory would look in two
places for an operation. Before doing any of tled's take this a bit further to see how
much uglier it gets.

6.1.3 Adding it to RpnCalculator

We have two stub methods and we’re working on gh@ath. Here is something that
will work for this first automated check:

void RpnCalculator::start() {
macro = new Macro;
recording = true;

}

void RpnCalculator::save(const std::string ¯oName) {
factory->add(macroName, macro);
recording = false;

}

void RpnCalculator::execute(const std::string &operatorName) {
MathOperation &op = factory->findOperationNamed(operatorName);

if (lrecording) {
op.perform(values);
} else {
macro->append(op) ;
}
}

Member Data: Update header
class Macro;

class RpnCalculator {

private:

Macro *macro;
bool recording;

Version: 0.3a 204 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

6.2

Member Data: Initialization

RpnCalculator: :RpnCalculator() :
factory(new MathOperationFactory), macro(®), recording(false) {

These changes should work. Now update the rejectienk in RpnCalculatorShould by
removing IGNORE__ and verify that it now passes.

Empty macros not allowed
Here’s a rejection check for this one:
Added to RpnCalculatorShould.cpp

#include "IllegalMacroException.h"
TEST(RpnCalculatorShould,
ThrowExceptionWhenAttemptingToSaveZeroLengthMacro) {
calculator->start();
try {
calculator->save("should fail™);
FAIL("Should have thrown exception");
} catch(IllegalMacroException &e) {
CHECK(1);
}
}

lllegalMacroException.h

#pragma once
#ifndef ILLEGALMACROEXCEPTION_H_
#define ILLEGALMACROEXCEPTION_H_

#include <exception>

class IllegalMacroException : public std::exception {
i

#endif

This check fails, so we need to update the save(hod to check:

#include "IllegalMacroException.h"
void RpnCalculator::save(const std::string ¯oName) {
if(macro->stepCountAtLeast(1l) == false)
throw IllegalMacroException();
factory->add(macroName, macro);
recording = false;

}

For this to compile, link and pass:

Added to Macro.h

bool stepCountAtLeast(unsighed length) const;
Defined in Macro.cpp

bool Macro::stepCountAtLeast(unsigned length) const {

Version: 0.3a 205 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

6.2.1

6.2.2

return operations.size() >= length;

}

The check passes but there’s a memory leak. Iinhero has been allocated in start(), it
should be released either here or in the destrudtermoticed the problem here, we can
fix it here; this also points to other problemaiaths of execution:

#include "IllegalMacroException.h"
void RpnCalculator::save(const std::string ¯oName) {
Macro *candidate = macro;
recording = false;
macro = 0;
if(candidate->stepCountAtLeast(1)) {
factory->add(macroName, candidate);
} else {
delete candidate;
throw IllegalMacroException();

}
}

After this method is done, either the macro wasnaed, in which case its memory is
owned by the factory, or the macro was deletedaR#gss, the calculator is no longer
recording and the macro attribute is initializedtd his points to another problem, what
if start() was not first called?

Must call start first()

TEST(RpnCalculatorShould, RequireStartToBeCalledBeforeSave) {

try {
calculator->save("should fail™);
FAILC"Should have thrown exception");

} catch(IllegalMacroException &e) {
CHECK(1);

}

}

This automated check fails. How it fails is sometyblatform dependent. In my case it
simply stops tests from running. What's happengg null pointer reference on this line:

if(candidate->stepCountAtLeast(1)) {
We can fix this by checking for it:

#include "IllegalMacroException.h"
void RpnCalculator::save(const std::string ¯oName) {
if(macro == @)
throw IllegalMacroException();

,

Notice this is getting a touch ugly. We will work this in a bit; let's continue with
automated rejection checks based on the providachgbes.

Unknown operation cannot be added to a macro
TEST(RpnCalculatorShould, OnlyAllowValidMathOperationsToBeAdded) {

Version: 0.3a 206 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

6.2.3

calculator->start();

try {
execute("AN%");
FAILC"Should have thrown exception");

} catch(UnknownMathOperationException &e) {
CHECK(1);

}

enter(4);

enter(2);

execute("+");

topWas(6);

}

This check fails. While the system already throwdkibwnMathOperationException,
the code needs to clean up the current macro and baxrk into record mode after the
exception, and it doesn't.

Update RpnCalculator.execute:

#include "UnknownMathOperationException.h"
void RpnCalculator::execute(const std::string &operatorName) {
if (lrecording) {
MathOperation &op = factory->findOperationNamed(operatorName);
op.perform(values);
} else {
try {
MathOperation &op = factory->findOperationNamed(operatorName);
macro->append(op);
} catch (UnknownMathOperationException &e) {
delete macro;
macro = 0;
recording = 0;
throw e;
}
}
}

This is getting pretty ugly. There’s duplicatiordathere are essentially two different
methods in this based on the state of things. Weddress this shortly. For now, let’s
finish the last two examples then we’ll come bac#l aonsider different approaches to
removing this ugliness.

Cannot save under existing name
The system should not allow saving a macro namemadame that is already in use:
Added to RpnCalculatorShould.cpp

#include "NameInUseException.h"
TEST(RpnCalculatorShould, DisallowSavingUnderExistingName) {
calculator->start();
try {
execute("+");
execute("+");
calculator->save("+");

Version: 0.3a 207 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

FAILC"Should have thrown exception.")
} catch (NameInUseException &e) {
CHECK(D);
}
}

NamelnUseException.h

#pragma once
#ifndef NAMEINUSEEXCEPTION_H_
#define NAMEINUSEEXCEPTION_H_

#include <exception>
class NameInUseException : public std::exception {};

#endif

This check fails. This is really a behavior of thetory, not the rpn calculator, so we can
get this check to pass but then we should considéing another micro-check to the
math operation factory should source file.

Update MathOperationFactory.cpp

#include "NameInUseException.h"
void MathOperationFactory::add(const std::string &name, MathOperation
*op) {
if(operationsByName.find(name) != operationsByName.end())
throw NameInUseException();
operationsByName[name] = op;

}
While the check passes, there’s a memory leakifagbo fix this:
Update RpnCalculator::save

#include "IllegalMacroException.h"
#include "NameInUseException.h"
void RpnCalculator::save(const std::string ¯oName) {

if (candidate->stepCountAtLeast(1l)) {
try {
factory->add(macroName, candidate);
} catch (NameInUseException &e) {
delete candidate;
throw e;

}

,

Notice how the rpn calculator keeps growing? Thas< violates the single responsibility
principle, it is no longer cohesive. We'll addréisis once we finish the examples.

Version: 0.3a 208 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

6.2.4 Adding missing check on the factory

The last automated rejection check required chatogee factory, so let's add that
missing check on the factory:

Added to MathOperationFactoryShould.cpp

#include "NameInUseException.h"
TEST(MathOperationFactoryShould, NoAllowRegistrationOfAlreadyUsedName)

MathOperationFactory factory;
MathOperationStub *op = new MathOperationStub;
factory.add("newop", op);
try {
factory.add("newop", op);
FAIL("Should have thrown exception");
} catch(NameInUseException &e) {
CHECKCLD);
}
}

Notice, this one passes as is. That's becausere&dgl wrote a more integration-oriented
check that required this behavior. This is justdieg us honest.

6.2.5 Macros can refer to other macros
This should be no problem, let's see how well waleae up to this point:

TEST(RpnCalculatorShould, AllowMacrosToReferToOtherMacros) {
calculator->start();
execute("/");
execute("!");
calculator->save("m1i™");
calculator->start();
execute("swap_xy");
execute("m1™);
calculator->save("m2");
enter(2);
enter(8);
execute("m2");
topWas(24);

}

This automated rejection check passes without ¢hgrige underlying system. This is
no surprise since we treat macros like regularatpers.

6.3 Cleaning up the calculator

The calculator has become a bit of a mess by addipgort for programmability. Here
are the offending member functions:

#include "UnknownMathOperationException.h"
void RpnCalculator::execute(const std::string &operatorName) {
if (lrecording) {
MathOperation &op = factory->findOperationNamed(operatorName);
op.perform(values);

Version: 0.3a 209 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

} else {
try {
MathOperation &op = factory->findOperationNamed(operatorName);
macro->append(op);
} catch (UnknownMathOperationException &e) {
delete macro;
macro = 0;
recording = 0;
throw e;
}
}
}

#include "IllegalMacroException.h"
#include "NameInUseException.h"
void RpnCalculator::save(const std::string ¯oName) {
if (macro == @)
throw IllegalMacroException();

Macro *candidate = macro;

recording = false;

macro = 0;

if (candidate->stepCountAtLeast(1l)) {

try {
factory->add(macroName, candidate);
} catch (NameInUseException &e) {
delete candidate;
throw e;

}
} else {
delete candidate;
throw IllegalMacroException();
}
}

The RpnCalculator serves as the entry point inéosfstem. It shouldn’t do too much;
instead it should delegate much of the work to otiigects. Generally, when a class does
too much work, we extract out part of the clase artother class. This work is a prime
candidate for such a refactoring. We could:

e Create a class that does the programming
e Use the state pattern

The state pattern is a more specific form of fantpout part of the work into another
class. The difference is that there are typicaliytiple states, which we have, and the
next state is determined by messages coming ieteytstem. Consider:

e The calculator is initially in calculation mode
e When the start() message is received, the systempi®gramming mode
e When the save() message is received, the systenmsdb normal mode

Version: 0.3a 210 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

As it is, the state pattern may seem a bit comfdethis and it probably is. However,
let’'s go with it and see what we end up with. He@'model of the state pattern applied
to our domain:

<<interface>>
Context
Rpn Calculator
Calculator Mode
| |
Calculation Programming

In the state pattern, there’s a hierarchy of sthjects. In our case, that is the calculator
mode and its two derivatives: Calculation and Paogning. The calculator has a
reference to one of these at all times, that'stiiel line from Rpn Calculator to
Calculator Mode. The thing with the state is catleel “context” object. Typically, the
state objects need to work directly with the coftthe rpn calculator in this case. If you
do so directly, then there is a circular referenesveen the object with the state and the
state hierarchy. Circular references are causesnder of problems, so we’ll extract an
interface called Context. The calculator will deggem its mode; the mode will depend
on the context. This breaks the circular reference.

The Rpn Calculator and its Calculator Mode candresitered one logical grouping of
functionality. When a message comes into the caloyldepending on its mode it does
one of a few things:

Calculation Mode

Rpn : Math Operation op: Math
Calculation s: RpnStack .

Calculator P Factory Operation
enter(5) i i i i i
enter(5) | enter(5) | | |
enter(3) i | ! | |
—_— enter(3) | enter(3) | | |
execute("+”) ! } } | |
execute(“+”) | | | |
} } op := findOperationNamed(“+”) } }
| i | i} |
| | perform(s) | |
| | 1 1
I I I I
I I I I

Version: 0.3a 211 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Programming

Rpn . Math Operation
Calculation m: Macro
Calculator Factory
start i ‘
_ = start

setMode(Programming)

\
\
\
|
! create
i
|
I

Programming

T
I
I
I
I
I
1
I
I
I
I
I
I
I
I
execute(“+”) }

setMode(:Calculation)

T
B execute(“+”) } |
} = op := findOperationNamed(“+”)
I L ;
I
} I append(op)
save(“m1”) I }
ﬁ‘ save(“m1”) }
)
|
I
1
I

i
\
|
[
add(“m1”, m)
T
\
\
[
[

This is a lot to take in, so we'll take it teststir
6.3.1 Calculation Mode

In calculation mode, we should do what the calaulatas doing before we added
macros. With that in mind, here is a series of muati@d checks on the Calculation class:

CalculationShould.cpp
#include <CppUTest/TestHarness.h>

#include "RpnCalculator.h"
#include "Calculation.h"

TEST_GROUP(CalculationShould) {
RpnCalculator *context;
void setup(Q) {
context = new RpnCalculator;

void teardown() {
delete context;

}
b3

TEST(CalculationShould, PutNumbersOnStackForEnter) {
Calculation mode;
mode .enter(context, 5);
LONGS_EQUAL(5, context->getX());

3
For this to compile, you'll need to make severarues:
Create Calculation.h

#pragma once

Version: 0.3a 212 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#ifndef CALCULATION_H_
#define CALCULATION_H_

class Context;

class Calculation {
public:
CalculationQ);
virtual ~Calculation();
void enter(Context *context, int value);

1
#endif

Create Calculation.cpp

#include "Calculation.h"

#include "Context.h"
#include "RpnStack.h"

Calculation::Calculation() {
}

Calculation: :~Calculation() {
}

void Calculation::enter(Context *context, int value) {
context->getStack().push(value);

}

Create Context.h

#pragma once
#ifndef CONTEXT_H_
#define CONTEXT_H_

class RpnStack;

class Context {

public:
virtual ~Context() = 0;
virtual RpnStack &getStack() = 0;
virtual void enter(int value) = 0;

b
#endif
Make RpnCalculator inherit from Context and add megthod:

#include "Context.h"
class RpnCalculator : public Context {
public:

ﬁﬁﬁStack &getStack() { return values; }

Version: 0.3a 213 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

6.3.2

6.3.3

The first check now passes.
Executes Operations Directly

TEST(CalculationShould, ExecuteOperationsDirectly) {
Calculation mode;
context->enter(5);
context->enter(2);
mode .execute(context, "+");

}
Update Calculation.h

#include <string>

class Calculation {
public:

void execute(Context *context, const std::string &name);
Update Calculation.cpp

#include "MathOperationFactory.h"
#include "MathOperation.h"
void Calculation::execute(Context *context, const std::string &name) {
MathOperation &op
= context->getFactory()->findOperationNamed(name);
op.perform(context->getStack());

Update Context.h:

#include <string>
class Context {
public:

virtual void execute(const std::string &name) = 0;
Throw exception when told to save

#include "IllegalMacroException.h"
TEST(CalculationShould, ThrowExceptionWhenToldToSave) {
Calculation mode;
try {
mode.save(context, "should fail");
FAILC"Should have thrown exception");
} catch(IllegalMacroException &e) {
CHECKCLD);
}
}

Update Calculation.h
class Calculation {

void save(Context *context, const std::string &name);

Version: 0.3a 214 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Update Calculation.cpp

#include "IllegalMacroException.h"
void Calculation::save(Context *context, const std::string &name) {
throw IllegalMacroException();

}
6.3.4 Change to Programming Mode When Told To Start
Create an automated check

#include <typeinfo>

#include "Programming.h"

TEST(CalculationShould, ChangeToProgrammingStateWhenToldToStart) {
Calculation mode;
mode.start(context);
CalculatorMode *finalMode = context->getState();
CHECK(typeid(*finalMode) == typeid(Programming));

}

This requires several changes to compile:

Add a start method to Calculation

Create CalculationMode interface

Update Calculation to use CalculationMode interface
Create Programming class from CalculationMode fater
Add getState() and setState methods to Context
Implement getState() and setState methods in Rpn@ébr

Calculation.h

class Calculation {

void start(Context *context);
CalculatorMode.h (extract interface from Calculatio n.h)

#pragma once
#ifndef CALCULATORMODE_H_
#define CALCULATORMODE_H_

#include <string>
class Context;

class CalculatorMode {

public:
virtual ~CalculatorMode() = 0;
virtual void enter(Context *context, int value) = 0;
virtual void execute(Context *context,const std::string &name)
virtual void save(Context *context, const std::string &name) =
virtual void start(Context *context) = 0;

b3
#tendif

= 0;
0;

Version: 0.3a 215 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

CalculatorMode.cpp
#include "CalculatorMode.h"

CalculatorMode: :~CalculatorMode() {
}

Update Calculation.h

#include "CalculatorMode.h"
class Calculation : public CalculatorMode {

Create Programming.h

#pragma once
#ifndef PROGRAMMING_H_
#define PROGRAMMING_H_

#include "CalculatorMode.h"

class Programming: public CalculatorMode {

public:
Programming(Q);
~Programming(Q);
void enter(Context *context, int value);
void execute(Context *context, const std::string &name);
void save(Context *context, const std::string &name);
void start(Context *context);

1
#endif

Create Programming.cpp

#include "Programming.h"

Programming: :Programming() {

}

Programming: :~Programming() {

void Programming::enter(Context *context, int value) {

}

void Programming::execute(Context *context, const std::string &name) {

}

void Programming::save(Context *context, const std::string &name) {

}

void Programming::start(Context *context) {

}

Version: 0.3a 216 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

6.3.5

Update Context.h

class CalculatorMode;
class Context {

virtual CalculatorMode *getState() = 0;
virtual void setState(CalculatorMode *newMode) = 0;

i
Update RpnCalculator.cpp

class RpnCalculator : public Context {
public:

é&iculatorMode *getState();
void setState(CalculatorMode *newMode);

private:

CalculatorMode *mode;
Update RpnCalculator.cpp

RpnCalculator: :RpnCalculator() :
factory(new MathOperationFactory), macro(®), recording(false),
mode(@) {

}

RpnCalculator: :~RpnCalculator() {
delete factory;
delete mode;

}

CalculatorMode *RpnCalculator::getState() {
return mode;
}

void RpnCalculator::setState(CalculatorMode *newMode) {
delete mode;
mode = newMode;

}

That's a lot of mechanical work but it having ddhies and gotten the final check against
Calculation passing, you've well past the half-wagrk.

Programming Mode
Now we do the same thing with Programming modéh@same order):

TEST(ProgrammingShould, IgnoreEnterForNow) {
Programming op;
op.enter(context, 5);
CHECK(L);

}

Version: 0.3a 217 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

This is a bit odd. For now enter should do nothifigs is probably OK but it does
appear to violate the Liskov substitution principl@is happens when using the state
pattern. What it means is that there is no necgssaravior (for now) for this particular
request. We will put this to good use in the nexdti®on.

Since we had to stub out the enter() method onrBnoging to get finish
CalculationShould, this automated check just worke use of CHECK(1) at the end is
an indication that this test is really a placehofde now.

6.3.6 Record Steps for Execution

TEST(ProgrammingShould, RecordOperationsForExecute) {
Programming op;
op.execute(context, "+");
op.execute(context, "-");
CHECK(Cop.getMacro()->stepCountAtLeast(2));

}

This requires adding a few things to Programming.h:

class Macro;
class Programming: public CalculatorMode {
public:

Macro *getMacro() { return macro; }

private:
Macro *macro;
i
And updating Programming.cpp

#include "Macro.h"
#include "Context.h"
#include "MathOperationFactory.h"

Programming: :Programming() : macro(new Macro) {

}

Programming: :~Programming() {
delete macro;

}

void Programming::execute(Context *context, const std::string &name) {
MathOperation &op
= context->getFactory()->findOperationNamed(name);
macro->append(op);

}

This uses a new method on context, get factory.
Update Context.h:

class MathOperationFactory;

class Context {

Version: 0.3a 218 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

6.3.7

6.3.8

public:

virtual MathOperationFactory *getFactory() = 0;
And, finally, an update to RpnCalculator.h:
class RpnCalculator : public Context {
public:
MéihOperationFactory *getFactory() { return factory; }
Adding macro to factory
Here’s an automated check:

#include "UnknownMathOperationException.h"
#include "MathOperationFactory.h"
TEST(ProgrammingShould, AddMacroToFactoryUponSave) {
Programming op;
op.execute(context, "+");

op.execute(context, "-");
op.save(context, "__add_sub__");
try {

context->getFactory()->findOperationNamed("__add_sub__");
CHECK(D);

} catch(UnknownMathOperationException &e) {
FAIL("Operation not added to factory");

}

To get this to work, we need to update Programmppm.Note that this work already
exists in RpnCalculator::save, even so, I'll wateninimal version and then make sure all
checks are passing before moving on:

void Programming::save(Context *context, const std::string &name) {
context->getFactory()->add(name, macro);
macro = 0;

3
Saving causes state change

Saving should also put the calculator back intowation mode:

#include <typeinfo>
#include "Calculation.h"
TEST(ProgrammingShould, ChangeStateToCalculationUponSave) {
Programming op;
op.execute(context, "+");
op.save(context, "__add__");
CHECK(typeid(Calculation) == typeid(*context->getState()));

To get this working:

#include "Calculation.h"
void Programming::save(Context *context, const std::string &name) {
context->getFactory()->add(name, macro);

Version: 0.3a 219 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

macro = 0;
context->setState(new Calculation);

3
6.3.9 Other checking

A quick review of the RpnCalculator::save showdaés more checking than our current
Programming::save mode. This needs to be fixedtaaély, so now is as good of a time
as ever. Here’s a list of the other checks aroawthg from RpnCalculatorShould:

Disallow Saving Under Existing Name

Only Allow Valid Math Operations To Be Added

Throw Exception When Attempting to Save Zero Lengtcro
Require Start to be called Before Save

Not all of these still make sense. For examplectieulator will only be in programming
mode if start() has been called, so we can skfdheck. The other checks seem to make
sense, so let’s add them (as a set):

Disallow...

#include "NameInUseException.h"
TEST(ProgrammingShould, DisallowSavingUnderAnExistingName) {
Programming op;
op.execute(context, "+");
try {
op.save(context, "+");
FAILC"Should have thrown exception");
} catch(NameInUseException &e) {
CHECK(typeid(Calculation) == typeid(*context->getState()));
}
3

This check fails as the state after save() shoal@&culation but it is not.
Here’s an update to Programming::save() to makiehiduapen:

#include "Calculation.h"
#include "NameInUseException.h"
void Programming::save(Context *context, const std::string &name) {

try {
context->getFactory()->add(name, macro);
macro = Q;

context->setState(new Calculation);
} catch(NameInUseException &e) {
context->setState(new Calculation);
throw e;
}
}

Valid Operations

#include "UnknownMathOperationException.h"
TEST(ProgrammingShould, OnlyAllowValidOperations) {
Programming op;
try {

Version: 0.3a 220 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

op.execute(context, "bogus___");
FAILC"Should have thrown exception");

} catch(UnknownMathOperationException &e) {
CHECK(typeid(Calculation) == typeid(*context->getState()));

}

This fails as the last test failed, so we needxtd fis well.

#include "Calculation.h"
#include "UnknownMathOperationException.h"
void Programming::execute(Context *context, const std::string &name) {
try {
MathOperation &op
= context->getFactory()->findOperationNamed(name);
macro->append(op) ;
} catch(UnknownMathOperationException &e) {
context->setState(new Calculation);
throw e;
}
}

Zero Length...

#include "IllegalMacroException.h"
TEST(ProgrammingShould, DisallowZerolLengthMacro) {
Programming op;
try {
op.save(context, "name");
FAIL("Should have thrown exception");
} catch(IllegalMacroException &e) {
CHECK(typeid(Calculation) == typeid(*context->getState()));

}

This makes the save method a bit unruly but sinbddhe original in RpnCalculator:

#include "NameInUseException.h"
#include "IllegalMacroException.h"
void Programming::save(Context *context, const std::string &name) {
try {
if(macro->stepCountAtLeast(1l)) {
context->getFactory()->add(name, macro);
macro = 0;
context->setState(new Calculation);
} else {
context->setState(new Calculation);
throw IllegalMacroException();
}
} catch(NameInUseException &e) {
context->setState(new Calculation);
throw e;
}
}

Version: 0.3a 221 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

6.3.10 What about the start method?

A quick review of the Programming class reveals tha start() method is empty. It is an
error to call start() when already in Programminade so let’'s make that a fact:

#include "InvalidRequestException.h"
TEST(ProgrammingShould, DisallowStart) {
Programming op;
try {
op.start(context);
FAILC"Should have thrown exception.");
} catch(InvalidRequestException &e) {
CHECK(D);
}
}

This uses a new exception class:

#pragma once
#ifndef INVALIDREQUESTEXCEPTION_H_
#define INVALIDREQUESTEXCEPTION_H_

#include <exception>
struct InvalidRequestException : public std::exception { };

#endif
And it requires a little bit of work in Programmicgp:

#include "InvalidRequestException.h"
void Programming::start(Context *context) {
throw InvalidRequestException();

}
6.3.11 Ready to finish what we’ve started...

Now that we have an implementation for the stageanchy, it is time to update our
RpnCalculator to use it.

6.4 Updating RpnCalculator to use state...
Calculator already has state member data bunitiglized to 0. Update the constructor:
#include "Calculation.h"
RpnCalculator: :RpnCalculator() :
factory(new MathOperationFactory), macro(@), recording(false),
mode(new Calculation) {

}

Most of the method in calculator now delegatetanibde member data:

void RpnCalculator::enter(int value) {
mode->enter(this, value);

}

Version: 0.3a 222 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

void RpnCalculator::execute(const std::string &operatorName) {
mode->execute(this, operatorName);

}

void RpnCalculator::start() {
mode->start(this);

}

void RpnCalculator::save(const std::string ¯oName) {
mode->save(this, macroName);

}

Verify that all of the automated checks are passing
6.4.1 Final Cleanup

Notice that the RpnCalculator has member data ibnger uses: macro, recording. Both
of these can be removed from the header and sélesealong with the forward
declaration and #include of Macro.

6.4.2 Summary
This is a somewhat incomplete implementation ofstia¢e pattern:

e The two kinds of modes, programming and calculatkmow about each other. Often
this is extracted out to a factory, but that sekkestoo much for only 2 states. This
suggests, as described above, that this pattemaybe overkill for this problem.

e The RpnCalculator also creates an instance of (2acuAgain, a factory would solve
this problem.

e The places where state switches forces deallocaltus is OK, but notice that the
object sending the message to switch state isatifiypthe one that gets deleted. That
turns out to be OK, but fragile.

Version: 0.3a 223 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11
7 Rpn Calculator — Sprint 4 — More Complex Blocks
Macros are interesting; it is time to add a fewckk Here are some examples:
Example 1 Example 2 Example 3 | Example 4 Example 5
65 start start start start
8 2 if 2 2
. W 13 ndup ndup
<out>8 save times2 else < >
emit 5 9 if if
<out>A times2 then drop swap
cr 10 save ml else 1
<out>\n 8 swap -
ml then swap
13 save min else
0 14 then
ml 2 save downl
9 min 6
2 3
downl
5
Example 6 | Example 7
start start
6 begin
timesdo 2
2 ndup
* >
end while
save mo6 swap
3 1
m7 -
192 swap
else
then
swap
dup
swap
save downto
6
2
downto
<out>5
<out>4
<out>3
<out>2

Example 1 demonstrates three new operations: éryit”, “cr”. These operations send

output to the terminal. In our case, we’ll use:stlit, but not directly. The first, ., simply

displays the top of the stack as a number and coesthat value. Emit, on the other
hand, treats the number as a character and digplélyss since 65 is the ASCII value of
A, that is what is displayed. Finally, cr sendseaviiine to the output.

Version: 0.3a

224

Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

7.1

7.1.1

The second example demonstrates that a macro agmrcgonstants. Those constants
are pushed onto the stack during execution. Thiplsi program simply multiplies
what’s on the stack by 2.

The third example shows a new composite operatfierelse. If the value at the top of
the stack is non-zero, put 13 on the stack, els® pn the stack. It's a simple little
program, but it demonstrates a whole new operation.

The fourth example uses the previous 2 examplesite a min function.

<fill in if I end up keeping those operations>

Output Operations

These operations produce output in some form. ifkieduces several problems:

e To what do we send output?
e How do we record it to verify that the correct autfs in fact set?
e How do we bolt this into our current system?

The answer to the first question is simple: an dbj@/e could use std::cout, but that
introduces an unnecessary direct dependency ugooait. While certainly possible,
and even a reasonable default behavior, our scdtwdr grow better if we avoid this

direct connection to std::cout.

The answer to the second question is the samedisgh an object. This second bullet
also suggests an additional requirement; we wastdépendency to be injected into our
system.

The final bullet begs a question and demonstrafgsldem with depending on concrete
objects. We have three new operations, all of tHerthings that our system was not
designed to accomplish. Right now, all math operetidepend on an RpnCalculator,
which is sent in to the perform method. How caneasily fix this?

The work we did to introduce the state patterndwase of what we need. Instead of
having operations depend on RpnStack, we couldadsbhave them depend on Context.
We can even accomplish this by migrating rathen ttealoing everything all at once.

Here’s how we’re going to do that:

Create an automated check that uses a new intexfalbbtathOperation.

That math operation will be concrete initially.

We’'ll get the three new operations working using tlew perform() method.

We’'ll then update individual automated checks te e new perform() method.
Once the checks are migrated, we’ll slowly migiatévidual math operations to use
the new method and slowly remove the old versiopesfom().

e Once we think we've fixed everything, we’ll lean thre compiler to tell us what
we’re missing.

The “.” operator

Here’s an automated check to get us started. $tadit of a leap since we’ve deiced to
inject a dependent object. We end up creating akekasses:

#include <CppUTest/TestHarness.h>

Version: 0.3a 225 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include "Dot.h"
#include "OutputDestination.h"
#include "RpnCalculator.h"

TEST_GROUP(DotShould) {
1

#include <vector>
struct OQutputDestinationSpy : public OutputDestination {
std: :vector<int> writtenlnts;
void writeInt(int value) {
writtenInts.push_back(value);
}
1

TEST(DotShould, SendTopValueAsNumber) {
Dot op;
OutputDestinationSpy *spy = new OutputDestinationSpy;
RpnCalculator calculator(spy);
calculator.enter(42);
op.perform(&calculator);
LONGS_EQUAL(42, spy->writtenInts[@]);

}

OutputDestination.h

This is an interface that gives us a level ofriediion between the console and our
system:

#pragma once
#ifndef OUTPUTDESTINATION_H_
#define OUTPUTDESTINATION_H_

class OutputDestination {

public:
virtual ~OutputDestination() = 0;
virtual void writeInt(int value) = 0;

b3
ftendif

There is an implementation of the destructor ineadalled OutputDestination.cpp (not
shown since we’ve done this several times).

Our RpnCalculator is constructed with a spy but ltaw we make sure that no existing
tests are broken? Overload the constructor:

class OutputDestination;

class RpnCalculator : public Context {
public:
RpnCalculator();
RpnCalculator(OutputDestination *out);

Version: 0.3a 226 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

OutputDestination *getOutput() { return out; }
private:

OutputDestination *out;

We've stuck to the forward declaration of Outputtiretion and it is stored as a pointer.
What do we do by default in the no-argument corstnwversus the new constructor
taking in an output destination?

RpnCalculator.cpp
#include "ConsoleOutputDestination.h"

RpnCalculator: :RpnCalculator() :
factory(new MathOperationFactory), mode(new Calculation),
out(new ConsoleQutputDestination) {

}

RpnCalculator: :RpnCalculator(OutputDestination *out) :
factory(new MathOperationFactory), mode(new Calculation),
out(out) {

RpnCalculator: :~RpnCalculator() {
delete out;
delete mode;
delete factory;

}

I've created a “real” implementation of ConsoleQuifpestination that simply writes
directly to cout. It is the default type used. Tgiges backwards-compatibility with
existing automated checks and allows for dependemegtion via overloading.

The destructor assumes it owns the memory assdachatie the out member data. | also
took the time to order deletes such that theyrathe reverse order of allocation. This is
unnecessary, but | like to do this because it makgeslass behave more like auto-
allocated objects.

ConsoleOutputDestination.h

#pragma once
#ifndef CONSOLEOUTPUTDESTINATION_H_
#define CONSOLEOUTPUTDESTINATION_H_

#include "OutputDestination.h"

class ConsoleQutputDestination: public OutputDestination {
public:

ConsoleOQutputDestination();

~ConsoleOutputDestination();

void writeInt(int value);

1

Version: 0.3a 227 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

7.1.2

7.2

#endif

ConsoleOutputDestination.cpp

#include "ConsoleQOutputDestination.h"
#include <iostream>

ConsoleQutputDestination: :ConsoleOutputDestination() {

}

ConsoleQutputDestination: :~ConsoleQutputDestination() {

}

void ConsoleQutputDestination: :writeInt(int value) {
std: :cout << value;

}
It Should Be Registered...

It's been a little while since we wrote a new M&heration. It'd be easy to forget to
register it:

Added to DotShould.cpp

#include "ShouldBeRegistered.h"
CHECK_REGISTRATION(CDot, ".");

Added to Dot.cpp

#include "MathOperationRegistrant.h"
MathOperationRegistrant register_dot(".", new Dot);

Emit and a problem with growing interfaces...
First an automated check:
#include <CppUTest/TestHarness.h>

#include "Emit.h"
#include "RpnCalculator.h"

TEST_GROUPCEmitShould) {
3

#include "OutputDestinationSpy.h"

TEST(EmitShould, WriteCharacter) {
Emit op;
OutputDestinationSpy *spy = new OutputDestinationSpy;
RpnCalculator context(spy);
context.enter('A");
op.perform(&context);
CHECK_EQUAL_C_CHAR('A'", spy->writtenChars[@]);

Version: 0.3a 228 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

This check uses a spy. Rather than create a nealags; | extracted it from the previous
test and the used the same one in both places:

OutputDestinationSpy.h

#pragma once
#ifndef OUTPUTDESTINATIONSPY_H_
#define OUTPUTDESTINATIONSPY_H_

#include <vector>
#include "OutputDestination.h"

struct OutputDestinationSpy : public OutputDestination {
std: :vector<int> writtenlnts;
std: :vector<char> writtenChars;

void writeInt(int value) {
writtenInts.push_back(value);

}

void writeChar(int value) {
writtenChars.push_back(value);

}
1
#tendif

This spy class needed to implement a new methdadeo@utputDestination interface.
Unfortunately, so did the ConsoleOuputDestination.

OutputDestination.h

class OutputDestination {
virtual void writeChar(int value) = 0;

i

ConsoleOutputDestination.h

class ConsoleQutputDestination: public OutputDestination {
void writeChar(int value);

i

ConsoledOutputDestination.cpp

void ConsoleQutputDestination: :writeChar(int value) {
std: :cout << (char)value;

}
7.2.1 Emit should be registered

Add the missing check and implementation to Emitithapp and Emit.cpp to make
sure this new math operation is registered as "emit

Version: 0.3a 229 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

7.3 Finally, cr
The cr operation sends “\n” to the console. Werepeat what we’ve just done:
#include <CppUTest/TestHarness.h>

#include "Cr.h"
#include "RpnCalculator.h"

TEST_GROUP(CrShould) {
1

#include "OutputDestinationSpy.h"

TEST(CrShould, WriteLine) {
Cr op;
OutputDestinationSpy *spy = new OutputDestinationSpy;
RpnCalculator context(spy);
op.perform(&context);
CHECK_EQUAL(1, spy->linesWritten);
3

#include "ShouldBeRegistered.h"
CHECK_REGISTRATION(Cr, "cr™");

Cr.h

#pragma once
#ifndef CR_H_
#define CR_H_

#include "MathOperation.h"

class Cr: public MathOperation {
public:
void perform(Context *context);
void perform(RpnStack &values);

1

#tendif

Cr.cpp

#include "Cr.h"

#include "Context.h"
#include "OutputDestination.h"

void Cr::perform(Context *context) {
context->getOutput()->writeLine(Q);
}

void Cr::perform(RpnStack &values) {
}

Version: 0.3a 230 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

7.4

7.4.1

#include "MathOperationRegistrant.h"
MathOperationRegistrant register_cr("cr", new Cr);

OutputDestination.h

class OutputDestination {
virtual void writeLine() = 0;

3

#endif

ConsoleOutputDestination.h

class ConsoleQutputDestination: public OutputDestination {
void writelLine(Q);

i

ConsoleOutputDestination.cpp

void ConsoleQutputDestination: :writeLine() {
std::cout << std::endl;

}
OutputDestinationSpy.h

struct OutputDestinationSpy : public OutputDestination {
int linesWritten;

OutputDestinationSpy() : linesWritten(@) {}

void writelLine() {
++linesWritten;

}
b
#endif
Migrating to new Perform Interface

We need to find all places where the old perfornthme is called and, where possible,
upgrade to the new interface that uses Contexs Whi be a bit of work since many
automated checks use RpnStack.

What follows are a few such examples of the chdoli@ved by a list of other places
you'll need to update. I'm working alphabetically:

BinaryMathOperation

This is the first direct descendant of MathOperaaphabetically so this is where we’ll
start:

Update BinaryMathOperationShould.cpp
First thing we can do is change the setup to uwssdcalator:

Version: 0.3a 231 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

#include "RpnCalculator.h"

TEST_GROUP(BinaryMathOperationShould) {
RpnCalculator *context;
RpnStack *values;
void setup(Q) {
context = new RpnCalculator;
values = &context->getStack();

void teardown() {
delete context;
}

b
Applying this change maintains all checks. Next,oaa change just one of the checks to
use the new method:

TEST(BinaryMathOperationShould, ConsumeTwoValues) {
BinaryMathOperationSpy spy(*values);
spy.perform(context);

LONGS_EQUAL(Q, spy.size);

}

This does not work without a change to BinaryMatafgion. When you have multiple
overloaded virtual methods but you only override,dd++ will stop searching up the
hierarchy for overload resolution. To make C++ aairall overloaded candidates you
need to add a using statement:

class BinaryMathOperation: public MathOperation {
public:

using MathOperation: :perform;

void perform(RpnStack &values);

Note that this makes the names available for omddd name resolution. To define one
of the methods, we still need to explicitly speétigs demonstrated by the last line.

Update the next few checks to use the differergigarof perform. Replace all:
spy.perform(*values);

With:

spy.perform(context);

Now update the test double in the file as well:

struct BinaryMathOperationSpy : public BinaryMathOperation {
BinaryMathOperationSpy(Context *context)
: context(context), size(-1), actuallLhs(®), actualRhs(@) {}
int calculate(int lhs, int rhs) {
size = context->getStack().size();

,

Context *context;

Version: 0.3a 232 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

7.4.2

b

For this to work we need to update each of thestéstplace all:
BinaryMathOperationSpy spy(*values);

With:

BinaryMathOperationSpy spy(context);

Now the values member data in the TEST_GROUP ismger needed so we can go
back to the setup and clean it up as well:

TEST_GROUP(BinaryMathOperationShould) {
RpnCalculator *context;
void setup(Q) {
context = new RpnCalculator;
context->enter(4);
context->enter(2);

}

void teardown() {
delete context;
}

b

This isn’'t perfect. The last automated check usesstack, so it needs one final update:

TEST(BinaryMathOperationShould, StoreCalculatedResult) {
BinaryMathOperationSpy spy(context);

spy.perform(context);
LONGS_EQUAL(13, context->getStack().top());
}

Notice that while we did make changes to severamated checks, we did not
additionally change any production code nor didgeerid of any of the checks. So this
seems like a stable operation.

Update the calculator

We should be able to update the calculator tohs@&éw perform method. Of course,
with the introduction of the state pattern, theaually calling of the operations is in the
Calculation mode class:

Calculation.cpp

void Calculation::execute(Context *context, const std::string &name) {
MathOperation &op =
context->getFactory()->findOperationNamed(name);
op.perform(context);

We would be able to remove the old perform metmochfBinaryMathOperation if it
were no longer required:

MathOperation (starting to remove old perform)

class MathOperation {

Version: 0.3a 233 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

7.4.3

virtual void perform(RpnStack &values) {%};
i
Now that this method is no longer required anddisea default implementation, we
should be able to update BinaryMathOperation toorerthe old perform:

class BinaryMathOperation: public MathOperation {
public:
virtual void perform(Context *context);
virtual int calculate(int lhs, int rhs) = 0;
i
Updated BinaryMathOperation.cpp
#include "BinaryMathOperation.h"

#include "Context.h"
#include "RpnStack.h"

void BinaryMathOperation::perform(Context *context) {
int rhs = context->getStack().top();
context->getStack().popQ);
int lhs = context->getStack().top(Q);
context->getStack().pop(Q);
int result = calculate(lhs, rhs);
context->getStack().push(result);

}

The magic of checks

| fully expected this to work, but it failed. Why¥ell macros still call the old perform.
How do | know this now? | ran my automated checks tavo failed. The ones that failed
are named:

TEST(RpnCalculatorShould, AllowMacrosToReferToOtherMacros)
TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro)

So without running the debugger, I'm pretty sureevehl need to target my efforts. A
quick update to Macro.cpp fixes this as well:

Macro.h

class Macro: public MathOperation {
public:
void perform(Context *context);
void perform(RpnStack &values);
void append(MathOperation &op);

Macro.cpp (new perform added)

void Macro: :perform(Context *context) {
for(iterator i = operations.begin(); i != operations.end(); ++i)
(*i)->perform(context);

Since we've just got back to all checks passingjgating macro, let's update
MacroShould to use the new interface:

Version: 0.3a 234 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

7.4.4

7.4.5

struct MathOperationSpy : public MathOperation {
Qéid perform(Context *context) {

};...

TEST(MacroShould, HandleMultipleMathOperations) {
ﬁﬁﬁCalculator context;
6b:perform(&context);

}

Now you can remove perform(RpnStack &) from the Madass.
The Newest Math Operations

The Cr, Dot and Emit classes have an unnecesseoripéRpnStack&) method. You
can safely update all three classes by removirgvitaion of perform from both places.

Dup
Dup is next alphabetically in the list. First, waipdate DupShould.cpp:
#include <CppUTest/TestHarness.h>

#include "Dup.h"
#include "RpnCalculator.h"

TEST_GROUP(DupShould) {
RpnCalculator *context;
void setup() {
context = new RpnCalculator;
context->enter(4);
context->enter(3);
Dup() .perform(context);

}

void teardown() {
delete context;

}

3

TEST(DupShould, LeaveSameValueInX) {
LONGS_EQUAL(3, context->getX());
}

TEST(DupShould, HaveSameValuelInY) {
context->execute("drop");
LONGS_EQUAL(3, context->getX());

}

TEST(DupShould, IncreaseStackSizeByl) {
LONGS_EQUAL(3, context->getStack().size());

Version: 0.3a 235 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

7.4.6

7.5

}

TEST(DupShould, LeaveRemainderOfStackAlone) {
context->execute("drop");
context->execute("drop");

LONGS_EQUAL(4, context->getX());

}

#include "ShouldBeRegistered.h"
CHECK_REGISTRATION(CDup, "dup");

Dup.h

class Dup: public MathOperation {

public:
void perform(Context *context);

3

Dup.cpp

void Dup: :perform(Context *context) {
context->getStack().push(context->getStack().top());

}

What Remains

There are several classes left to update. Note]ange system, it might be OK to have
both methods and do as we did, have one methotheatither for backwards
compatibility.

The following automated checks need to be upddtetyavith their classes: Drop,
FactorialShould, NDupShould, PrimFactorsOf, Sumaf4y.

Once you've updated all of these additional files) can safely remove the old perform
from the system and make the new perform purealirtu

Numeric Constants as Operations

Our next example uses a constant value as pannaiceo. Here’s an automated check to
reflect that example:

TEST(RpnCalculatorShould, AllowConstantValuesInMacros) {
calculator->start();
enter(2);
execute("!");
calculator->save("times2");
enter(5);
execute("times2");
topWas(10);
}

This fails, but it shouldn’t be too much to makes tivork:
Update Programming::enter

#include <sstream>
void Programming::enter(Context *context, int value) {
std: :stringstream name;

Version: 0.3a 236 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

name << value;

if(context->getFactory()->hasRegistered(name.str()) == false) {
MathOperation *op = new PushConstant(value);
context->getFactory()->add(name.str(), op);

}

execute(context, name.str());

}
Add new method to MathOperationFactory (to headdrsource file of course):

bool MathOperationFactory::hasRegistered(const std::string &name) {
return operationsByName.find(name) != operationsByName.end();

}
Notice, that this method could have been extrattad the add method:

void MathOperationFactory: :add(
const std::string &name, MathOperation *op) {
if(hasRegistered(name))
throw NameInUseException();
operationsByName[name] = op;

}
7.6 If ... then ... else

Version: 0.3a 237 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

8 Rpn Calculator — Sprint 5 — FitNesse & CSlim
8.1.1 A spec-driven example

8.1.2 A sequence diagram showing flow

8.2 Adding a basic text ui

8.3 Adding several more operators

8.3.1 ifelse

8.3.2 ntimesdo

8.3.3 ConditionWhileDo

8.4 Programming the Calculator with a string
8.4.1 Example forth program

8.4.2 Breaking it into parts

Tokenization using spaces

Tokenization using regular expressions
8.4.3 Building a Basic Sequence
8.4.4 Building a conditional sequence
8.4.5 Building a complex sequence
8.4.6 Adding the behavior into the calculator
8.4.7 Exercising the new behavior from the text ui
8.4.8 Saving your extensions

Version: 0.3a 238 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

9 Where to go next?
9.1 TDD Is Not Enough
9.1.1 GRASP
9.1.2 SOLID+D
Packaging Metrics
9.1.3 Code Smells
9.1.4 WELC
9.1.5 Test Doubles
9.1.6 Coding Katas
9.1.7 The 4 Actions (should be sooner)

Version: 0.3a 239 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

10 Appendix A: Revealing the Magician
10.1 Arrays versus pointers

10.1.1 Koenig's i[3] == J][i] trick

10.2 Methods versus functions

10.3 Operator Overloading

10.4 Overloading <<

10.5 Overloading ++i versus i++

10.6 Virtual Functions

10.7 new & delete versus malloc & free

Version: 0.3a 240 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

11 Appendix B: More Complex Composition with Bind

Version: 0.3a 241 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

12 Appendix C: FitNesse, a quick introduction

Version: 0.3a 242 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

13
13.1

To Be Deleted
My Story Until 2010

My name is Brett L. Schuchert. | pronounce my feshe as “shoe — heart” but I'm
happy with many variations on that name. You carere my CV at
http://schuchert.wikispaces.com/MyCv

| started using computers on a paper terminal ptagtart trek in b grade. During 8

grade | nearly failed a typing class on manualwers and | started learning BASIC

on an Apple I, mostly drawing low-res graphicsodk programming classes in high
school; first BASIC, then COBOL and 6502 Assemlalyduage. Because of the COBOL
class, | took a typing class and learned to toypk {two spaces after each.) because my
COBOL programs were hundreds to thousands of loves | learned 6010 Assembly on
a Commodore 64 before taking the 6502 Assemblydagg course in High School. The
processors were nearly the same but on the 65i#sipossible to view 64K of RAM as
well as the ROM on top of the RAM by disabling mtgts and programming address 0
and 1 with a memory pattern.

| studied both Electrical Engineering and Comp&eience at the University of lowa. |
first learned data structures and algorithms irc&as followed that with a class on
assembly language programming with two simulatsgmably languages. The first
assembly language did not have a stack, the semmndid. The most important thing |
did in that class was learn about activation regdstick frames) and we wrote recursive
algorithms in assembly. It was quite useful.

Next in line was discrete mathematics. This gaveamappreciation of logic and a hate
of program correctness proofs. At that time | tigiothem to be bunk. The only
difference between then and now is | have a stmoaiggiment that | won't bore you
with. | took operating systems courses, programrfanguage foundations courses, my
favorite language from that series being SNOBOL laadhing about Bacus Naur Form.

In early 1989 | took an operating systems programgnoiass from Mahesh Dodani. This
turns out to be one of the most important classestse of professor Dodani. He
allowed me to take that OO programming class, whlidwed me to become a research
assistant and learn C++. | that job, | worked wiglff Francis, who knew a lot more about
programming than | did. He taught me about revisiontrol, specifically CVS. I'm
amazed still today at places | go that don’t usd#gaols.

Working as a Research Assistant later allowed nieetan undergraduate teaching
assistant in the College of Engineering, wherepdu:port an old embedded system
programming class from assembly to C. In doing, thlaad to port the cross-compiler. It
was a K&R Style 1 compiler and | had to simply erifetc and putc. | started by looking
at the generated assembly. It was 68000, whickewkinom an engineering course. |
started with hand-coded assembly, and then | mawvedhbedded assembly in the C
code. | then realized that all | was doing was igdhemory locations, so | just cast the
address in memory from a void* to a char* and didrgthing with macros. | mention
this because it was at that point that | grokeaheos fully. | nearly had them down
before that experience, but that solidified poister me. Later, when | had to interact
with an A to D converter, | just read an addresheW! realized that function call

Version: 0.3a 243 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

overhead was prohibitive on the platform, | redestjthe API to take an array and
count. That was a valuable lesson about performarigieh is really no longer necessary
at that level but still relevant between systems.

While all of this was going on, | was also teachoognputer literacy courses at Kirkwood
Community college. By the time | was learning C+tl &malltalk, | had 4 years of
teaching under my belt to so-called non-traditistatients. In one class | had a range of
ages from 17 — 63.

When | started learning C++ | was using CFront THere were no books and the
internet as we know it really didn’t exist. Thestibook | bought was “The Annotated
Reference Manual” with two “experimental” chapterse on templates, and the other on
exceptions. Later, | came across “Advanced C++ faragiing Styles and Idioms” by
James Coplien. | tore into that book and theneslasth email conversation with the
author. That was exceptionally valuable for me bsed learned quite a bit form the
book and my conversations, and James introducet the world of book reviews. |
stated reviewing books (badly if I'm being honeat)d this lead to a book review by a
relative unknown, Robert Martin. He would becomebogs about 13 years later and be
better known as Uncle Bob.

| worked 18 months at a startup in Dallas aftevileg college. | thought | knew C++ but
| was a typical arrogant college graduate who thdug knew everything but really
didn’t know what was important. | did know the larage well; | didn’t understand the
domain at all. | ended up using AWK quite a bit fiata conversion and | worked as a
technical business analyst.

During this time | managed to teach a few C and Classes at The University of Texas
at Arlington. That’s where | wrote my first TCP/#pplication and my first client/server
code. | was too stupid to not try to do so in ¢léise, making heavy use of the man
command along the way. | learned at least as msichyastudents to be sure.

My next job was with a small company called Objeptce. | joined as a trainer working
with Graham Glass. At first it was C++ training ahém Smalltalk training. | took the
excellent outlines that Graham had intuitively deped and formalized them so | could
teach them. This is when | started writing too malnyes for classes. During this time
we also added other classes on formal Object-Grieanalysis and design. | worked
with Craig Larman on course development. | haveeanory of he and | huddled together
around a 13” monitor using Visio in Windows NT tesign the flow for our C++ and
Smalltalk classes to keep them in Sync.

We used an interesting design problem in that cssiopoly. | learned a lot about
analysis, design, programming, design patternsdbsoftware process and training,
among other things, because of Monopoly

| started consulting at Object Space. | had gdtiéiy burnt out from training. | got to the
point where (I though) | knew all the questionsigit get asked and had overly precise
answers to each of those questions. My first gigobtraining was to work on a
Smalltalk project that eventually involved somer@gramming. | convinced the client to
use C++ and all of a sudden | was training seyaraple C++ on a real project using an
OO database.

Version: 0.3a 244 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

In 1994 | came across the STL from Stepanov and Ager learning it a bit, | started
using it on this project. | remember having a 10,68micolon program that took 7 hours
to compile on an HP because of templates. The gaoggam took 15 minutes on a 400
MHz Pentium using Visual C++ 4.2.

Consulting at Object Space gave accelerated myifegarl got to experience things that
didn’t work without having to commit the error mifsé am certain that given the
opportunity, | would have done many of the thingschents did exactly how they did it
(I often did). So | managed to learn faster becawgss seeing what did not work and
then coming up with something that did work.

| worked as the “architect” for a three team disited development effort starting in
1997 after learning Java. This is where | was thiced to JUnit and | became test-
infected. So I've been writing unit tests in onenficor another for about 13 years now. |
worked on a Java phone project; | helped port tesy$rom using MS tools to Java 1.02
and we used invisible applets for asynchronous D@hlhates (it wasn't AJAX, but it
was the same idea — everybody was doing it apthiat). Later, related to that project, |
was that architect that did the over-design ofagqat and then got pulled off for later
development. | went back to see the damage mydrstgn had caused, | did help
remove some deadlock issues but that was a fafuveer design even if the product did
get used.

Near the end of my time at Object Space | was weain intensive 8-week internal boot
camps. This was again a great way for me to leamiedl as teach and coach. Looking
back | have to assume | was pretty bad in many wadgreow | was so-so handling the
soft-skills side of things.

In 1997, along with switching to Java, | came as@$ook by Jerry Weinberg. |
recognized his name from Exploring Requirementsciwhloved, so | read this book
and that started a journey that is still goingpdk Problem Solving Leadership then
Change Shop and later the SEM group, a Satir Yegipoogram, SEM writer’s
workshop and the X workshop for developing expéi@ihearning situations.

All of this started to take hold when | left Obj&pace and joined Valtech. | took classes
that had burnt me out in the past, and redesigmad to make them more student-driven.
While these were early experiments, they'd turntodéad to something important later
on.

My job at Valtech was similar to the one at ObjBptce. | taught and consulted. | was at
Enron the day it went down (it wasn’'t my fault). Asesult | went to England for 6
months and joined the largest project of my car@48.people, | was #344. | learned
quite a bit about just how bad a government prajaotgo. After coming back from that
job | stared a 6-month project that turning in-gear project for me.

| was one of six people helping to port an exist@BOL solution to Java and train the
COBOL programmers at the same time. That was aziagaxperience. | learned more
than | could have ever hoped. We put many apptinatinto production, may with very
low defects. The first project was 12 people, D-+ibnths. In the first 9 months of
production use, we found one defect. We were idstied at the time, which lead to a

Version: 0.3a 245 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

pretty low defect rate. We got lucky, we made aofanistakes and those came back to
bite us.

Of the many things | learned on that project, oh#nem was a confirmation of the
importance of automated testing. Even though weagidor job on our unit tests, they
were slow, dependent on data we did not own, wiEwere able to make significant
changes without breaking things. On one occasioneeel to make an architectural
change across a number of applications (aboutwarmed the then 35ish developers that
I'd be making a change on the weekend and theyeslaotbe checked in by Friday. |
then changed 1,287 files across around 1.5 miliiees of code and didn't break
anything.

I made many mistakes but unlike many of my previmagects, | had to live with them
and learn from them. | had to eat my own dog f&ulit was a great experience with a
lot of just amazing people both from Valtech anel iertz.

While working on this project, | worked with Aspe@tiented Programming and
introduced a solution to an ongoing problem. It Waesright solution given the context
but probably not the right one if we had the optiomedo everything. | presented a talk
on AOP to our Java group, at a private confereac®<ech and then | did something
that would have far-reaching effects.

| attempted to write my talk in a self-paced expetial learning exercise. That got me
started writing on Google pages first and therr laikispaces.com. | managed to get
accepted at SD West on another subject but | wesaped to go to SD West because |
was writing about what | was learning. | was dadingt because | had read another book
by Jerry Weinberg, “Weinberg on Writing.” Sincetdded that site, I've written around
800 pages of material. From late 2008 to Augus020iad 700,000 hits to my site. That
doesn’t count the first 2 years. Because | wasgmtasg at SD West, | once again met
Bob Martin. | had applied at Object Mentor in 208t did not take the job an instead
joined Valtech. However, in 2007 things were défetr Valtech made a similar mistake
to Object Space that had essentially signed thehdeell for Object space; they got rid
of the training department.

When | discovered that had happened | was in aiglitoy Bob Martin. | discussed
joining Object Mentor; two weeks later | had aneoffé weeks after that | finished up an
internal boot camp | was teaching at Hertz andnigd Object Mentor.

For three years | worked at Object Mentor honingAgile software development skills,
like Test Driven Development. In those three yéaame across many excellent people
and projects, which just accelerated my learning.

Around mid-June 2010 my good friend David Nunn @#teme the C++ classes. | had
been teaching C++ at Object Mentor, primarily Tegven Development in C++. | took
where | was at and wrote a class that was vergrifit from the kind of class | wrote in
the early 1990’s.

That class is the genesis of this book.

Version: 0.3a 246 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know

08/04/11

14 Index

#define, 27

#endif, 24, 27

#ifndef, 27

#include, 27
" versus <>, 27

#pragma, 23, 27
once, 27

<trl/random>, 47

array, 47

Assignment Operator, 53

Automated Tests
Test Control, 55
Test Granularity, 33
Wisdom, 29

C++ Idioms, 51

C++ Recommendations
prefer initialization over assignment,

49

C++ Standard Library
array, 47
begin, 48
end, 48
mt19937, 49
vector, 17

C++ Terminology, 28
assignment, 47
Assignment Operator, 53
Compilation Unit, 16
const member function, 27
Copy Constructor, 53
declaration, 23
definition, 23
Definition, 28
Destructor, 53
initialization, 48
I-value, 48
Member function, 28
member-wise initialization list, 48
namespace, 49
non-primitive, 49
Object Module, 16
Operator Overloading, 53
operator(), 49
pre-increment, 49
primitive, 50

r-value, 50
static, 50
struct, 17
template class, 17, 50
typedef, 50
virtual, 54
class, 27
class versus struct, 28
CommandLineTestRunner, 16
CommandLineTestRunner.h, 16
RunAllTests, 16
command-query separation, 48
Common Errors
Forgetting ; at the end of class, 26
Forgetting ; at the end of
TEST_GROUP, 26
Getting the signature incorrect, 26
Compilation Unit, 16
const member function, 27
constructor
no-argument constructor, 49
Constructor, 48
Copy Constructor, 53
CppUTest, 28
Auto Test Discovery, 15
Building CppUTest, 8
CHECK, 27
CommandLineTestRunner, 16
Downloading CppUTest, 8
LONGS_EQUAL, 16
Mechanics of CppUTest, 9
Order of Tests, 34
RunAllTests, 16
TEST, 17, 28
Test Fixture, 34
TEST_GROUP, 17, 28, 31
TestHarness.h, 17, 28
Creating a Project, 10
declaration, 23, 24, 27
Declaration, 28
definition, 23, 24, 25, 27
Definition, 28
Dependency Injection, 56
Design Principles
command-query separation, 48

Version: 0.3a 247

Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert

C++ & OOD, The Least You Need To Know

08/04/11

Destructor, 53
Don't Repeat Yourself, 31
Downloading CppUTest, 8
DRY, 31
Ecipse CDT
Library Path, 11
Eclipse CDT
Auto Save and Refresh, 11
C++0x, 11
Creating a Project, 10
Include Path, 10, 11
Included Libraries, 11
Installing Eclipse CDT, 6
Installing the Wascana Plugin, 8
Library Path, 10
Run Last Thing Execute, 12
Starting Eclipse CDT, 6
Eclipse Shortcuts
Ctrl-B, 16
Ctrl-F11, 16
function-object, 48
functor, 48
Include Directory, 16
Include Path, 10
Installing Eclipse CDT, 6
Installing the Wascana Plugin, 8
Library Directory, 16
Library Path, 10
LONGS_EQUAL, 16
Mechanics of CppUTest, 9
Member function, 28
definition, 28
member-wise initialization list, 48
namespace, 49
nested type, 49
nested typedef, 49

no-argument constructor, 49
non-primitive, 49
Object Module, 16
Operator Overloading, 53
operator(), 49
Polymorphism, 57, 59, 61
Moving Parts, 57
prefer initialization over assignment, 49
pre-increment, 49
primitive, 50
initialization, 50
private:, 24, 50
protected:, 24
public:, 24, 28
Refactoring, 21
Refactroing, 44
RunAllTests, 16
r-value, 50
Scope ::, 28
static, 50
struct versus class, 28
template class, 50
TEST, 17, 34
Test Control, 55
Test Fixture, 34
Test Granularity, 33
TEST_GROUP, 17, 31, 32, 34
TestHarness.h, 17
typedef, 49, 50
UML, 20
Class Diagram, 31, 55
Communication Diagram, 56
vector, 17
virtual, 54
Wascana Plugin
Installing the Wascana Plugin, 8

Version: 0.3a 248

Author: Brett L. Schuchert (schuchert@yahoo.com)

