
© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 1 Author: Brett L. Schuchert (schuchert@yahoo.com)

C++ and Object Design:
the least you need to know

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 1 Author: Brett L. Schuchert (schuchert@yahoo.com)

INTRODUCTION 1

1.1 Why this book now? .. 1

1.2 How is it different? .. 2

1.3 What not to expect? .. 3

1.4 Standing on the Shoulders of Giants ... 3

2 OBLIGATORY HELLO WORLD 5

2.1 Setting up your environment .. 5
2.1.1 The Tools 5
2.1.2 Installing the Java Developers Kit (JDK) 6
2.1.3 Installing Eclipse CDT 6
2.1.4 Starting Eclipse CDT 6
2.1.5 Installing the Wascana Plugin 8
2.1.6 Downloading CppUTest 8
2.1.7 Building CppUTest 8

2.2 Mechanics of CppUTest .. 9
2.2.1 Creating a Project 10
2.2.2 Include Path, Library Path and Included Libraries 10
2.2.3 A Few Convenient Settings 11
2.2.4 Adding a CppUTest main() function 12
2.2.5 Adding a first test 13
2.2.6 Experiments in Failure 15

2.3 Recap ... 15
2.3.1 Terminology 15
2.3.2 Highlights 18

3 THE DICE GAME 20

3.1 What’s Ahead? ... 20

3.2 The Design ... 20
3.2.1 Notes on UML 20
3.2.2 The Rules of the Game 21
3.2.3 One Development Strategy 21

3.3 The First Test .. 21
3.3.1 Create the test file 23
3.3.2 Die Header 23
3.3.3 Die Source 25

3.4 Exercise .. 25
3.4.1 Results 25
3.4.2 Exercises in Failure 26
3.4.3 Concept Review 27
3.4.4 Final Observation 29

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 2 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.5 Making Improvements ... 29
3.5.1 Updated Test 29
3.5.2 When to Clean Up 30
3.5.3 Updated Die Header File 30
3.5.4 Updated Die Source File 30
3.5.5 Exercise: Update Die 31

3.6 DRY Violation ... 31
3.6.1 Removing Duplication 31

3.7 A Message on Test Granularity ... 33
3.7.1 Recap 34

3.8 Fixing an anemic roll method ... 35
3.8.1 Validating Roll Distribution 35
3.8.2 Updated Header File 41
3.8.3 Updated Source File 42
3.8.4 Recap 47

3.9 C++ Idioms ... 51
3.9.1 Updated Header File 51
3.9.2 Updated Source 52
3.9.3 Recap 53

3.10 What’s coming up? ... 54

3.11 Review Game Rules ... 54
3.11.1 Test Control 55
3.11.2 Dependency Injection 56
3.11.3 Polymorphism Moving Parts 57

3.12 Testing Into It: LoadedDieTest... 58
3.12.1 Options: Interface/Concrete Inheritance 58
3.12.2 LoadedDie Implementation 59
3.12.3 Get your test passing 59
3.12.4 Experiment in Failure 59
3.12.5 Fixing It 60
3.12.6 Overloading faceValue versus roll 60
3.12.7 Fixing Die: Command Query Separation 62
3.12.8 Review 62

3.13 What’s on Deck? ... 62

3.14 Test-Driven Walkthrough ... 63
3.14.1 What’s required to make this work? 63
3.14.2 DiceGame Header 64
3.14.3 DiceGame Source 64
3.14.4 Get it Compiling 65
3.14.5 Handle the memory leak, fix the test 66
3.14.6 Always losing is no fun 68
3.14.7 Experiments in Failure 70

3.15 Recap ... 75

3.16 What’s coming up? ... 79

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 3 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.16.1 Remember Cup class? 79
3.16.2 Refactoring: Definition 80
3.16.3 Updated Cup Header 80
3.16.4 Updated Cup Source 81
3.16.5 Getting to Compiling 81
3.16.6 Updating DiceGame 82
3.16.7 What of the idiom? 86
3.16.8 A Logical Fix to Cup 87

3.17 What is going on with const? ... 88

3.18 Taking Small Steps, Recap ... 91

3.19 Memory Allocation .. 92
3.19.1 std::shared_ptr 92
3.19.2 Fixing DiceGame 94
3.19.3 Fixing Cup 96

3.20 Warning: Circular References ... 97
3.20.1 The Problem: A concrete example 97
3.20.2 Options 100

3.21 Recap ... 102

3.22 What’s Coming Up? .. 102

3.23 A Few Built-In Algorithms .. 103
3.23.1 Updated roll() 103
3.23.2 Updated total() 106
3.23.3 Recap 108

3.24 Improved Test Writing? ... 109
3.24.1 Pass a factory into DiceGame 109
3.24.2 Oh Wait, testability 110

3.25 The 4-contact points of software development ... 110
3.25.1 Why? 111

3.26 Create a concrete Factory ... 112
3.26.1 First Test against the Factory 112
3.26.2 Define the class: LoadedDieFactory 113
3.26.3 Define the methods: LoadedDieFactory 113

3.27 Update the cup ... 113
3.27.1 The Test 113
3.27.2 A new constructor 114

3.28 Dice Game Instantiation .. 114
3.28.1 First a test 114
3.28.2 Notice a pattern? New Constructor 115
3.28.3 Update the second test 115
3.28.4 Oops, not there yet 116

3.29 Extending Loaded Die Factory .. 116
3.29.1 Here’s a test 116

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 4 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.29.2 The Updated Class 116
3.29.3 Return to green 117
3.29.4 Back to that final test 117
3.29.5 Why modify this final test at all? 118

3.30 Final Cleanup .. 118
3.30.1 DiceGame 118
3.30.2 Cup 118
3.30.3 Common typedef 118

3.31 Is this better? .. 119
3.31.1 Can we even play a real game 119
3.31.2 Problem with Test Doubles 119

3.32 Refactor: Extract Interface ... 119
3.32.1 The Class Definition 119
3.32.2 Implementing the pure virtual destructor 120
3.32.3 Update LoadedDieFactory 120

3.33 Now DieFactory .. 120
3.33.1 First the test 121
3.33.2 The Implementation 121
3.33.3 Get to Green 122

3.34 A Smoke Test ... 122
3.34.1 Make the required updates 122
3.34.2 Back to green 123
3.34.3 Where does this test belong? 123

3.35 Wrap-up .. 123

3.36 Final Recommendations .. 124
3.36.1 Books 124
3.36.2 Katas 124
3.36.3 Practice 124

3.37 What’s coming up? ... 125

4 RPN CALCULATOR 126

4.1 Project Description .. 127

4.2 What’s Coming Up? .. 127

4.3 Biting off just enough ... 127

4.4 Develop Examples .. 128

4.5 Project Setup .. 129

4.6 The first unit check .. 129
4.6.1 Was all of this necessary? 132
4.6.2 Add: The First Test 132

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 5 Author: Brett L. Schuchert (schuchert@yahoo.com)

4.7 Subtract: The Second Test .. 134

4.8 What about Actual Values? ... 135

4.9 Drop ... 136
4.9.1 First introduce the stack 137

4.10 Getting Factorial Working .. 139

4.11 Revisit Add ... 140
4.11.1 Feature Envy 141

4.12 Resolving Feature Envy: Writing Our Own Stack ... 141
4.12.1 First test: top works on an empty stack 142
4.12.2 Update RpnCalculator 144

4.13 Finish subtract .. 144

4.14 Dreaded Duplication or DRY ... 146
4.14.1 Extract Classes 147
4.14.2 Keeping it the same 149
4.14.3 Updating Subtract 149
4.14.4 Drop 150
4.14.5 Factorial 151

4.15 Removing Duplication ... 151
4.15.1 It consumes two values 152
4.15.2 It calls an extension point with the correct parameters 156
4.15.3 It stores the result 157
4.15.4 Updating Add and Subtract 157
4.15.5 Not updating drop 158

4.16 All those methods ... 158
4.16.1 An example based migration 158
4.16.2 Migrating the subtract() method 159
4.16.3 Finish the transformation 160

4.17 Type un-safe ... 161

4.18 Long Method ... 162

4.19 A Concrete Factory ... 164
4.19.1 Actually using the factory 165

4.20 Retargeting Automated Checks ... 166
4.20.1 Add 168
4.20.2 Drop 169
4.20.3 Factorial 170
4.20.4 MathOperation 171
4.20.5 MathOperationFactory 171
4.20.6 Subtract 171

4.21 Adding Multiplication ... 172

4.22 Adding Division ... 173

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 6 Author: Brett L. Schuchert (schuchert@yahoo.com)

4.23 MathOperationFactory refactoring: Storing Math Operations .. 175

4.24 MathOperationFactory refactoring: Automatic Math Operation Registration 177
4.24.1 An object for registration 177
4.24.2 Automatically Register Multiplication 181
4.24.3 Split registrant 182

4.25 Add Missing Examples .. 183

4.26 Sprint Summary .. 184

5 RPN CALCULATOR – SPRINT 2 – GROWING FEATURES 186

5.1 Adding Sum .. 186

5.2 Less Than ... 188

5.3 Equal To and Greater than .. 189

5.4 Swap XY ... 189

5.5 Dup ... 191

5.6 N Dup ... 191

5.7 Prime Factors ... 193
5.7.1 Of 2 … 194
5.7.2 Of 3… 195
5.7.3 Of 4 … multiple values 195
5.7.4 Of 5 … 195
5.7.5 Of 6 … two values, but they are different 195
5.7.6 As will 7 … 196
5.7.7 But 8 is different, 3 values, instead of just 2. 196
5.7.8 Is 9 different? 196
5.7.9 Register It 197

5.8 Examples as Rejection Checks ... 197

6 RPN CALCULATOR – SPRINT 3 – MACROS 200

6.1 Happy Path ... 200
6.1.1 A Macro 201
6.1.2 Adding to factory 203
6.1.3 Adding it to RpnCalculator 204

6.2 Empty macros not allowed .. 205
6.2.1 Must call start first() 206
6.2.2 Unknown operation cannot be added to a macro 206
6.2.3 Cannot save under existing name 207
6.2.4 Adding missing check on the factory 209
6.2.5 Macros can refer to other macros 209

6.3 Cleaning up the calculator ... 209
6.3.1 Calculation Mode 212

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 7 Author: Brett L. Schuchert (schuchert@yahoo.com)

6.3.2 Executes Operations Directly 214
6.3.3 Throw exception when told to save 214
6.3.4 Change to Programming Mode When Told To Start 215
6.3.5 Programming Mode 217
6.3.6 Record Steps for Execution 218
6.3.7 Adding macro to factory 219
6.3.8 Saving causes state change 219
6.3.9 Other checking 220
6.3.10 What about the start method? 222
6.3.11 Ready to finish what we’ve started… 222

6.4 Updating RpnCalculator to use state... .. 222
6.4.1 Final Cleanup 223
6.4.2 Summary 223

7 RPN CALCULATOR – SPRINT 4 – MORE COMPLEX BLOCKS 224

7.1 Output Operations ... 225
7.1.1 The “.” operator 225
7.1.2 It Should Be Registered… 228

7.2 Emit and a problem with growing interfaces… ... 228
7.2.1 Emit should be registered 229

7.3 Finally, cr .. 230

7.4 Migrating to new Perform Interface .. 231
7.4.1 BinaryMathOperation 231
7.4.2 Update the calculator 233
7.4.3 The magic of checks 234
7.4.4 The Newest Math Operations 235
7.4.5 Dup 235
7.4.6 What Remains 236

7.5 Numeric Constants as Operations ... 236

7.6 If … then … else ... 237

8 RPN CALCULATOR – SPRINT 5 – FITNESSE & CSLIM 238

8.1.1 A spec-driven example 238
8.1.2 A sequence diagram showing flow 238

8.2 Adding a basic text ui .. 238

8.3 Adding several more operators.. 238
8.3.1 ifelse 238
8.3.2 ntimesdo 238
8.3.3 ConditionWhileDo 238

8.4 Programming the Calculator with a string .. 238
8.4.1 Example forth program 238
8.4.2 Breaking it into parts 238
8.4.3 Building a Basic Sequence 238
8.4.4 Building a conditional sequence 238

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 8 Author: Brett L. Schuchert (schuchert@yahoo.com)

8.4.5 Building a complex sequence 238
8.4.6 Adding the behavior into the calculator 238
8.4.7 Exercising the new behavior from the text ui 238
8.4.8 Saving your extensions 238

9 WHERE TO GO NEXT? 239

9.1 TDD Is Not Enough ... 239
9.1.1 GRASP 239
9.1.2 SOLID + D 239
9.1.3 Code Smells 239
9.1.4 WELC 239
9.1.5 Test Doubles 239
9.1.6 Coding Katas 239
9.1.7 The 4 Actions (should be sooner) 239

10 APPENDIX A: REVEALING THE MAGICIAN 240

10.1 Arrays versus pointers .. 240
10.1.1 Koenig’s i[3] == 3[i] trick 240

10.2 Methods versus functions .. 240

10.3 Operator Overloading .. 240

10.4 Overloading << ... 240

10.5 Overloading ++i versus i++.. 240

10.6 Virtual Functions ... 240

10.7 new & delete versus malloc & free... 240

11 APPENDIX B: MORE COMPLEX COMPOSITION WITH BIND 241

12 APPENDIX C: FITNESSE, A QUICK INTRODUCTION 242

13 TO BE DELETED 243

13.1 My Story Until 2010 ... 243

14 INDEX 247

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 9 Author: Brett L. Schuchert (schuchert@yahoo.com)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 1 Author: Brett L. Schuchert (schuchert@yahoo.com)

Introduction
I started using C++ and Smalltalk in 1989; C++ as a research assistant, and Smalltalk in
an Object Oriented Languages Seminar, both at the University of Iowa. In the spring
semester of 1990, while taking an advanced Operating Systems course, I made a decision
to use C++ (C Front 1.1), not allowing myself to fall back to “plan old C” until I
understood C++. That was the first and luckily only time I didn’t finish a project. It was
the first project of the course and it turns out I was trying to create objects with virtual
member functions in shared memory, which was a no-no. In any case, I continued using
C++ and Smalltalk for some years. My chances to use Smalltalk diminished faster than
C++.

C++’s library, while meager, grew. The boost library came into existence and then
became quite a substantial collection of classes. Many of those classes are useful, some
esoteric and several make the language behave more like some people would like it to
behave.

In 1997, I finally switched to Java on my 3rd attempt. I had tried prior to Java 1 with some
success. Then about the time Java 1 was released I tried again. A few months after Java
1.02 was released, I finally decided to jump the C++ ship. So I stopped using C++
professionally in 1997. For several years I managed to not use it. I’d occasionally take a
look but for the most part, I did not use it between 1997 and around 2007.

In 2007 I joined Object Mentor and several of the jobs involved working with large
legacy C++ code bases. So I managed to start picking it up again. However, unlike my
last time using C++, this time I had a few more years of design experience, large system
development and support, experience with test driven development and myriad other
experiences that made my approach substantially different.

1.1 Why this book now?

If that were the end of the story, then I would not have written this book. Even though I
noticed that the approach to development with C++ was missing out on several modern
ideas, I didn’t see a need. Then in mid-2010 my good friend David Nunn asked if I’d like
to teach a C++ and Object Oriented Design class at NASA. Of course I said yes.

I did some looking around to try and find some material that included good Object
Oriented Design principles, C++ idioms, modern design practices such as the use of Test
Doubles for test isolation, etc. I did not find anything. I looked at the course that Object
Mentor offered and it wasn’t quite what I was looking for either. I considered a few other
avenues but in the end, I did not find anything that fitted the particular situation, so I built
my own C++ class (for the 4th time actually).

I designed a course with the intention of introducing C++, the basics of Test Driven
Development, basic design principles, deeper design principles and design patterns. All
of this to be introduced through exercises. In my original course design I planned for 2
projects. I added a third “simple” problem at the front, which became the first problem as
it blossomed into something at once simple and rich enough to cover much of the
language my students needed to know to start becoming effective C++ programmers.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 2 Author: Brett L. Schuchert (schuchert@yahoo.com)

While teaching this class, I finally came to the realization that there really is not yet a
book that covers learning just the part of C++ you need to know for Object Oriented
Programming. I looked but I did not find anything that quite fit the bill. There are
excellent books to be sure. Nothing like the focus I wanted. Additionally, the books
available did not take the approach I’ve taken in this book; embedded exercises and deep
dives into the language to provide additional context to what was happening in the
problem.

I had a similar experience like this back in 1988 when, faced with having my students
shell out over $100 USD for books on micro-computers (a term probably before most
reader’s time), none of which the students would need after the class, I decided to write a
book for a computer literacy course I taught at a local community college.

While the book was initially published in 1988, it grew. It went from about 110 pages to
over 300 and was used for roughly 9 years before being ousted for something more
appropriate. I hope that’s what happens with this book as well. I’d like to think that
people learning C++ will stop learning all of the language and focus on learning how to
effectively use the language. To me, that means not using much of the language’s power.
At least as a first step towards learning C++, the subset I’ll cover is a good start. Learn
how to do things somewhat cleanly, and then learn the guts of the language if you plan to
write libraries or you just want to be a language nerd. C++ offers many opportunities to
do so, but you don’t need to start there.

1.2 How is it different?

As the title suggests, I do not intend to cover all of the language. In fact, I’ll cover a
comparatively small subset of the language and the standard libraries. Even so, that is not
the primary difference. This book is meant to be an example of a journey through two
problems.

The approach for each problem is similar; start with simple goals, write a solution.
Review that and fix it as necessary. As I work through the solution, I’ll be articulating
forces driving my decisions. I’ll be bringing into the mix things from C++, Test Driven
Development, Refactoring, C, Test Isolation, Agile Software Development, etc.

Also, there will be two reasons why I cover something in the language. First and
primarily, it will come up as a response to something in the current problem. Second,
there will be background and context I might cover to fill out details a little bit. There
will be times when I pick one solution over another to delve a bit more into the language
or library. However, when I make that kind of decision, you’ll know because I’ll tell you.

Another key difference with this book is that I intend for you to write code as you work
through this book. That, in and of itself, is not unique. What is, however, is that I’m
going to provide you tutorials so that you’ll be able to write working code. Something
that has always frustrated me is seeing code snippets with just enough context to get you
interested but leaving “some assembly required” for the reader.

To address this, I have done three things:

● First, I have picked a tool set. It’s free and should be available on Windows, OS X
and most UNIX varieties.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 3 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Second, I have uniquely identified all of the tutorial sections with GUID’s (globally
unique identifiers – that’s a geeky way of saying something obvious)

● Finally, I have included the same detailed instructions for other platforms online
(<<site URL here>>)

To make this a bit easier, each tutorial section will cover mechanics at the beginning and
then get into coding. As a result, there will be times where I have you do mechanics work
ahead of time to reduce the number of unique times where you have to do that.

So even if you do not know C++, you should be able to get working examples. I hope
that the text and code examples will enable you to pick up quite a bit of C++ along the
way. I’ll be rewarding the ability to copy the provided code, however, with passing unit
tests.

As a final difference, you’ll be running everything under the umbrella of a unit test. We
will cover 2 projects. This means you’ll create two main programs. After that, all
execution will be from tests written using a unit testing framework. I’ll provide both
working code and failing code so you can see the errors. In some cases I’ll deliberately
have bad designs; in some cases I’ll ask you to perform some experiments in your code.
The experiments are a controlled way for you cause a failure, know why the failure
happened, and know how to fix it. So rather than avoiding all errors, I’ll try to give you a
chance to experience them in a safe manner.

1.3 What not to expect?

I’m assuming you have some basic background in C for reading this book. That’s really
my target audience. I think you can use this book if you’re learning C++ from other
languages, but I’m not going to make any wild guesses as to whether that will or will not
work. If you are using C++ or learning C++, then you mostly likely have been using C in
some capacity. I have not recently come across anybody learning C++ as their first
language, so that is not what I am targeted. Having said that, I will be delving into C stuff
every so often to explain why C++ is the way it is. You will be able to pick up this book
and start programming in C++

Bottom line, you are not going to learn all of C++. In fact I’d guess you’ll learn maybe
30% of the language (I’m guessing at the number because a precise number without
context isn’t of much value). However, of that 30% you do use, it’ll be what you need
90% of the time. The other 10% comes with practice, experience and the many references
I’ll suggest to you later in the book.

This is the start of a journey. I hope it will set you on a good course and heavily influence
your use and future learning of C++.

1.4 Standing on the Shoulders of Giants

The only thing I’m offering in this book is my particular combination of choices; there is
nothing new in this material.

First and foremost, I need to give appreciation to several early influences in my software
development career. My early interest in computers was fed by my friend John Navitsky.
I was given a summer job by Marjorie Scriver working in a second-hand shop, which
allowed me to earn enough money to buy my first computer. One week before I turned

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 4 Author: Brett L. Schuchert (schuchert@yahoo.com)

18, Dr. Gretchen L. Moine hired me and some of my friends to work in a computer lab at
Kirkwood Community College. When two of her professors left, she gave us the
opportunity to teach computer literacy courses, and then like a mother hen, she defended
us as the main campus tried to get rid of us. If I have any ability as a teacher, it is directly
related to early, eager and consistent stewardship.

I had several good professors at The University of Iowa and one in particular got me
started learning about OO programming, Dr. Mahesh Dodani. He offered an “Advanced
Seminar in OO Programming” in the Fall semester of 1989. I used Smalltalk, but more
importantly, because I took that class I was eligible to get a job as a research assistant
developing a large C++ application. My friend Jeff Francis was instrumental in helping
me with the C part of C++, and some of the basics, like using CVS. Unlike course work,
we had to demo our work to Ford Motor Company and TACOM, so it was an amazing
learning experience. I would not have started using C++ if not for Mahesh.

When I started using C++, Google did not exist and there were no books on C++. So
when books came out, I bought them and devoured them. C++ is the invention of Bjarne
Stroustrup. The first book I read on C++ was the original printing of The Annotated C++
Reference. The second book I read was by James Coplien, Advanced C++ Programming
Styles and Idioms. Many books and articles followed. Anybody who’s read the work of
Andrew Koenig will probably recognize his influence on my mental model of the
language. Much of how I think about the language was certainly influenced by his book
C Traps and Pitfalls and his many excellent articles in the C++ Report, many of which
are available in Ruminations on C++.

James introduced me to book reviews. I purchased the first edition of his book Advanced
C++ Programming Styles and Idioms. I read it and began an email conversation with
him. As a result of giving him feedback, he connected me with his publisher and I ended
up reviewing books. One of those books was Robert Martin’s first book Designing Object
Oriented C++ Applications using the Booch Method.

There are many more, too many to remember. So I’m only bringing my perspective to
material that already existed in other forms written by other people.

<fill in? shorten?>

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 5 Author: Brett L. Schuchert (schuchert@yahoo.com)

2 Obligatory Hello World
Traditional language books often cover a so-called hello world “application.” Just for
completeness, here you go:

#in#in#in#include <iostream>clude <iostream>clude <iostream>clude <iostream>

int main(int argc, char *argv[]) {int main(int argc, char *argv[]) {int main(int argc, char *argv[]) {int main(int argc, char *argv[]) {
 std::cout << “Hello World” << std::endl;std::cout << “Hello World” << std::endl;std::cout << “Hello World” << std::endl;std::cout << “Hello World” << std::endl;
 return 0;return 0;return 0;return 0;
}}}}

However, that’s the last example of code that doesn’t include some form of self-
validation. Throughout this book I’ll be using a unit testing framework in lieu of a
main() program. You won’t see much explicit output either. You are welcome to add
output yourself, but I’m going to rely on programmatic execution and validation.

This section covers the “hello world” meme, unit test style. That’s what the rest of this
section covers.

2.1 Setting up your environment

2.1.1 The Tools

For this book, I will be using the following tool set:

● Eclipse CDT1
● Wascana Eclipse Plugin
● CppUTest

The first tool is our IDE2 and it requires that you have a Java VM3 installed. The second
is a plugin to Eclipse that gives you a complete C++ tool set. The final item is a library
that gives you support for writing automated tests. It is called a unit test framework, but
its ability to assist in writing automated tests is, for my purposes, its most important
feature.

I have chosen these tools for several reasons:

● They are all free and open source
● They work cross platform
● They give a consistent way to work across those platforms – other than default

shortcut keys
● In the case of CppUTest, it does basic memory leak detection out of the box. Since

you are reading this book to learn C++, something helping with memory leak
detection is an important feature.

What follows are detailed steps for installation of these tools.

1 C Development Toolkit.
2 Integrated Development Environment.
3 Virtual Machine.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 6 Author: Brett L. Schuchert (schuchert@yahoo.com)

2.1.2 Installing the Java Developers Kit (JDK)

You’ll need the JDK (or its equivalent) to run Eclipse. The easiest way to install the JDK
is to run an installer from http://www.java.com/ for Windows, Linux and Solaris
platforms. In the case of OS X, you already have a JDK installed.

2.1.3 Installing Eclipse CDT

Download the Eclipse CDT from http://www.eclipse.org/cdt/. This book was written
using 7.0 of the Eclipse CDT, which is based on Eclipse Helios. Older versions may
work; newer versions almost certainly will work.

You will be downloading a zip file. You can safely unzip it anywhere. You will only
need to know where you downloaded it for two reasons:

● Primarily, you’ll be running it, so you’ll need to find the top-level executable
● One time only, you may be using programs installed underneath the eclipse directory,

added by an Eclipse plugin.

To keep everything self-contained, I’ll be storing everything under a directory called
learncpp. This avoids spaces in paths and it will make it easier to find everything you do.
If you choose to use a different directory, make sure to replace learncpp with the
directory you used. Here are two example full path names for an idea of just where I’m
putting things:

● Under windows: C:\learncpp
● Under OS X: ~/learncpp � which actual becomes /Users/Schuchert/learncpp

If you extract the Eclipse CDT zip file to learncpp, it will create:

● Under windows: C:\learncpp\eclipse
● Under OS X: ~/learncpp/eclipse

2.1.4 Starting Eclipse CDT

Now that you’ve installed Eclipse, you can start it. Double-click on the eclipse
application under the eclipse directory. When you do, you will be asked to provide a
location for a workspace:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 7 Author: Brett L. Schuchert (schuchert@yahoo.com)

Enter the location for a project in the Workspace text box. For this first project, I’m using
c:\learncpp\Project1.

After a few moments, Eclipse will respond with the welcome screen:

Close the welcome screen by clicking on “x” the right side of the Welcome tab.

Before going any further, you now need to install the Wascana plug-in if you do not
already have the Gnu C++ compiler 4.4 or later installed (OS X Users, you have G++

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 8 Author: Brett L. Schuchert (schuchert@yahoo.com)

installed, but it’s probably earlier than 4.4, so you’ll need to use a port package to install
it – give yourself several hours for this).

2.1.5 Installing the Wascana Plugin

This step is primarily for Windows Users. However, I have online instructions for OS X
users at <cite site>.

The Wascana plugin gives you a minimal Unix environment, gcc 4.4, gdb and other
basic tools to make the Eclipse CDT work. It is installed as an Eclipse plugin.

The basic instructions are here: http://code.google.com/a/eclipselabs.org/p/wascana/. But
quickly:

● Pull down the Help menu in Eclipse and select Install New Software.
● In the Work with text box, enter:

http://svn.codespot.com/a/eclipselabs.org/wascana/repo
● Then click Add
● Enter a name like Wascana in the pop-up dialog
● Select the Wascana C/C++ Developer for Windows
● Click on Next twice until you get the Review Licenses screen
● Assuming you accept the terms of the license, select the Accept radio button and click

Finish.

Wait for the download to complete and the restart Eclipse. When asked for the
workspace, verify that C:\learncpp\Project1 is the workspace and click OK.

2.1.6 Downloading CppUTest

CppUTest is a unit testing framework we’ll be using throughout this book. You’ll need to
download and build it one time. Unfortunately, to do this, you will need to update your
path, but that’s in the next section.

For now, download CppUTest from: http://sourceforge.net/projects/cpputest/. As of this
writing, I’m using CppUTest 2.2d.

Once you’ve downloaded that zip file, unzip its contents to c:\learncpp\CppUTest. Note
that the zip file does not appear to have a top-level directory, so you’ll need to create it.

2.1.7 Building CppUTest

When you installed the Wascana plug-in, it added two directories under your eclipse
directory: mingw and msys. Both of these directories have bin directories that need to be
added to your path.

Begin by updating your path to include the bin directories under mingw and msys. If you
used the recommend directories, their full paths are:

● C:\learncpp\eclipse\mingw\bin
● C:\learncpp\eclipse\msys\bin

Since these paths are also used by Eclipse, you’ll need to set your environment’s path. To
do this, you’ll need to update the PATH environment used by your command shell.

● Under the control panel, select system preferences (or under the category System and
Security, select System).

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 9 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Select Advanced Features.
● Add the two directories to the PATH environment variable under system preferences

by appending: ;C:\learncpp\eclipse\mingw\bin;C:\learncpp\eclipse\msys\bin
● Note that there is one ; (semi-colon) between directory entries.
● If you cannot edit the system preferences, instead add a new entry under User

variables. It’s value should be: %PATH%;
C:\learncpp\eclipse\mingw\bin;C:\learncpp\eclipse\msys\bin

Now switch to the CppUTest directory. If you used the recommend directories, the full
path is: C:\learncpp\CppUTest.

By adding the bin directories from mingw and msys, you have some basic UNIX tools
such as gcc, g++, make, pwd, etc. Now it’s a simple case of issuing the make command:

C:C:C:C:\\\\learncpplearncpplearncpplearncpp\\\\CppUTest>makeCppUTest>makeCppUTest>makeCppUTest>make
compiling AllTests.cppcompiling AllTests.cppcompiling AllTests.cppcompiling AllTests.cpp
compiling CommandLineArgumentsTest.cppcompiling CommandLineArgumentsTest.cppcompiling CommandLineArgumentsTest.cppcompiling CommandLineArgumentsTest.cpp
compiling CommandLineTestRunnerTest.ccompiling CommandLineTestRunnerTest.ccompiling CommandLineTestRunnerTest.ccompiling CommandLineTestRunnerTest.cpppppppp
compiling FailureTest.cppcompiling FailureTest.cppcompiling FailureTest.cppcompiling FailureTest.cpp
<snip><snip><snip><snip>
compiling TestRegistry.cppcompiling TestRegistry.cppcompiling TestRegistry.cppcompiling TestRegistry.cpp
compiling TestResult.cppcompiling TestResult.cppcompiling TestResult.cppcompiling TestResult.cpp
compiling Utest.cppcompiling Utest.cppcompiling Utest.cppcompiling Utest.cpp
compiling UtestPlatform.cppcompiling UtestPlatform.cppcompiling UtestPlatform.cppcompiling UtestPlatform.cpp
Building archive lib/libCppUTest.aBuilding archive lib/libCppUTest.aBuilding archive lib/libCppUTest.aBuilding archive lib/libCppUTest.a
c:c:c:c:\\\\Program FilesProgram FilesProgram FilesProgram Files\\\\eclipseeclipseeclipseeclipse\\\\mingwmingwmingwmingw\\\\binbinbinbin\\\\ar.exe: creating lib/libCppUTest.aar.exe: creating lib/libCppUTest.aar.exe: creating lib/libCppUTest.aar.exe: creating lib/libCppUTest.a
a a a a ---- src/CppUTessrc/CppUTessrc/CppUTessrc/CppUTest/CommandLineArguments.ot/CommandLineArguments.ot/CommandLineArguments.ot/CommandLineArguments.o
a a a a ---- src/CppUTest/CommandLineTestRunner.osrc/CppUTest/CommandLineTestRunner.osrc/CppUTest/CommandLineTestRunner.osrc/CppUTest/CommandLineTestRunner.o
<snip><snip><snip><snip>
a a a a ---- src/Platforms/Gcc/UtestPlatform.osrc/Platforms/Gcc/UtestPlatform.osrc/Platforms/Gcc/UtestPlatform.osrc/Platforms/Gcc/UtestPlatform.o
Linking CppUTest_testsLinking CppUTest_testsLinking CppUTest_testsLinking CppUTest_tests
Running CppUTest_testsRunning CppUTest_testsRunning CppUTest_testsRunning CppUTest_tests
.................!...!...!...!................................
.........................!...!...!...!..............................
..
...!!...................!!...................!!...................!!................
OK (171 tests, 167 ran, 599 checks, 4 ignored, 0 filtered out, 16 ms)OK (171 tests, 167 ran, 599 checks, 4 ignored, 0 filtered out, 16 ms)OK (171 tests, 167 ran, 599 checks, 4 ignored, 0 filtered out, 16 ms)OK (171 tests, 167 ran, 599 checks, 4 ignored, 0 filtered out, 16 ms)

C:C:C:C:\\\\learncpplearncpplearncpplearncpp\\\\CppUTest>CppUTest>CppUTest>CppUTest>

Note: Depending on when you try these steps, the build might fail because it cannot find
“cc”. To fix this, update the Makefile and include the following line after the comment
line with Inputs in it (#--- Inputs):

CC = gcc CC = gcc CC = gcc CC = gcc

You can look at the lib directory to confirm that you have a file called libCppUTest.a.
However, given running unit tests, it really isn’t necessary.

2.2 Mechanics of CppUTest

Now that you have all of the moving parts installed, you need to configure an Eclipse
project to use CppUTest and then get your first test running.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 10 Author: Brett L. Schuchert (schuchert@yahoo.com)

2.2.1 Creating a Project

Now it’s time to go back into Eclipse and create a project. Begin by selecting File:New
then select C/C++ Project. You’ll see the following dialog:

Enter DiceGame for the Project Name, and make sure you’ve selected MinGW GCC as
the Toolchain. Once you’ve done these two things, click Finish.

2.2.2 Include Path, Library Path and Included Libraries

Now that you have a project listed under the Project Explorer, you can configure it.
Select that project, right-click and select Properties at the bottom of the popup menu.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 11 Author: Brett L. Schuchert (schuchert@yahoo.com)

Include Path

Open up C/C++ Build, select Settings. You’ll see several sub-options. Look for GCC
C++ Compiler and under it, select Includes. Click the add button, which looks like a
page with a green plus. In the dialog, enter: C:\learncpp\CppUTest\include

Before moving on, click Apply to make sure these changes stick.

Library Path & Included Libraries

Again, under C/C++Build, Settings look now for MingGW C++ Linker and select
Libraries. There are now two sections, Libraries (-l) and Library search path (-L). In
Libraries, add CppUTest.

Under the Library search path, add: C:\learncpp\CppUTest\lib.

Note that the full name of the library is libCppUTest.a. However, when specifying a
library with this tool set, you exclude the leading “lib” and the file extension.

Before moving on, click Apply to make sure these changes stick.

Modernizing C++

There are several modern features supported by GCC but not available until you tell the
compiler to allow for them.

● Find GCC C++ Compiler:Settings
● Select the Miscellaneous option, notice that its current value is probably:

 -c -fmessage-length=0
● Add (append) the following additional setting: -std=c++0x

That is C++ zero x, not letter o x.

Before moving on, click Apply to make sure these changes stick.

That’s All the Project Settings

Finally click OK to close the dialog.

2.2.3 A Few Convenient Settings

There are some top-level (not project-specific) settings that will improve your overall
experience. To begin making changes, pull down the window menu and select
Preferences.

Auto Save and Refresh

Under the preferences you’ll see a box that contains “enter filter text”, type save in that
box to shorten the list of options.

Select Workspace under the General option and enable the following settings (the first
should already be set):

● Build automatically
● Refresh automatically
● Save automatically before build

Before moving on, click Apply to make sure these changes stick.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 12 Author: Brett L. Schuchert (schuchert@yahoo.com)

Build automatically only affects when you perform a “clean” on a project. This will
remove all the built files. Build automatically will then turn around and rebuild the
system by default. It will not rebuild after you save a single file.

Refresh automatically is important because building causes an executable to be created.
Sometimes Eclipse doesn’t notice that this executable was created and when you try to
run your program, Eclipse will complain about no executable existing. Setting this option
fixes that problem.

Save automatically before build will cause Eclipse to ask you to save before each build.
If you do not, you can change a file, not notice it is unsaved and then get compilation
errors because the file is not saved and not because of anything you typed.

One Last Thing Run

Eclipse attempts to run something relative to the file or think currently selected when you
use the shortcut key ctrl-F11. This can be confusing behavior.

Under Run/Debug, find Launching. Under the Launching section near the bottom,
select the radio-button with the text “Always launch the previously launched
application.”

Before moving on, click Apply to make sure these changes stick.

That’s All the Workspace Settings

Finally click OK to close the dialog.

2.2.4 Adding a CppUTest main() function

Now you are ready to create a main function. As with C, main() is the entry point into
any application in C++. Main can have one of two forms:

iiiint main()nt main()nt main()nt main()

And the more traditional:

int main(int arint main(int arint main(int arint main(int argc, char *argv[])gc, char *argv[])gc, char *argv[])gc, char *argv[])

With that in mind, create the following main program:

#include#include#include#include <CppUTest/CommandLineTestRunner.h><CppUTest/CommandLineTestRunner.h><CppUTest/CommandLineTestRunner.h><CppUTest/CommandLineTestRunner.h>

intintintint mainmainmainmain((((intintintint argc, argc, argc, argc, charcharcharchar ****argvargvargvargv[][][][]) {) {) {) {
 returnreturnreturnreturn CommandLineTestRunner::CommandLineTestRunner::CommandLineTestRunner::CommandLineTestRunner::RunAllTestsRunAllTestsRunAllTestsRunAllTests(argc, argv);(argc, argv);(argc, argv);(argc, argv);
}}}}

Quick File Description

The first line includes a class that runs unit tests. The top-level include directory for
CppUTest has a directory under called CppUTest. This is important because it makes a
namespace of sorts for header files. By starting the name with CppUTest, there is a much
smaller chance of name collision in include file names.

This is a standard main() function that uses a class called CommandLineTestRunner .
That class has a method on it called RunAllTests . You pass in argc and argv and it
determines what to do based on command line arguments. We are not passing in
anything, so we’ll get the default behavior provided by the library.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 13 Author: Brett L. Schuchert (schuchert@yahoo.com)

The return statement on that line makes sure that the result of running tests is reflected
back in the shell that started the program. We won’t be making use of this, but if you
were to include running unit tests as part of a larger build process, you could use test
failure as a reason to stop the build process. The return here facilitates that.

Create this file

● Select your project, right click and select New.
● In the list, select C++ Source file
● For the name, enter: RunAllTests.cpp

Build your project

Compile your project by hitting ctrl-b. Alternatively, right-click and select Build.

Run your project

The first time you run your project, you’ll want to select it, right-click and select Run
As:Local C/C++ Application. You should see output like this in the Console:

OK (0 tests, 0 ran, 0 checks, 0 ignored, 0 filtered out, 0 ms)OK (0 tests, 0 ran, 0 checks, 0 ignored, 0 filtered out, 0 ms)OK (0 tests, 0 ran, 0 checks, 0 ignored, 0 filtered out, 0 ms)OK (0 tests, 0 ran, 0 checks, 0 ignored, 0 filtered out, 0 ms)

Congratulations, you have all of the major moving parts in place and working.

2.2.5 Adding a first test

However, don’t celebrate too quickly, because now it is time to add a test. Here is a
simple “smoke” test to verify that things work.

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

TEST_GROUP(SmokeShould) {TEST_GROUP(SmokeShould) {TEST_GROUP(SmokeShould) {TEST_GROUP(SmokeShould) {
};};};};

TEST(SmokeShould, NeverBeLost) {TEST(SmokeShould, NeverBeLost) {TEST(SmokeShould, NeverBeLost) {TEST(SmokeShould, NeverBeLost) {
 LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(1,1);1,1);1,1);1,1);
}}}}

Quick File Description

This is mostly boilerplate code. The #include statement, among other things, makes
available a set of macros to help in the definition of tests. There are three major parts:

Macro Description

TEST_GROUP Introduce a place holder for a number of tests. Typically know as a
test fixture. The name, SmokeShould, is somewhat arbitrary.
� This name must be a valid C++ identifier;
� It should make sense;
� It must be unique across all tests in a single project (across all the

library and object files linked to make a single executable).

This macro introduces a struct into your solution. The name of
the struct embeds the parameter name, SmokeShould in this
case. A struct is a collection of data members in C. In C++ it can
also include member functions. CppUTest does this as it forms a
natural place to put common code and data used between individual

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 14 Author: Brett L. Schuchert (schuchert@yahoo.com)

Macro Description

automated tests.

TEST Introduce a single test. It depends on a test fixture, SmokeShould.
We will be taking advantage of this later on. However, it is a
requirement of the particular tool, so you must do it. The name of
this test is NeverBeLost. This name must be unique within the
fixture (SmokeShould); it should make sense; it must be a valid
C++ identifier.

This macro introduces a class into your solution. This class is a
subclass of the struct created by the TEST_GROUP macro.
CppUTest does this to enable automatic registration of unit tests
possible. If an object module that contains a TEST is linked into
your final executable, it will be available for execution by the
CommandLineTestRunner.

LONGS_EQUAL This macro performs a check. A check either returns or does not. If
the check returns (in this case the longs are equal so it returns), then
continue with the test. If it does not return (say, the longs were not
equal), then this test would terminate and be a failed test. In this unit
test framework, and traditionally across most of them, the first value
is the expected value; the second value is the actual value.

Create This File

Create a new file called SmokeTest.cpp (ctrl-n, add source file).

Run Your Tests

Since you’ve run your project once, you can now use the shortcut key ctrl-F11 (mac:
Command-Shift F11) to re-run your project.

` You did not save your file, Eclipse will confirm that you want to save before building;
do so. The project will run and you will see the following output:

....

OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)

The period represents the one test that executed. If that is too terse for your tastes, update
RunAllTests.cpp:

#include#include#include#include <CppUTest/CommandLineTestRunner.h><CppUTest/CommandLineTestRunner.h><CppUTest/CommandLineTestRunner.h><CppUTest/CommandLineTestRunner.h>

intintintint main() {main() {main() {main() {
 constconstconstconst charcharcharchar *args[] = { *args[] = { *args[] = { *args[] = { """""""", , , , """"----v"v"v"v" };};};};
 returnreturnreturnreturn CommandLineTestRunner::CommandLineTestRunner::CommandLineTestRunner::CommandLineTestRunner::RunAllTestsRunAllTestsRunAllTestsRunAllTests(2, args);(2, args);(2, args);(2, args);
}}}}

Quick File Description

Rather than passing in the command line options, hard-code them. In UNIX systems, the
first parameter passed into a C or C++ program is the name of the executable. Some
programs use this to do different things. CppUTest does not, so it always ignores the first

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 15 Author: Brett L. Schuchert (schuchert@yahoo.com)

element in the array. That’s what the first “” is in the args array. The second parameter, -
v, tells CppUTest to output test names and test execution time rather than “.” for each
test. It means “verbose.”

Run Your Tests

Rerun your program (ctrl-F11/Comman-F11) and notice the additional output:

TEST(SmokeShould, NeveTEST(SmokeShould, NeveTEST(SmokeShould, NeveTEST(SmokeShould, NeverBeLost) rBeLost) rBeLost) rBeLost) ---- 0 ms0 ms0 ms0 ms

OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)

2.2.6 Experiments in Failure

It is important to see things both work and fail. Getting something working will hopefully
give you a sense of success. Seeing something fail in a controlled fashion can better
prepare you to fix problems on your own when they happen.

Failing Check

Update the check in your SmokeShould:NeverBeLost test:

 LONGS_EQUAL(9999,1);LONGS_EQUAL(9999,1);LONGS_EQUAL(9999,1);LONGS_EQUAL(9999,1);

Run Your Failing Test

Rerun your program and notice the failed test output (snipped):

........\\\\SmokeTest.cpp:7: error: Failure in TEST(SmokeShould, NeverBeLost)SmokeTest.cpp:7: error: Failure in TEST(SmokeShould, NeverBeLost)SmokeTest.cpp:7: error: Failure in TEST(SmokeShould, NeverBeLost)SmokeTest.cpp:7: error: Failure in TEST(SmokeShould, NeverBeLost)

 expected <9999 0x270f>expected <9999 0x270f>expected <9999 0x270f>expected <9999 0x270f>

 but was < 1 0x0001>but was < 1 0x0001>but was < 1 0x0001>but was < 1 0x0001>

So here are some questions you might ask (and their answers):

● Which test failed? The one on line 7 of the SmokeTest.cpp file. It’s called
SmokeShould, NeverBeLost.

● How did it fail? A check on line 7 was expecting the value 9999 but it was given 1.
Since 1 does not equal 9999 (even for very large values of 1), the LONGS_EQUAL
macro caused this test to stop at the failure.

Fix the test back to passing before moving on. (Do you make both values 9999, 1, or
some other value?)

2.3 Recap

2.3.1 Terminology

Term Description

Auto Test Discovery In CppUTest, tests are automatically discovered. Simply
creating a new TEST_GROUP and adding a TEST to it will
cause the test to be found assuming the object module
containing the TEST_GROUP and TEST are linked in to the
final application.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 16 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

CommandLine
TestRunner

A class from CppUTest used to execute tests created with
TEST_GROUP and TEST. It can handle a few command line
arguments. In the second form of your main() function, you
passed in –v , for verbose output.

CommandLine
TestRunner.h

This is the header file you include to get the
CommandLineTestRunner . However, the recommended
include path for CppUTest makes you qualify the name with
CppUTest/ in front of it.

Compilation Unit When the C++ compiler compiles a single source file, it first
processes all of the include files and macros. The result of that
phase is called a compilation unit. It becomes the source
material for the production of an object module, which is what
gets linked into a final executable.

Ctrl-B (OS X:
Command – B)

Build the application and produce an executable.

Ctrl-F11 (OS X:
Command-Shift F11)

Run the last thing you ran. This is over simplified and depends
on the Eclipse configuration. In this case, you’ve changed the
Eclipse configuration to always run the last thing run, so it will
not be relative to the current project. Also, you only have one
project in your workspace, so, again, it will only run the one
executable.

Include Directory The include directory path for CppUTest in our examples is
C:\learncpp\CppUTest\include . This directory
contains a directory under it called CppUTest . This is by
design to make sure header file names in CppUTest do not
conflict with other header file names.

libCppUTest.a This was the library file produced when building CppUTest. We
need to include it to get our project to link. When we added it to
our project, we followed the UNIX convention of dropping
“lib” at the beginning and “.a” at the end.

Library Directory The library directory in our case is C:\learncpp\CppUTest\lib.
We added that so Eclipse could link our project.

LONGS_EQUAL A macro in the CppUTest library. It calls an underlying method
that compares the first (expected) value to the second (actual)
value. If the longs are equal, then the method returns. If not,
then it stops this unit test from continued execution and marks
the test as failing.

Object Module A file created by the C++ compiler as part of building a system.
It contains all of the code from, typically, a single source file,
along with anything introduced by header files.

RunAllTests This is a method on the class CommandLineTestRunner. It
happens to be a static (or class) method. This means it can be

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 17 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

called without having any objects. The most important thing
about this method is that it causes all of the unit tests to run.

standard library The standard library ships with all C++ compilers. However,
just what ships is somewhat variable. We’ve seen std::cout, and
object that comes as part of the standard library. The
std::vector class is also part of the standard library. We’ll
be seeing this class quite a bit more as we move into the
DiceGame in earnest.

std Classes can be part of a namespace. A namespace is simply a
way to group related classes. The standard library classes are in
a namespace called std (or std::tr1).

struct In C++ a struct and a class are the same thing. The only
difference is that the default access level in a struct is public,
whereas in classes it is private.

template class The std::vector class is a template class. Template classes
are parameterized classes with their parameters being provided
in <>. In our particular example, the parameter is <int>. An
std::vector <int> stores a variable number of int values.

TEST A macro from CppUTest that introduces a new test into the
system. The TEST macro takes two parameters; the first is the
name of the test fixture introduced by the TEST_GROUP
macro. The second is the name of the test. Both names must be
valid C++ names. TEST names must be unique within their test
fixture.

The TEST macro actually creates a class, which is a child class
of the structure created by the TEST_GROUP macro. The name
of the class embeds the test name parameter.

TEST_GROUP A macro from CppUTest that introduces a new test fixture into
the system. The TEST_GROUP macro takes one parameter, a
name, which must be unique across all object modules linked
into an application. The name must be a valid C++ name.

THE TEST_GROUP macro creates a struct. The name of the
struct embeds the test fixture name.

TestHarness.h This is a header file from CppUTest. It’s the main header file
used in test files. As with all CppUTest header files, it resides in
a subdirectory called CppUTest, so qualify its name with
CppUTest/ when including it.

Remember that order of includes is important. Include this file
last in any source file to avoid problematic interactions with the
standard library classes.

vector A class from the C++ standard library. We used it to

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 18 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

demonstrate a potential issue you might come across with order
of includes. A vector is variable-sized array. The class is in the
namespace std, so it’s full name is std::vector . You’ll be
using this class more.

2.3.2 Highlights

Tool Installation

In this section you installed a number of tools and libraries:

● Java Developer Toolkit
● Eclipse CDT
● Wascana Eclipse Plug-in
● CppUTest

These are the basic tools of your environment and with them you will be able to work
with C++ in a relatively controlled manner.

Luckily, this is a one-time process, so now that you’ve done this, you have your
development environment for the remainder of the book.

Project Configuration

Each time you start a project, you may need to configure it. In our case, we:

● Added a path to the include directories to find CppUTest header files
● Added a path to the library directories to find libCppUTest.a
● Added a library, CppUTest, to be linked into our executable.

Eclipse Configuration

You also configured Eclipse to automatically save files before building and to find files
created during the build process automatically.

In both the project and eclipse configuration steps, if you can remember a key word or
two, you might be able to use the filter box at the top of the list of configuration options
to shorten the list.

Complete Build Execute Cycle

You created some source files, a main() and two test source files, all of which got linked
into an executable. Initially no tests ran. Then you added a test, which ran. You then
made that test fail and added another test that caused a compilation failure.

Did you notice how quick it was to simply perform little experiments to see “what-if”?
This is a key to learning. Rather than speculate about what might be, try it out and see
what happens. The one caveat is that it may not be clear if the results are speaking
towards your environment or something about the language standard. This comes with a
combination of research and continuous questioning. The biggest recommendation I can
make here is to continuously question what you’ve learned to make sure your
understanding of the results is not too far reaching (this result is about my current
environment, and not a general principle), or it goes far enough (this is part of the
language specification and if another environment behaves differently, it is incorrect).

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 19 Author: Brett L. Schuchert (schuchert@yahoo.com)

Now it’s on to the seeming trivial Dice Game.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 20 Author: Brett L. Schuchert (schuchert@yahoo.com)

3 The Dice Game
This is a simple project to get your feet wet, or so it seems. By the end of this project,
you’ll have used much of what you’ll need to know about C++ to effectively use it.

3.1 What’s Ahead?

Here’s a quick idea of what’s coming up during this project:

● Creating Classes
● Subclassing
● Interfaces
● Guts of C++
● Unit testing
● Test driven development

The work that we’ll be doing going forward will be driven by writing automated tests.
Initially I’ll provide the design up front; at some times we’ll be “discovering” the design
as we go along. Writing tests where there’s already a design in place is often called Test-
First Development, whereas using tests to incrementally discover the design is typically
called Test-Driven Development.

3.2 The Design

Here is a quick model for our top-level Dice Game:

3.2.1 Notes on UML4

This book is not about UML. Even so, I need some basic way to express ideas at a level
higher than code, so that’s the language I’ll be using. Here are the parts of this diagram so
you can effectively read it.

These boxes represent classes. This particular example is called Dice
Game, meaning there will be a class called DiceGame in our solution.
In our use of C++, this means we will have a header file called
DiceGame.h and a source file called DiceGame.cpp. The diagram
shows Cup and Die , so there are two other classes and therefore four
more files (two header files, two source files).
Since we’ll be writing tests as well, there will be test source files for
each of these design-level concepts.

A navigable connection. The line itself, ignoring the arrow head,
suggests a connection between two classes. So there’s a connection
between DiceGame and Cup. The diagram also shows a connection
between Cup and Die . Without the arrow head, this just means there’s
an association. The arrow head is called navigability, which means that

4 Unified Modeling Language.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 21 Author: Brett L. Schuchert (schuchert@yahoo.com)

the class on the side without the arrow head can navigate to the side
with the arrow head. Since this is a solid line, it strongly suggests that
the DiceGame class will have some kind of member data
(attribute/field) that holds onto to a Cup object.

You’ll also notice numbers on those lines. That is the multiplicity of
the relationship. In this particular example it shows “1”, which is the
default value. I won’t be using default values because I think a default
value of 1 was a poor choice in the design of UML and I don’t want
you to have to be a “language lawyer” when reading these diagrams.

In the case of the Cup to Die relationship it shows a 2, meaning an
object of the Cup class holds onto 2 objects of the Die class.
Ultimately, when there’s more than 1 or a variable number, you’ll end
up using some kind of collection class. We’ve already seen a collection
class, std::vector , which is what we’ll use to represent this
relationship.

3.2.2 The Rules of the Game

This is a simple game. A player plays the game by rolling the dice. Here are the possible
results:

● The player wins 1 if the roll is > 7
● The game is a push if the player rolls 7
● The player loses 1 if the roll is < 7

The point of this project is not to create a DiceGame. The point of DiceGame is to
serve as a vehicle to cover Object Oriented Design and C++, so the rules are mostly
irrelevant. That there are some rules, which are different in some consistent way, is
important. What those rules are, however, isn’t really important.

3.2.3 One Development Strategy

There are several ways to go about writing the code for this project. Possibly the most
familiar is to simply create all the classes and then see if things work. We will not be
taking that approach, and instead we will be writing automated tests first. Those tests
often won’t compile initially, so we’ll then create the production code to get the tests to
compile but probably not pass. Then we’ll get the tests to pass. When the tests are
passing, we might clean up our work a bit in an activity called refactoring.

This may seem backwards to how you were taught, or what you are used to doing. Here’s
an observation: Nobody was born knowing how to program. So everything you do now is
a learned activity. If this seems strange or backwards (and I expect it will), that’s because
it is different from what you’ve done in the past. This doesn’t make it worse or better, it’s
just different. I hope by the time you’ve worked through this book you’ll think it is better.
However, if you don’t that’s fine. At the very least, I hope you’ll find value in the idea of
writing automated unit tests.

3.3 The First Test

We have a rough design so now it’s on to writing a failing unit tests. Here is one such
failing test:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 22 Author: Brett L. Schuchert (schuchert@yahoo.com)

01:01:01:01: #include#include#include#include "Die.h"
02:02:02:02:
03:03:03:03: #include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>
04:04:04:04:
05:05:05:05: TEST_GROUP(Die) {TEST_GROUP(Die) {TEST_GROUP(Die) {TEST_GROUP(Die) {
06:06:06:06: };
07:07:07:07:
08:08:08:08: TEST(Die, InitialValueInRange1to6) {TEST(Die, InitialValueInRange1to6) {TEST(Die, InitialValueInRange1to6) {TEST(Die, InitialValueInRange1to6) {
09:09:09:09: Die d;Die d;Die d;Die d;
10:10:10:10: CCCCHECK(d.faceValue() >=1 && d.faceValue() <= 6);HECK(d.faceValue() >=1 && d.faceValue() <= 6);HECK(d.faceValue() >=1 && d.faceValue() <= 6);HECK(d.faceValue() >=1 && d.faceValue() <= 6);
11:11:11:11: }

Line Description

01 You must #include the header file for any classes you’ll be using. This lets
the source file know about the class’ definition: its member variables (attributes)
and its member functions (methods).

01 Compare #include using "" versus #include using <>. When using "" ,
the current directory is checked as well as standard include locations and any
include directories you’ve added (remember, you added the include directory for
CppUTest). The <> does not check the current directory but otherwise it is the
same list.

Traditionally, your files are #include d using "" while system and library files
are included using <>.

03 The order of includes, as mentioned above, is important. CppUTest overrides
new and delete , which are used to manage memory allocated as the program
runs (dynamically allocated memory). These two operators replace malloc and
free , respectively, in C++. Note, they are operators in C++, or reserved words,
where malloc and free are functions in a library. new and delete are
different because they do more, which we’ll get into later. Don’t mix and match
new and delete with malloc and free ; only use new and delete with
classes (or struct s that have been written as classes).

05 –
06

Define a struct for a test fixture. This creates a base struct (class) with Die
in its name. The actual full name of the class depends on the version of
CppUTest you are using. This variability suggests a particular style of writing
tests, which we’ll see later on.

06 The TEST_GROUP creates a struct . It is important to end a class definition
with a “;”. TEST creates a class, but unlike TEST_GROUP, you are adding a
method to a class via the macro rather than fully defining a class. So it does not
require a “;” at the end because the macro does it for you. It’s still there.

It is safe to simply always use a ";" at the end of both of these macros.

08 Create a test. This macro creates a class which includes
InitialValueInRange1to6 in its name. The class inherits from the struct
created by the TEST_GROUP macro. In reality, the class created has a single

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 23 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

method added to it that holds the code between { and }, and it is that method that
gets executed by the unit test framework.

10 Test assertion. This is a macro that calls a method, like LONGS_EQUAL. If the
expression evaluates to true (a non-0 result) then the method returns and the test
continues execution. If the expression is false (a 0 result), then the method
terminates test execution (throwing an exception under the covers).

3.3.1 Create the test file

Add a new source file to your project. Call it Die Test.cpp. Enter the code above into that
file. Eclipse will warn you that line 1, the #include of Die .h, names a file that does not
exist. That’s OK. You’ve written a test and the test is currently failing, but not for long.

Build your application and review the compiler errors.

3.3.2 Die Header

01:01:01:01: #pragma once#pragma once#pragma once#pragma once
02:02:02:02: #ifndef DIE_H_#ifndef DIE_H_#ifndef DIE_H_#ifndef DIE_H_
03:03:03:03: #define DIE_H_#define DIE_H_#define DIE_H_#define DIE_H_
04:04:04:04:
05:05:05:05: class Die {class Die {class Die {class Die {
06:06:06:06: public:public:public:public:
07:07:07:07: intintintint faceValue() faceValue() faceValue() faceValue() constconstconstconst;;;;
08:08:08:08: };};};};
09:09:09:09:
10:10:10:10: #endif#endif#endif#endif

Line Description

01 –
03,
21

Guard against this header file getting #include d multiple times. A header file
may contain declarations or definitions. A declaration can be repeated, while a
definition cannot. This header file defines the class Die . You can tell it is a
definition because class Die is followed by { … }; If the code instead
was: class Die; then it would only be a declaration, which can safely be
repeated.

A declaration states that something exists but does not provide details about
size, structure or functionality. A definition does what a declaration does and
additionally describes size, structure and/or functionality. This class definition
states that there is a class called Die with a single member function (method),
int faceValue() const;.

Any compilation unit can include multiple declarations of a given thing (class,
function, variable) but only one definition. A declaration after a definition is
also OK.

01 The #pragma macro is a standard way to introduce compiler-specific code. By
definition, if a compiler does not understand the text after #pragma it ignores it
silently. This particular #pragma says to actually only include this physical file

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 24 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

once. Most modern compilers support it and it often is enough to just include this
expression. If you know your compiler and you know your compiler supports
this and you only use one compiler, you don’t need lines 2, 3 or 10.

02 –
03,
21

This is a traditional way to guard against multiple inclusion of a header file.
Unlike #pragma once , multiple inclusions still happen, but only the first one
is processed, the others are skipped. The compiler reads up to the matching
#endif and simply ignores those lines. It takes time to read those lines but it
does not cause the compilation to fail.

05 Begin defining a class called Die (the singular of dice). You can tell it is a
definition in this case because it is followed by { versus ;.

06 Everything after this line is accessible to any code. The default access level for
classes is private: , which means only code in the class (and friends, which
we will not cover in this book) can access that element.

Note, the checking of public: , private: (and protected:) is done at
compilation time.

07 Declare a member function (method). You can tell this is a declaration for a
method because it is followed by ; instead of {. This simple rule applies to
class , struct and functions.

The return type of this method is int , meaning a caller can use that value for
calculations.

The method takes no arguments as its formal argument list is () . This can also
be written as (void) , but this distinction is only relevant for older C code.

Finally, the method is declared to be const . A const member function states
an intention or a contract. It says that calling this method does not change the
state of the receiving object. This makes sense at a non-quantum level, observing
what was rolled does not change the value of a die.

08 Finish the class definition.

Don’t forget ; at the end – we’ll have a failure exercise coming up to see what
happens. Modern compilers can suggest that you’ve made such an error some
times. More typically, you’ll get 25 or 100 errors, enough for the compiler to just
give up.

The reason you must finish a class with ; is as follows:
� A class is the same as a struct, with a different default access level.
� C++ is heavily backwards compatible with C.
� In C, it was common practice to define a structure and immediately define a

single variable of that structure.
� To end a structure definition and not add an immediate variable definition, a

struct is followed by a ;.
� To end a structure definition and define an immediate variable, a struct is

followed by some variable name and then a ;
� So a struct is always followed by ;
� Since struct == class (with different default access level), therefore you must

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 25 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

end a class with ; to indicate that you’ve completed the class definition

Method definitions do not need a trailing ;.

10 Balance the #ifndef on line 02 with a matching #endif .

3.3.3 Die Source

01:01:01:01: #include #include #include #include "Die.h""Die.h""Die.h""Die.h"
02: 02: 02: 02:
02:02:02:02: int Die::faceValue() cint Die::faceValue() cint Die::faceValue() cint Die::faceValue() const {onst {onst {onst {
03:03:03:03: return return return return 1111;;;;
04:04:04:04: }}}}

Line Description

01 Include the header file for this class as the first thing in the source file. It is not
necessary to include the header file as the first thing in the source file. However,
the header file must be #include d before defining any of the class’ methods.

03 Define the method Die::faceValue . The method signature must match that
in the header file. However, since a source file can have either methods or
functions (not associated with a class), use Die:: to indicate that this is meant
to define a member function as opposed to a non-member (or global) function.

The :: operator is the scope operator. It says that the thing on its right is a
member of the thing on its left. So faceValue is a member of Die . The
header file included the class definition. You cannot define a member function
without a class definition.

You can tell this is a definition versus a declaration because it is followed by {
instead of ;.

03 The test only requires a value between 1 and 6. So return 1 . It’s good enough
for now. We’ll use tests for force a better implementation.

3.4 Exercise

It’s time to get your failing test compiling and passing. Create two files, Die .h and
Die .cpp. If you use Eclipse to create a new class rather than creating a header file and
source file, you will have a few additional methods. That’s OK, we’ll be getting to those.

3.4.1 Results

Once you’ve created the Die class, build and run your tests. You should see something
similar to:

TEST(vectorShould, HaveInitiTEST(vectorShould, HaveInitiTEST(vectorShould, HaveInitiTEST(vectorShould, HaveInitialSizeOf0) alSizeOf0) alSizeOf0) alSizeOf0) ---- 0 ms0 ms0 ms0 ms

TEST(SmokeShould, NeverBeLost) TEST(SmokeShould, NeverBeLost) TEST(SmokeShould, NeverBeLost) TEST(SmokeShould, NeverBeLost) ---- 0 ms0 ms0 ms0 ms

TEST(Die, InitialValueInRange1to6) TEST(Die, InitialValueInRange1to6) TEST(Die, InitialValueInRange1to6) TEST(Die, InitialValueInRange1to6) ---- 0 ms0 ms0 ms0 ms

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 26 Author: Brett L. Schuchert (schuchert@yahoo.com)

OK (3 tests, 3 ran, 3 checks, 0 ignored, 0 filtered out, 0 ms)OK (3 tests, 3 ran, 3 checks, 0 ignored, 0 filtered out, 0 ms)OK (3 tests, 3 ran, 3 checks, 0 ignored, 0 filtered out, 0 ms)OK (3 tests, 3 ran, 3 checks, 0 ignored, 0 filtered out, 0 ms)

Before moving on, delete the files SmokeTest.cpp and VectorTest.cpp. They were
examples to demonstrate a working system and a compilation failure.

If you simply remove the source files, Eclipse will leave the object modules around and
those tests will still be there. To fix it:

● Delete the two files (if you have not already done so)
● Perform a clean build. Right-click on the project and select Clean Project.
● Re-run your tests.

3.4.2 Exercises in Failure

Now it is time for some controlled experiments.

Forgetting ; at the end of TEST_GROUP

Edit your file Die Test.cpp. Remove the ; at the end of TEST_GROUP then build your
system.

● What errors do you see?
● Do those errors seem to be related to what you just did?

After reading the error messages, replace the ; at the end of TEST_GROUP and verify
that your system still builds.

Forgetting ; at the end of class Die

Try the same experiment but instead remove it from the Die class in Die .hpp.

● As before, what errors do you see?
● Are they even she same?
● Is there any clue as to the real problem?

After making those observations, fix your system by adding the ; back on to the end of
the Die class definition.

Getting the signature incorrect

Try removing the word const from the end of the faceValue method declaration in
Die .h, but not Die .cpp, and build.

● Do these errors seem to make sense?
● What can you do to make finding these kinds of errors easier?
● What can you do when writing your own code to make committing these kinds of

errors less likely?

Why Experiment?

One thing that most C++ compilers will do is give you errors that only make sense,
occasionally, to an expert. When I type some syntax error, most of the time I look at the
offending line and try to figure out it without reading the error message. If that does not
work, then I try skimming the message to see if I recognize it as an error I’ve made in the
past or if it has certain keywords that resonate with me. This is the nature of dealing with
compilation errors. The only way you’ll get skilled at this is practice. Each compiler is

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 27 Author: Brett L. Schuchert (schuchert@yahoo.com)

different but learning one compiler will help. Learning the syntax will also help. There
are other techniques that can help as well, for example commenting out sections of a file
to see if you can guess what’s going on. In all cases, these are just approaches to figuring
out what’s going wrong. Experience and practice with the language is the cost of entry
for solving these kinds of problems.

3.4.3 Concept Review

Term Description

#define Defines a macro. We used it as a technique to make sure that if a
header file is included more than once, it is only processed the first
time. This is necessary because definitions cannot be repeated, while
declarations can. A class header file typically contains a class
definition, so it cannot be processed once in any single compilation
unit.

#endif This balances the #ifndef macro that starts the beginning of the old-
style conditional guard started with #ifndef.

#ifndef This means “if not defined”. It’s used to see if a macro has or has not
yet been defined. If it has not been defined, continue reading and
compiling up to the matching #endif. If the macro has been defined,
read, but don’t otherwise process up to the matching #endif.

Note that for any single compilation unit, you need to make sure that
the identifier (macro name) after #define is unique. We do this by
using the name of the file, which happens to match the name of the
class. This is a good basic approach.

#include with "" The list of directories searched when using "" includes the current
directory as well as standard directories and ones you specify. We
used Eclipse to extend the list of directories searched to include the
CppUTest base include directory. Eclipse simply passes -I (capital
letter i) flag to the command-line compiler.

#pragma once This is a modern way to avoid multiple inclusions of the same
header file. If a compiler supports this, then really only include the
file once. If the compiler does not understand this, then by definition
it silently ignores it.

CHECK This is a macro that is part of CppUTest and it is made available by
including TestHarness.h. It verifies that the resulting expression
evaluates to true (non-0). If it does, then nothing happens and the
test continues. If it does not, then the test terminates and is recorded
as a failed test.

class A combination of member data (fields or attributes) and member
functions (methods). A class is equivalent to a struct other than its
default access level, which is private.

const member
function

A member function that does not logically change the state of the
object. You should be able to call a const member function over
and over and get the same result.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 28 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

CppUTest CppUTest is an open-source automated testing library. If you use it
to create focused, small tests that test only one thing, then you may
be creating unit tests. If you are testing larger chunks of code, then
you are creating automated tests that are not actually unit tests. This
is neither a good thing nor a bad thing.

Declaration

Expressing that something exists. You can declare that a class exists,
a function exists or some variable exists. A declaration only provides
basic type information, not storage or implementation details. It is
lighter weight than a definition.

Definition Describes something in enough detail to know its size, its methods
(if it is a class) or its code if is a method or function. Typically,
classes are defined in a header file but their methods are only
declared in the header file. The method bodies reside in a source file,
thus they are defined in a source file.

For classes and methods, you can tell a definition from a declaration
depending on what comes after the name. If there is a ; before a {,
then it is a declaration. If there is a { before a ;, then it’s a definition.

Member
function

A function that is declared within a class definition. The only
explicit example so far is faceValue on the Die class.

Member
function
definition

The implementation of a member function. The one example we
have so far is Die ::faceValue .

public: Access level of member data or member functions. Public members
are accessible to any code.

Scope :: The name on the right is a part of the name on the left. Examples
include std::vector (the vector class is a member of the std
namespace) and Die ::faceValue (faceValue is a method in
the Die class).

struct versus
class

Classes and structs are equivalent in C++. The only difference is the
default access; private for classes, public for structs.

TEST A macro that defines an automated test, which is represented as a
class. The class is a sub-class of the struct created by the related
TEST_GROUP.

TEST_GROUP A macro that defines a test fixture, which is implemented as a C++
struct.

Traditionally, you’ll only have one of these per source file. You can
have more, but in general one source file for one purpose produces
cleaner code that compiles and ages better.

TestHarness.h The header file that gives the macros you’ll use for most of your test
writing.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 29 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.4.4 Final Observation

Notice that our test does not directly produce any output. This is by design, not
accidental. For now consider this comment:

● Automated tests should produce no output.

We will come back to this but for now let your brain chew on that thought.

3.5 Making Improvements

The first test got us a class with a single, hard-coded method. That’s a good start. Also,
considering how much C++ you’ve already covered, hopefully you’ve taken a break
before moving into the second test for this class.

In any case, you’ll be adding a new test, which will force an update to the Die class.
Though, it may not require as much as you’d like to write yourself. Here’s something to
begin observing:

● As you increase the number of tests, your production code should become more
general.

This can be used as either a metric or a guideline. As a metric you might see if the code is
in fact becoming more general as the number of tests increase. You might notice:

● Hard-coded values becoming conditions then moving into loops
● Handling more cases overall
● Gracefully dealing with edge and exceptional conditions

3.5.1 Updated Test

As with all the work in this book, we’ll be changing code either by writing a test or with
tests already in place. With that in mind, here is a second test that you can add after the
last test:

01:01:01:01: #inclu#inclu#inclu#include de de de "Die.h""Die.h""Die.h""Die.h"
02:02:02:02:
03:03:03:03: #include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>
04:04:04:04:
05:05:05:05: TEST_GROUP(Die) {TEST_GROUP(Die) {TEST_GROUP(Die) {TEST_GROUP(Die) {
06:06:06:06: };};};};
07:07:07:07:
08:08:08:08: TEST(Die, InitialValueInRange1to6) {TEST(Die, InitialValueInRange1to6) {TEST(Die, InitialValueInRange1to6) {TEST(Die, InitialValueInRange1to6) {
09:09:09:09: Die d;Die d;Die d;Die d;
10:10:10:10: CHECK(d.faceValue() >=1 && d.faceValue() <= 6);CHECK(d.faceValue() >=1 && d.faceValue() <= 6);CHECK(d.faceValue() >=1 && d.faceValue() <= 6);CHECK(d.faceValue() >=1 && d.faceValue() <= 6);
11:11:11:11: }}}}
12:12:12:12:
13:13:13:13: TEST(Die, RollesInRange1To6) {TEST(Die, RollesInRange1To6) {TEST(Die, RollesInRange1To6) {TEST(Die, RollesInRange1To6) {
14:14:14:14: Die d;Die d;Die d;Die d;
15:15:15:15: for(int i = 0; i < 10000; ++i) {for(int i = 0; i < 10000; ++i) {for(int i = 0; i < 10000; ++i) {for(int i = 0; i < 10000; ++i) {
16:16:16:16: dddd.roll();.roll();.roll();.roll();
17:17:17:17: CHECK(CHECK(CHECK(CHECK(dddd.faceValue() >= 1);.faceValue() >= 1);.faceValue() >= 1);.faceValue() >= 1);
18:18:18:18: CHECK(CHECK(CHECK(CHECK(dddd.faceValue() <= 6);.faceValue() <= 6);.faceValue() <= 6);.faceValue() <= 6);
19:19:19:19: }}}}
20:20:20:20: }}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 30 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

13 Introduce a new test called RollsInRange1To6.

14 Create an instance of a Die . Notice the duplication from lie 09?

16 Call a new method, roll. If line 14 were in the body of the for loop, a new die
object would be created for each time through the loop.

17 –
18

Verify that the die’s faceValue is within the range 1 to 6. Do this in 2 checks
rather than one like before. Notice the duplicate with line 10? It’s even worse in
a sense because it does the same thing in a slightly different way, so it could be
harder to notice.

3.5.2 When to Clean Up

Notice the commentary about duplication? There’s an underlying design principle known
as Don’t Repeat Yourself (DRY5). Duplication can cause several problems:

● Increased overall amount of code someone has to maintain
● When something changes, there’s more to change and more opportunities to miss

some of the needed places
● Ultimately, it serves as inertia resisting change.

So we will strive to remove duplication. However, to remove the duplication we will
have to change another test. Rather than deal with the duplication now, we will finish
what we have started and then remove the duplication, staying focused on the current
task.

3.5.3 Updated Die Header File

01:01:01:01: #pragma once#pragma once#pragma once#pragma once
02:02:02:02: #ifndef DIE_H_#ifndef DIE_H_#ifndef DIE_H_#ifndef DIE_H_
03:03:03:03: #define DIE_H_#define DIE_H_#define DIE_H_#define DIE_H_
04:04:04:04:
05:05:05:05: class Die {class Die {class Die {class Die {
06:06:06:06: public:public:public:public:
07:07:07:07: intintintint roll();roll();roll();roll();
08:08:08:08: intintintint faceValue() faceValue() faceValue() faceValue() constconstconstconst;;;;
09:09:09:09: };};};};
10:10:10:10:
11:11:11:11: #endif#endif#endif#endif

The only change is the declaration of a new method, roll, on line 7.

3.5.4 Updated Die Source File

01:01:01:01: #include #include #include #include "Die.h""Die.h""Die.h""Die.h"
02:02:02:02: int Die::roll() {int Die::roll() {int Die::roll() {int Die::roll() {
03:03:03:03: return 9999;return 9999;return 9999;return 9999;
04:04:04:04: }}}}
05:05:05:05:
06:06:06:06: int Die::faceValue() const {int Die::faceValue() const {int Die::faceValue() const {int Die::faceValue() const {

5 Site Pragmatic Programmer, Dave Thomas.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 31 Author: Brett L. Schuchert (schuchert@yahoo.com)

07:07:07:07: return return return return 1111;;;;
08:08:08:08: }}}}

The only change is the definition of the Die ::roll member function on lines 2 – 4. Notice
the arbitrary return value? What is your reaction to that?

3.5.5 Exercise: Update Die

Make the following changes:

● Add the new test to Die Test.cpp
● Update Die .h with the roll method declaration
● Update Die .cpp with the roll method definition

Get back to green, meaning your code compiles and your tests all pass.

3.6 DRY Violation

Now that you are at a stable point, you have some options:

● Clean up tests to remove duplication
● Add new tests to force the extension of functionality
● Clean up the production code

Since we observed duplication, now is a good time to remove it. We are going to change
the structure of the code without changing its behavior. In this case we’re removing
duplication from test code, but we could do something similar with production code.

Changing the structure of the code without changing its behavior is known as
refactoring. Our working definition of behavior will be “passing tests.” So long as we
keep the tests passing, we are refactoring.

3.6.1 Removing Duplication

The TEST_GROUP macro introduces a test fixture. It is time to take advantage of that.
Any fields or methods added to the TEST_GROUP are available to all TESTS that use
that TEST_GROUP. So simply adding a Die object and a supporting method will help
remove the duplication.

In fact, this is an example of inheritance. Here’s a diagram to represent what we are about
to do:

+d: Die + means public. d is the name of something that is public.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 32 Author: Brett L. Schuchert (schuchert@yahoo.com)

:Die means it is an instance of a Die .

+verifyDie Value(): void + means public. verifyDie Value() is the name of a public
method. :void means the method returns nothing.

Inheritance. Each box represents a class. In this case the
base type is a test fixture. We don’t know the exact name,
but the name comes from the TSET_GROUP macro, so I’m
taking a little liberty with UML. The derived class’ names
come from the TEST macro. Everything in the base class is
public so it will be available to the derived classes

Step 1: Add

Start by adding new functionality rather than changing anything in place. The diagram
shows a public attribute (field/member data) and a public method (member function).
Here’s one way to accomplish both of those:

01:01:01:01: #include#include#include#include "Die.h""Die.h""Die.h""Die.h"
02:02:02:02:
03:03:03:03:#include#include#include#include <CppUTest/CommandLineTestRunner.h><CppUTest/CommandLineTestRunner.h><CppUTest/CommandLineTestRunner.h><CppUTest/CommandLineTestRunner.h>
04:04:04:04:
05:05:05:05: TEST_GROUP(Die) {TEST_GROUP(Die) {TEST_GROUP(Die) {TEST_GROUP(Die) {
06:06:06:06: Die Die Die Die dddd;;;;
07:07:07:07: voidvoidvoidvoid verifyDieValue() {verifyDieValue() {verifyDieValue() {verifyDieValue() {
08:08:08:08: CHECK(CHECK(CHECK(CHECK(dddd.faceValue() >= 1);.faceValue() >= 1);.faceValue() >= 1);.faceValue() >= 1);
09:09:09:09: CHECK(CHECK(CHECK(CHECK(dddd.faceValue() <= 6);.faceValue() <= 6);.faceValue() <= 6);.faceValue() <= 6);
11110:0:0:0: }}}}
11:11:11:11: };};};};

Line Description

06 Add a member field to the struct created using the TEST_GROUP macro. Its
name is d, its type is Die . Since TEST_GROUP creates a struct, default access
is public. The reason TEST_GROUP creates a struct versus a class is because it
is meant to hold common data and methods to be used by tests, which inherit
from the so-called test fixture.

07 –
10

Define a method called verifyDie Value(). It takes no parameters and returns no
values. This is a method definition in a class definition. There’s a term for that,
it’s called an implicit inline function. Inline functions are something you should
eventually learn how to write, but they are not a subject explicitly covered in this
book. I’m only mentioning it here so that:
� You will understand what this code actually does
� You will know what this is called so you can look it up in a C++ Reference’s

index.

Run It

Add these two changes and confirm that your code still compiles. You can also re-run
your tests. When people discuss Test Driven Development and refactoring, they often
discuss “getting to green fast and often”. This one trick to accomplish that goal:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 33 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Initially add code, don’t change it
● Bite off a very small bit and get it working
● Make sure it compiles and the tests still pass

Update First Test

Make sure these appear to work by only updating one test. Here’s the first test updated:

13:13:13:13: TEST(Die, InitialValueInRange1To6) {TEST(Die, InitialValueInRange1To6) {TEST(Die, InitialValueInRange1To6) {TEST(Die, InitialValueInRange1To6) {
14:14:14:14: verifyDieValue();verifyDieValue();verifyDieValue();verifyDieValue();
15:15:15:15: }}}}

Note that the entire body is replaced by a call to the verifyDie Value method. The
original test created a single die then performed a CHECK. This method does the same.

Run It

Update the test and confirm that you are still green. See? Keeping things clean and green
isn’t so bad when you understand how to break down a problem into smaller and smaller
steps.

Update Second Test

Here’s an updated version of the second test:

17:17:17:17: TEST(Die, RollesInRange1To6) {TEST(Die, RollesInRange1To6) {TEST(Die, RollesInRange1To6) {TEST(Die, RollesInRange1To6) {
18:18:18:18: forforforfor((((intintintint i = 0; i < 10000; ++i) {i = 0; i < 10000; ++i) {i = 0; i < 10000; ++i) {i = 0; i < 10000; ++i) {
19:19:19:19: dddd.roll();.roll();.roll();.roll();
20:20:20:20: verifyDieValue();verifyDieValue();verifyDieValue();verifyDieValue();
21:21:21:21: }}}}
22:22:22:22: }}}}

This example removes the creation of a Die and it calls the public base method, thereby
removing the duplication

Run It

Again, get to green. Change the test and verify that your code compiles and the tests still
pass.

3.7 A Message on Test Granularity

The first two tests are similar. They both create an object and they both check that the
face value is within a particular range. However, they are testing very different things.

The first test confirms that after an instance of the Die class is created that is has a valid
face value. That is, the object is created in a well-defined, usable state. The second test
verifies that the die rolls a value in a valid range of 1 – 6. Notice that it does not confirm
the distribution of the values, just that a value outside that range does not happen for a
large number of uses.

What is the same is the mechanism of validation; confirming the die is valid by looking at
its face value. This is an example of checking state. Looking at the value of a die and
confirming that its value is in a range is verifying that its state, its member data (or
attributes) are in a well-defined state. We happen to be checking all of the state in the die
because there’s only one value. This is incidental. It is reasonable to test only part of an

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 34 Author: Brett L. Schuchert (schuchert@yahoo.com)

object’s state in one test and another part in another test. For now, more, smaller tests are
better than fewer, large tests.

For a quick answer as to why, consider how likely a test is to break relative to its size.
The larger a test, typically, the more it covers. The more a test covers the more things that
can change and break the test. Larger tests tend to have more moving parts, each of which
might cause a test to break. As a corollary, if a test must be large, then the code it is
testing is probably highly coupled and hard to understand.

Stated differently: Bad code is hard to test; if you can write clear tests, your code is
probably well written.

3.7.1 Recap

Term Description

As # tests
increases,
production
code should

Become more general. More tests, testing different things, forces your
production code to handle more situations. As it handles more
situations, it will either become ugly or clean. The tests force change
and they support experimentation to consider alternatives solutions to
find one that is clean for the given set of tests.

DRY Don’t Repeat Yourself.
Keeping Tests
Clean

We will strive to have clean production code and clean test code.
Tests can be an asset, allowing you to make changes safely without
breaking exiting code. However, if you do not treat your tests with
respect, or let them age badly, then they will eventually wither and
die.

In fact, all code is either getting better or worse all the time. Even if
you are not changing the code, your users and finding other ways to
make it break, so unless you are actively caring for and feeding your
code (test and production code), it’s going to die.

Order of Tests The order of test execution is, by design, unknown. While you can
figure out the test order just looking at the output, do not take this
information into consideration when writing tests. Tests should be
written as mini-universes, with their own laws of physics (starting
conditions) and their own, independent checks.

Test Fixture The TEST_GROUP macro introduces a test fixture, implemented as a
C++ struct. It holds common member data and member functions for
tests. A good way to group tests is by common setup. A test fixture is
a way to capture common setup.

I recommend one test fixture per source file.
Test Fixture
Fields

Fields added to a TEST_GROUP are available to each individual test.
This is a way to reduce duplication across tests. We used a common
Die object in the TEST_GROUP, and each TESTs is able to access
it. These fields are available because of inheritance.

Test Fixture
Methods

Methods in a TEST_GROUP are accessible by TESTs. We added a
method in the TEST_GROUP to validate that the die’s roll was

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 35 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

within the range 1 – 6 and then used that validation in each of the
TESTs.

3.8 Fixing an anemic roll method

The roll method returns a hard-coded value. How can we, in general, improve the code6?
As stated earlier, we’ll be growing our code through the additional of additional tests.

3.8.1 Validating Roll Distribution

Now it is time for a test that verifies all values are rolled. While we’re at it, we’ll also
verify that the distribution is “reasonable.” There were be several steps to the final form
of the test, which uses the standard library and iterators.

Writing it the hard way

Here’s a test that will get the job done:

01:01:01:01: TEST(Die, ShouldRollAllValuesEvenly_1) {TEST(Die, ShouldRollAllValuesEvenly_1) {TEST(Die, ShouldRollAllValuesEvenly_1) {TEST(Die, ShouldRollAllValuesEvenly_1) {
02020202:::: intintintint values[6] = { 0, 0, 0, 0, 0, 0 };values[6] = { 0, 0, 0, 0, 0, 0 };values[6] = { 0, 0, 0, 0, 0, 0 };values[6] = { 0, 0, 0, 0, 0, 0 };
03030303: : : :
04040404:::: forforforfor((((intintintint i = i = i = i = 0; i < 600000; ++i) {0; i < 600000; ++i) {0; i < 600000; ++i) {0; i < 600000; ++i) {
05050505:::: dddd.roll();.roll();.roll();.roll();
06060606:::: intintintint faceValue = faceValue = faceValue = faceValue = dddd.faceValue();.faceValue();.faceValue();.faceValue();
07070707:::: intintintint countIndex = faceValue countIndex = faceValue countIndex = faceValue countIndex = faceValue ---- 1;1;1;1;
08080808:::: ++values[countIndex];++values[countIndex];++values[countIndex];++values[countIndex];
09090909:::: }}}}
10101010: : : :
11111:1:1:1: forforforfor((((intintintint i = 0; i < 6; ++i) {i = 0; i < 6; ++i) {i = 0; i < 6; ++i) {i = 0; i < 6; ++i) {
12121212:::: CHECK(values[i] > 95000);CHECK(values[i] > 95000);CHECK(values[i] > 95000);CHECK(values[i] > 95000);
13131313:::: CHECK(values[CHECK(values[CHECK(values[CHECK(values[i] < 105000);i] < 105000);i] < 105000);i] < 105000);
14141414:::: }}}}
15151515:::: }}}}

In a nutshell:

● Create an array of size 6 (6-sided dice), initialized to all 0’s.
● Roll 600,000 times, incrementing the count by one for a given face value (1 is stored

at index 0, 2 at 1, etc.
● Verify that all values rolled are in within 5% of balanced

This test is fine as is, but since part of the purpose of this book is to introduce classes in
the standard library, read on.

The std::array class

There’s a simple wrapper class for raw arrays. It gives a way to initialize values and
iterate over a collection; it allows raw arrays to be used with other parts of the standard
library in the same way that the collection classes work.

Here is the first update to the previous example (only the changes):

01:01:01:01: #include#include#include#include <array><array><array><array>

6 The general answer to this question is: “Write another test.” – Really.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 36 Author: Brett L. Schuchert (schuchert@yahoo.com)

02020202:::: TEST(Die,TEST(Die,TEST(Die,TEST(Die, ShouldRollAllValuesEvenly_2) {ShouldRollAllValuesEvenly_2) {ShouldRollAllValuesEvenly_2) {ShouldRollAllValuesEvenly_2) {
03030303:::: std::array<std::array<std::array<std::array<intintintint, 6> values;, 6> values;, 6> values;, 6> values;
04040404:::: values.fill(0);values.fill(0);values.fill(0);values.fill(0);

Line Description

01 Include the std::array class. Note that in general the order of header files is
important to CppUTest. The real issue is if the class uses dynamic memory
allocation. This class does not, so it can be included before or after the #include
of CppUTest/TestHarness.h.

03 Define an std::array that holds 6 ints. The array class wraps “raw” arrays. Its
initial index is 0. Its last index is the size (6), minus 1.

04 Initialize all values in the array to 0. Note that the fill method uses the second
template parameter (6) to know the range. It starts at 0 and goes to 5 (1 minus the
second parameter).

If there were all the std::class did, then there’d be little reason to use it. However, before
moving on, a few observations:

● The variable values is no longer a primitive as it was in the first version.
● Therefore, a constructor is called upon its definition.
● If you review the first version, specifically lines 8, 12, and 13, you’ll notice the array

is accessed using []. This is an overloaded operator member function on the std::array
class. The full method name is actually operator[] . You could write line 08 as:

 ++values.++values.++values.++values.operatoroperatoroperatoroperator[](countIndex);[](countIndex);[](countIndex);[](countIndex);

Using a typedef

When I use collection classes, any many other classes in the standard library, I’ll use
typedef statements to introduce synonyms for the sometimes long names. It just so
happens, as you’ll see, it also removes a DRY violation.

Here’s one more minor change:

01:01:01:01: typedeftypedeftypedeftypedef std::array<std::array<std::array<std::array<intintintint, 6> , 6> , 6> , 6> RollArrayRollArrayRollArrayRollArray;;;;
02020202:::: RollArrayRollArrayRollArrayRollArray values;values;values;values;
03030303:::: values.fill(0);values.fill(0);values.fill(0);values.fill(0);

Line 01 introduces a name, RollArray, which is a synonym for std::array<int , 6>. As
with the previous example, not much change and it might not seem like much value.
However, read on to see additional changes that will move this to an idiomatic use of
classes in the standard library.

Moving towards an iterator by using raw pointers

The standard collections and algorithms use a so-called pair of iterators to describe a
range. An iterator is a logical way to process elements in a collection. Each collection
declares two methods: begin() and end(). The first method, begin(), represents the logical
beginning of a collection. The end() is a logical identifier representing “one past the end”.

The validation loop at the bottom of the test could be rewritten using this idea as follows:

01:01:01:01: forforforfor ((((intintintint *i = &values[0]; i != &values[6]; ++i) {*i = &values[0]; i != &values[6]; ++i) {*i = &values[0]; i != &values[6]; ++i) {*i = &values[0]; i != &values[6]; ++i) {

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 37 Author: Brett L. Schuchert (schuchert@yahoo.com)

02020202:::: CHECK(*i > 95000);CHECK(*i > 95000);CHECK(*i > 95000);CHECK(*i > 95000);
03030303:::: CHECK(*i < 105000);CHECK(*i < 105000);CHECK(*i < 105000);CHECK(*i < 105000);
04040404:::: }}}}

A raw array stores values in contiguous bytes. The array class is a lightweight wrapper
around a raw array, so its underlying storage is the same. The address of values[0] is the
beginning of the array. The address of values[6] is just after the last element in the array.
This loop starts at the first element and continues while i is not on the address just after
the last element.

If this were a raw array, the for loop should have been:

forforforfor ((((intintintint *i = values; i != values + 6; ++i) {*i = values; i != values + 6; ++i) {*i = values; i != values + 6; ++i) {*i = values; i != values + 6; ++i) {

However, since values is an instance of a class, there’s an even better way to write this:

forforforfor ((((intintintint *i = values.begin(); i != values.end(); ++i) {*i = values.begin(); i != values.end(); ++i) {*i = values.begin(); i != values.end(); ++i) {*i = values.begin(); i != values.end(); ++i) {

In all of these examples, i represents an iterator into the collection. It turns out that for
classes like array, an iterator is just a raw pointer. For more complex classes, the iterator
is also a more complex type. However, there’s a convention used in the standard library.
Each collection type has a nested typedef, iterator, which represents its iterator type.

The full name of that type in this case is:

std::array<std::array<std::array<std::array<intintintint, , , , 6>::6>::6>::6>::iterator;iterator;iterator;iterator;

However, we have a typedef for the first part, so in our case, the name is:

RollArray::iterator;RollArray::iterator;RollArray::iterator;RollArray::iterator;

This changes the for-loop one more time:

forforforfor (RollArray::iterator i = values.begin(); i != values.end(); ++i) {(RollArray::iterator i = values.begin(); i != values.end(); ++i) {(RollArray::iterator i = values.begin(); i != values.end(); ++i) {(RollArray::iterator i = values.begin(); i != values.end(); ++i) {

Introducing second typedef

The almost-final version of the for loop is still a bit long winded. I’ll introduce a second
typedef to “promote” the nested typedef in the collection class up to the current scope:

TEST(Die, ShouldRollAllValuesEvenly_5) {TEST(Die, ShouldRollAllValuesEvenly_5) {TEST(Die, ShouldRollAllValuesEvenly_5) {TEST(Die, ShouldRollAllValuesEvenly_5) {
 typedeftypedeftypedeftypedef std::array<std::array<std::array<std::array<intintintint, 6> RollArray;, 6> RollArray;, 6> RollArray;, 6> RollArray;
 typedeftypedeftypedeftypedef RollArray::iterator iterator;RollArray::iterator iterator;RollArray::iterator iterator;RollArray::iterator iterator;
 RollArray values;RollArray values;RollArray values;RollArray values;

Now the final for-loop looks like this:

 forforforfor (iterator i = values.begin(); i != values.end(); ++i) {(iterator i = values.begin(); i != values.end(); ++i) {(iterator i = values.begin(); i != values.end(); ++i) {(iterator i = values.begin(); i != values.end(); ++i) {
 CHECK(*i > 95000);CHECK(*i > 95000);CHECK(*i > 95000);CHECK(*i > 95000);
 CHECK(*i < 105000);CHECK(*i < 105000);CHECK(*i < 105000);CHECK(*i < 105000);
 }}}}

Shortening the middle loop

The middle loop uses several temporary variables to make its intent clearer. Here’s a
“tighter” version that is probably more typical:

 forforforfor ((((intintintint i = 0; i < 600000; ++i) {i = 0; i < 600000; ++i) {i = 0; i < 600000; ++i) {i = 0; i < 600000; ++i) {
 dddd.roll();.roll();.roll();.roll();
 ++values[++values[++values[++values[dddd.faceValue() .faceValue() .faceValue() .faceValue() ---- 1];1];1];1];

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 38 Author: Brett L. Schuchert (schuchert@yahoo.com)

 }}}}

This is a more c-ish way of doing things. Regardless of whether you prefer the longer
version using temporary variables7 or this shorter version, most compilers are going to
generate the same code.

Putting it all together

<TO DO>

The previous section and the next two code examples no longer flow… Need to integrate
them. Also, the name in the previous examples is different.

</TO DO>

The tests do not currently check to see if all values are rolled. This next test accomplishes
that, making sure roll values are reasonably distributed:

01:01:01:01: TEST(Die, DistributionReasonable) {TEST(Die, DistributionReasonable) {TEST(Die, DistributionReasonable) {TEST(Die, DistributionReasonable) {
02:02:02:02: std::array<std::array<std::array<std::array<intintintint, 6> values;, 6> values;, 6> values;, 6> values;
03:03:03:03: values.fill(0);values.fill(0);values.fill(0);values.fill(0);
04:04:04:04: forforforfor((((intintintint i = 0; i < 600000; ++i) {i = 0; i < 600000; ++i) {i = 0; i < 600000; ++i) {i = 0; i < 600000; ++i) {
05:05:05:05: dddd.roll();.roll();.roll();.roll();
06:06:06:06: ++values[++values[++values[++values[dddd.faceValue() .faceValue() .faceValue() .faceValue() ---- 1];1];1];1];
07:07:07:07: }}}}
08:08:08:08:
09:09:09:09: forforforfor(std::array<(std::array<(std::array<(std::array<intintintint, 6>::iterator , 6>::iterator , 6>::iterator , 6>::iterator
10:10:10:10: iter = values.begin(); iter = values.begin(); iter = values.begin(); iter = values.begin();
11:11:11:11: iter != values.end(); iter != values.end(); iter != values.end(); iter != values.end();
12:12:12:12: ++iter) {++iter) {++iter) {++iter) {
13:13:13:13: CHECK(*iter > 9CHECK(*iter > 9CHECK(*iter > 9CHECK(*iter > 95000);5000);5000);5000);
14:14:14:14: CHECK(*iter < 105000);CHECK(*iter < 105000);CHECK(*iter < 105000);CHECK(*iter < 105000);
15:15:15:15: }}}}
16:16:16:16: }}}}

Line Description

01 Introduce a new test called DistributionReasonable.

02 Use the standard library array class. This class holds a raw array but gives a few
convenience methods. This class looks like an std::vector , but it is a fixed
size.

02 This class is available by #includ ing <array> .

03 Initialize the contents of the array to 0. If you used a raw array, you’d either need
to loop through the values, or initialize all of them with 0 when you created the
array.

04 Loop 600,000 times.

05 –
06

Roll the die. Get the faceValue , subtract one. This gives a range of 0 – 5
(std:array’s are 0-based, as are std::vector s and raw arrays). Increment the
count at index faceValue - 1 by one. So the count of the number of times 1

7 These temporary variables are called “explaining variables” by Martin Fowler in Refactoring.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 39 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

was rolled will be in index 0.

09 –
12

Iterate over the entire array. This is a bit much to take in, however this is how
modern C++ using the standard library should be written. I’ll be giving a simpler
version coming up using something called a typedef .

09 Use a nested typedef in the std::array class called iterator. The type iterator is
actually just a pointer to what is in the array. Since the array contains int s, the
type std::array<int,6>::iterator is actually int*.

02,
09

Notice the duplication? Both lines contain the fully-qualified name
std::array<int, 6> . This violated DRY. We’ll fix this before creating
the test in our project.

09 –
10

Define an instance of a thing called an iterator . That instance is known as
iter . It is initialized to the values.begin() , which is the address of the
first element in the array. That it, it points to what is in values[0] ; it is equal
to &values .

11 So long as iter is not at the end of the array, continue going into the loop.
Since array is a thin wrapper around a raw array, you can figure out what
values.end() returns. It is the address just after the last element in the array.
Since this is a std::array<int, 6> , the last element is at index 5.
Therefore, values.end() returns &values + 6 .

12 Increment the counter. You are possibly more accustomed to seeing iter++ (that
is, post increment versus pre-increment). On a for() loop, they produce the same
result. Modern compilers and processors can easily fix this at compile time.
However, if the type of the iterator is actually a complex type as opposed to a
raw type, then pre-increment is more efficient. I’ll have more to say about this
later. For now, you can safely make this substitution universally. Most of the
time it will make no difference. Occasionally it will be more efficient because it
will avoid the creation of an unnecessary object. Since it is a hard habit to
change, better to start practicing it now.

Technically, post-increment returns the value before assignment, which requires
the creation of a temporary value. This temporary value is called an r-value. It is
called an r-value because it can appear on the right-side of assignment (a = b) but
not on the left side of assignment.

13,
14

To get to the current value in the array through the iterator , dereference it.
That’s what *iter does, it turns the pointer to an int into an int .

Again, this is idiomatic use of the standard library. So this is something that
you’ll need to practice so that it becomes second nature.

13,
14

Make sure that the total number of rolls for a given value is approximately one
sixth of the total number of rolls (with a 5% margin for error).

This test is a bit of a jump. It introduces several new things:

● The std::array class from the standard library.
● Iteration across all elements of a collection.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 40 Author: Brett L. Schuchert (schuchert@yahoo.com)

● The iterator nested type
● Dereferencing iterators
● The begin() and end() methods of collections

For now, I want you to replicate it. You’ll be getting more practice with this in the future
but to be able to type it, you’ll need to build up the complex muscle memory required.
Think of this as the natural language approach to learning C++.

Fixing DRY Violation with an Idiom

Before you actually write this test, there’s one more thing I want to introduce to make
this code a touch easier: using typedef

Here’s the same code using typedef s to remove the duplication, and I hope, make the
code more readable:

01:01:01:01: #include #include #include #include <array><array><array><array>
02020202:::: typedef std::array<int, 6> RollArray;typedef std::array<int, 6> RollArray;typedef std::array<int, 6> RollArray;typedef std::array<int, 6> RollArray;
03030303:::: typedef RollArray::iterator iterator;typedef RollArray::iterator iterator;typedef RollArray::iterator iterator;typedef RollArray::iterator iterator;
04040404: : : :
05050505:::: TEST(Die, DiTEST(Die, DiTEST(Die, DiTEST(Die, DistributionReasonable) {stributionReasonable) {stributionReasonable) {stributionReasonable) {
06060606:::: RollArray values;RollArray values;RollArray values;RollArray values;
07070707:::: values.fill(0);values.fill(0);values.fill(0);values.fill(0);
08080808:::: for (int i = 0; i < 600000; ++i) {for (int i = 0; i < 600000; ++i) {for (int i = 0; i < 600000; ++i) {for (int i = 0; i < 600000; ++i) {
09090909:::: dddd.roll();.roll();.roll();.roll();
10101010:::: ++values[++values[++values[++values[dddd.faceValue() .faceValue() .faceValue() .faceValue() ---- 1];1];1];1];
11111111:::: }}}}
12121212: : : :
13131313:::: for (iteratorfor (iteratorfor (iteratorfor (iterator iter=values.begin(); iter!=iter=values.begin(); iter!=iter=values.begin(); iter!=iter=values.begin(); iter!=values.end(); ++iter) {values.end(); ++iter) {values.end(); ++iter) {values.end(); ++iter) {
14:14:14:14: CHECK(*iter > 95000);CHECK(*iter > 95000);CHECK(*iter > 95000);CHECK(*iter > 95000);
15:15:15:15: CHECK(*iter < 105000);CHECK(*iter < 105000);CHECK(*iter < 105000);CHECK(*iter < 105000);
16:16:16:16: }}}}
17:17:17:17: }}}}

Line Description

01 This is the header file for std::array . This header file can be included after
<CppUTest/TestHarness.h> . It happens to work because the
std::array class does do anything with dynamic memory allocation.

02 Use typedef to introduce a synonym for the full name of the array. The
original version had duplication, this version does not. Now, anywhere below
line 02 (in the compilation unit) using RollArray will actually be using
std::array<int, 6> .

03 The type iterator is actually a nested typedef in the std::array class.
This line introduces a synonym for iterator called the same thing. This is a
way to “promote” a nested typedef up to the current scope.

Any line of code below line 03 (in the compilation unit) using iterator will
actually be using std::array<int, 6>::iterator .

The name you use is arbitrary but it should make sense. Since the iterator

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 41 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

meme is embedded deeply in the C++ standard library, I avoid originality and
just use it.

06 Define a std::array<int, 6> by using the typedef .

13 Define a std::array<int, 6>::iterator by using the typedef .

Create the Test

Create the second form of the test. Add it to the existing Die Test.cpp class. You should
be able to get a compiling test that fails executed.

3.8.2 Updated Header File

Now that the Die needs to produce different values, it’s time to give it a better
implementation. The header file needs some updates:

01:01:01:01: #pragma once#pragma once#pragma once#pragma once
02:02:02:02: #ifndef DIE_H_#ifndef DIE_H_#ifndef DIE_H_#ifndef DIE_H_
03:03:03:03: #define DIE_H_#define DIE_H_#define DIE_H_#define DIE_H_
04:04:04:04:
05:05:05:05: clclclclass Die {ass Die {ass Die {ass Die {
06:06:06:06: public:public:public:public:
07:07:07:07: Die();Die();Die();Die();
08:08:08:08: int roll();int roll();int roll();int roll();
09:09:09:09: intintintint faceValue() faceValue() faceValue() faceValue() constconstconstconst;;;;
10:10:10:10:
11:11:11:11: private:private:private:private:
12:12:12:12: int valuint valuint valuint valueeee;;;;
13:13:13:13: };};};};
14:14:14:14:
15:15:15:15: #endif#endif#endif#endif

Line Description

07 Declare a no-argument constructor (ctor). If you declare no constructors, C++
will declare a no-argument constructor for your class, which is typically called
the default constructor. The compiler-provided no-argument constructor
performs default initialization. Default initialization for primitives is to do
nothing. Default initialization for non-primitives (instances of classes, or objects)
is to call the object’s no-argument constructor.

We’ve added member data on line 12 to this class, an int . Since int is a
primitive type, its default initialization is to do nothing. We will use the
constructor to set value to some reasonable initial value.

11 Everything from this line on is private: until the next public: , private: , or
protected: .

12 Add member data (fields, instance data). Each instance of die will have its own
value member data.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 42 Author: Brett L. Schuchert (schuchert@yahoo.com)

This header file declares a constructor, which is considered a special function. That it is
special is not important, what is important, however, is that that constructor is implicitly
used throughout your code base.

Experiment

Make the change to the header file and attempt to build. All the code will compile, but it
will not link. The linking error will be related to the fact that your class definition
contains a declaration for a no-argument constructor, but you have not yet defined it (in
the source file).

Often, you can add a member function to a class. So long as it is not used, adding just a
declaration but no definition will case no problems. Since calls to constructors are
implicit (added by the compiler), they are used, even if it is not obvious. In fact, any time
you define an instance, a constructor will be called. No so for primitives (int , int* ,
char , char* , etc.).

3.8.3 Updated Source File

The header file contains a declaration of no-argument constructor, so it is time to add it.
This section contains a few steps so you can observe things actually happening rather
than just believe a book.

First Pass

01:01:01:01: #include "Die.h"#include "Die.h"#include "Die.h"#include "Die.h"
02: 02: 02: 02:
05:05:05:05: Die::Die() {}Die::Die() {}Die::Die() {}Die::Die() {}
06:06:06:06:
07:07:07:07: intintintint Die::roll() {Die::roll() {Die::roll() {Die::roll() {
08:08:08:08: return 9999;return 9999;return 9999;return 9999;
13:13:13:13: }}}}
14:14:14:14:
15:15:15:15: intintintint Die::faceValue() Die::faceValue() Die::faceValue() Die::faceValue() constconstconstconst {{{{
16:16:16:16: returnreturnreturnreturn valuevaluevaluevalue;;;;
17:17:17:17: }}}}

There are missing line numbers to maintain the same line numbers from this version to
the final version for this section.

Line Description

05 Define the no-argument constructor. For now it does nothing. This code is what
the compiler writes for you by default.

16 Change the definition of faceValue to return the new instance data. A
question to start asking yourself is this: How does this method know one value
from another? If there are 1,000 Die objects in the system, how does this single
method distinguish one die from another?

Experiments in Failure

The code did not link. Now it will link if you define the constructor. Add just line 5, get
to compiling. Now you should see the most recently added test failing. Why? Because the
distribution of values is not reasonable; the die only rolls 1.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 43 Author: Brett L. Schuchert (schuchert@yahoo.com)

Now, update your faceValue method to return value instead of returning 1. Then run
your tests. Now ask yourself, “what just happened?!”

Returning back to just one failure

The problem is that the method faceValue returns member data. That member data is
an int, which C++ does not initialize by default. Your particular compiler might initialize
it to 0. If it does, the tests will still fail.

What’s really happening is that memory for the die object is allocated somewhere. You
cannot tell for sure where without looking at CppUTest, but where it is placed is not
important. It’s in memory somewhere.

That memory may have previously held a value or it might have been set to all 0’s.
Whatever that memory had for a value is what the member data will contain. So you need
to initialize data. That is the primary role of a constructor. So here are two equivalent
ways to accomplish initialization:

05:05:05:05: Die::Die() { value = 1; }Die::Die() { value = 1; }Die::Die() { value = 1; }Die::Die() { value = 1; }

And then this form I want you to learn:

05:05:05:05: Die::Die() : value(1) {}Die::Die() : value(1) {}Die::Die() : value(1) {}Die::Die() : value(1) {}

The first form assigns the value 1 to the member data. The second version initializes the
member data to 1. It may sound like the same thing, and for primitives it is the same
thing. However, prefer initialization over assignment.

Of course, you’re going to have to learn one from the other. This will come up again, so
for now:

● Use the second form
● Understand that C++ treats initialization different from assignment
● In terms of a constructor, the second form is how to use initialization versus

assignment.
● Even though for primitives there is no difference, there is a difference for objects. It

will typically be better performing, but more importantly, there are cases where it will
be required.

Make the change to your constructor and notice that you are back to one failing test.

By the way, the name for the second form is: Member-wise Initialization List. It starts
with a : after the close parenthesis of the formal argument list and ends with the opening
curly bracket {.

Get back to green

Now it is time to get back to green. We’ll do that with a quick and dirty implementation
then a better one after that.

0a:0a:0a:0a: intintintint Die::roll() {Die::roll() {Die::roll() {Die::roll() {
0b:0b:0b:0b: staticstaticstaticstatic intintintint lastValue = 0;lastValue = 0;lastValue = 0;lastValue = 0;
0c:0c:0c:0c: lastValue = (lastValue + 1) % 6;lastValue = (lastValue + 1) % 6;lastValue = (lastValue + 1) % 6;lastValue = (lastValue + 1) % 6;
0d:0d:0d:0d: returnreturnreturnreturn valuevaluevaluevalue = lastValue + 1;= lastValue + 1;= lastValue + 1;= lastValue + 1;
0e:0e:0e:0e: }}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 44 Author: Brett L. Schuchert (schuchert@yahoo.com)

I’m using letters here because these lines are not going to last very long.

Line Description

0b Define a variable called lastValue . This variable is static . This form of
static makes lastValue exist for the entire program8. The initialization of
lastValue to 0 is done once, the first time the method is executed, but never
again.

0c Add one to last value and use modulus with 6. This will limit lastValue to
the range 0 – 5.

0d Assign the member data value to lastValue + 1 . Since lastValue is in
the range 0 – 5, value will be in the range 1 – 6.

Return the result of the assignment. Note that assignment returns the thing
assigned to, which is value in this case. Technically, assignment returns an l-
value. An l-value is something that can appear on the left-hand side of the
assignment operator.

This first version should get your tests passing. Make the change and get to green. Once
you are green, read on.

Refactoring

Remember that refactoring means to change the structure of your code without changing
its behavior. Behavior, in our work, is defined by the automated tests. If we plan to
change the production code, so long as the tests pass, we are in great shape.

The second version of the C++ standard is called tr1, which stands for “Technical
Release 1”. OK, it really is not a standard but a recommendation. It recommended adding
several classes to the standard library. One group of additions to the library for that
version was is a number of new random number generators. I’m providing this next
version for two reasons:

● So you will be aware of classes available to you in the library
● Students in the classes I’ve taught seem to like this

So here is a final version of the entire Die .cpp file for this section:

01:01:01:01: #include #include #include #include "Die.h""Die.h""Die.h""Die.h"
02: 02: 02: 02:
03:03:03:03: #include <tr1/random>#include <tr1/random>#include <tr1/random>#include <tr1/random>
04: 04: 04: 04:
05:05:05:05: Die::Die() : Die::Die() : Die::Die() : Die::Die() : valuevaluevaluevalue(1) {}(1) {}(1) {}(1) {}
06:06:06:06:
07:07:07:07: int Die::roll() {int Die::roll() {int Die::roll() {int Die::roll() {
08:08:08:08: using namespace std::tr1;using namespace std::tr1;using namespace std::tr1;using namespace std::tr1;
09:09:09:09: static mt19937 engine;static mt19937 engine;static mt19937 engine;static mt19937 engine;
10:10:10:10: static uniform_int<int> uniform(1, 6);static uniform_int<int> uniform(1, 6);static uniform_int<int> uniform(1, 6);static uniform_int<int> uniform(1, 6);
11:11:11:11:
12:12:12:12: return return return return valuevaluevaluevalue = uniform(engine);= uniform(engine);= uniform(engine);= uniform(engine);
13:13:13:13: }}}}

8 This is somewhat simplified, but it’s a good enough model for the discussion.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 45 Author: Brett L. Schuchert (schuchert@yahoo.com)

14:14:14:14:
15:15:15:15: int Die::faceValue() const {int Die::faceValue() const {int Die::faceValue() const {int Die::faceValue() const {
16:16:16:16: return return return return valuevaluevaluevalue;;;;
17:17:17:17: }}}}

Line Description

03 Include the new random number generation features via this header file. Notice
the use of tr1 in the name of the header file. You can probably guess that
something was part of tr1 if its header file includes tr1.

05 The final version of the constructor. This version initializes the member data
value to 1 by using the member-wise initialization list.

08 The classes about to be named are part of tr1. Classes of tr1 are typically in the
tr1 namespace. The tr1 namespace is a nested namespace in the std namespace.
So, for example, mt19937 is a class name. Its full name is std::tr1::mt19937.
Rather than typing that, the using expression brings all of the names in the
std::tr1 namespace into the current scope (the roll method). This makes those
names available without fully qualifying them.

Since this using expression is in the body of the definition of the roll method, it
only impacts the roll method.

09 The class mt19937 is a random number generator. This line defines a single
instance of the class, called engine. It is static, meaning there will only be one,
which will live between executions of the roll method. The first time the roll
method is called, this object will be initialized. Since this is an object, and not a
primitive, one of its constructors will be called. There are no parameters
provided to the constructor so the no-argument constructor will be called.

10 The template class uniform_int<int> attempts to uniformly distribute the values
it is provided across some range of values. This line defines an instance of the
class called uniform. The first time the roll method is called, one of uniform’s
constructors will be automatically called. The (1, 6) after uniform are parameters
provided to the constructor. So a constructor taking two numbers will be called
rather than the no-argument constructor.

12 First, generate a random value. Next, assign the random result to the value
member data. Finally, return the l-value returned as a result of assignment, which
is the member data value .

There is quite a bit going on here.
� The statement uniform(engine) calls a method on the uniform class

taking an engine object. This looks like a function call, but it is in fact calling
a method called operator() , literally. This expression could be written as
uniform.operator()(engine) .

� The () operator is called the function call operator. It allows an object to look
like it is a function. Another name for this is “functor” or function-object.

� The return from calling operator() is assigned to value.
� The result of that assignment is value itself.
� The member field value is returned.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 46 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

12 Notice the DRY violation? Two lines of code both returning the value member
data. This doesn’t seem like much, but as you will see, it causes some subtle
problems.

12 There is another design principle that this code violates: The Command/Query
Separation Principle. This principle suggests that a function or method should
either be a command or a query. A command changes state but does not return a
value. A query returns a value but does not change state. Since roll() can change
the value of the die, its returning a value violates the principle.

There are times when following the command/query separation is problematic.
One common example is with multi-threaded programming. Often you need to
both perform a check and change a value if that check passes, however both of
those things need to be done as a single unit of work.

We are not writing a multi-threaded application, however, so violation this
principle might cause problems.

Now a secret. That violation is by design. It will come up shortly as you will see
an actual problem that could have been averted had the code not violated the
command/query separation.

Now it is time to change your code. Change the implementation of roll to use the new
random number generation classes. Now that you are aware of their existence, you’re in a
good position to look them up if they tickle your fancy9, this will be the last mention of
the random number generator.

A note on this C ugliness

Using a static variable in a method (or function) is an old C hack. However, due to the
design of the class I only wanted one instance of both the engine and the uniform object.
There are several ways to do this:

1. Static variables in the class (so-called class data, or static member data)

2. Static variables in the source file, but outside of a method

3. Global variables

4. Each die object could have its own copy, each initialized with a different random seed

5. Each die object has its own pointer to an engine and an uniform_int

6. Not do it and just skip those classes (or lightly mention them)

7. The static hack I used

Fundamentally I didn’t really like any of these solutions. My personal definition of
design is “Selecting the solution that sucks the least.” Often there is not a single best
answer, so you take the best answer you can get.

Here is why, case by case, I rejected the first six options:

Option Description

9 That’s one of the ways this book avoids being an encyclopedia. Another is simply not covering

everything. So you will not win any trivial pursuit contests, but you will be able to write decent OO
programs with what you will learn.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 47 Author: Brett L. Schuchert (schuchert@yahoo.com)

Option Description

1 While I did want a single instance, adding these to the header file would then
make all files that include Die .h know about the random number generation
stuff. This is strictly implementation only so spreading this knowledge across
the source base represents bad and fundamentally unnecessary coupling.

2 This isn’t really any better than in the function, and it expands the visibility of
the variables from just one method to every line in the compilation unit below
where it is introduced. It’s better than option 1, but if I’m already considering
file-level scope, which is what static on a variable outside of a method
represents, then static on a variable in a function (or method) really isn’t any
more complex. Same idea, more focused scope.

3 Global variables allow for wide-reaching coupling. I will use them in
controlled fashions. But in reality, global variables are a great way to have
guaranteed employment as you work fixing bugs forever.

4 First, there’s the issue of making the random implementation visible to all files
that include Die .h. That is unnecessary coupling. Unnecessary coupling
causes slower compilation times, slower feedback, and increased time to read
and understand what is going on.

Also, this would require the introduction of more C++ features than I wanted
to do at this point. Important features, to be sure, but ones that will naturally
occur.

5 This reduces the issue of unnecessary coupling because it is possible to use
something called a forward-declaration to minimize the unnecessary coupling.
However, this would introduce dynamic memory allocation as well.

Both of those subjects are coming up. But as with the previous option, more
C++ than I wanted to cover at this point. Things that will come up anyway.

6 Of all the options that I did not pick, this is the best option. It might have been
the best option overall, however I have witnessed enough people interested in
this that it seems worthy of mention. I don’t think it’s worthy of a lot of detail
because those details are available elsewhere, but to know to look up those
details, you need to know it exists. So using it is a great way to raise
awareness.

7 This option is somewhat complex, but it’s something I will actually do in
production code to keep implementation details deeply hidden.

3.8.4 Recap

Term Description

<tr1/random> The header file used to include support for new random number
generation algorithms introduced into technical release 1 of C++.

array A class in the standard library. It offers a thin wrapper around a raw
C array. It provides utility methods and it also makes a raw array
look like a standard collection.

assignment = is the assignment operator. It takes the value on its right side and

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 48 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

applies it to the thing on its left side. The thing on the left side must
be an l-value, such as a variable. The thing on the right side can be
an l-value but it can also be an r-value, e.g., 4.

begin A method on the standard collections. It returns an iterator set to the
beginning element of the collection.

command-query
separation

A design principle that suggests methods and functions should either
be a command or a query, but not both. A command changes state
but returns no value; a query returns a value but does not return
state.

Constructor(ctor) A special method on a class used to initialize an object of that class.
It is special in that you do not explicitly call it; the compiler inserts
code to invoke it. In fact, when creating an object, a constructor will
be called. Primitive types, such as pointers do not have constructors.

end A method on the standard collections. It returns something that can
be used for comparison. Iteration across all elements in a collection
start at begin(), and continue while the iterator is not equal to end().

function-object An instance of a class that can respond to the message (). This is an
overloaded operator. The full method name is operator(). At a
superficial level, it makes an object look like it behaves like a
function. When used as a parameter to a template class, it is possible
to write code that uses either a function or a function object without
having to do anything special, so it is a convenient way to make
generic code.

functor Same as a function object, just an alternative name.

initialization When an object or primitive is declared and set at the same time, it is
being initialized. For non-primitives, initialization means the
compiler inserts a call to one of its constructors.

iterator This is both a design pattern, a name used by the standard library
and a nested typedef . All of the collection types in the standard
library contain a declaration of a type called iterator. It represents
something that code uses to work through all elements in a
collection. In the case of array and vector, the type of iterator is
simply a pointer to what the array or vectors holds. For more
complex collections, the iterator is more complex. However, its use
is consistent across the collection classes in the standard library.

l-value A fully-formed variable or object. It is something that can be on the
left-side of an assignment operator. Temporary values or a constants
such as 4 or “4” are not l-values, but instead r-values.

Member field A non-static variable that is part of a class definition.

member-wise
initialization list

On a constructor, it is the place where member data can be
initialized using non-default initialization. It exists between the) of
the constructor argument list and the { marking the start of the

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 49 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

method definition. The member-wise initialization list begins with a
:.

modulus (%) Given two integer values, return the remainder of division of the
number on the left by the number on the right. 5 % 6 is 5, whereas 6
% 5 is 1.

mt19937 A class added to the standard library as part of technical release 1. It
provides a sequence of random values using the Mersenne Twister
algorithm

namespace A way to group related classes and variables. The original standard
library resides in a namespace called std. Examples of its members
include std::cout and std::vector . When technical release 1 was
introduced, it was created as a nested namespace under std, giving
classes like std::tr1::mt19937.

nested type Adding a type in a class creates a nested type. All of the standard
collections have a nested type called iterator and another nested type
called const _iterator for dealing with constant collections.

nested
typedef

The iterator and const _iterator nested types are created using a C
typedef . Since those typedef s are in a class, they are nested
typedef s. This means their full name includes the name of the
class in which they reside.

no-argument
constructor

A constructor on a class that takes no arguments. When you create a
C++ class with no constructor, C++ will attempt to add one taking
no parameters. You can choose to write that yourself if the one
provided by C++ does not do what you require. We came across this
while changing the Die class. We added a primitive member data
entry called value, which required initialization.

non-primitive An object. An instance of a class or struct. Non-primitives have
constructors, which are called automatically when the object is
created.

object/instance Defining a variable of a class or struct creates an object. Object and
instance are synonyms.

operator() The function call operator. We saw this on the uniform_int class.

pre-increment ++ on the left side of a variable. Pre-increment returns the value of a
variable after adding one. The significance of this is that the pre-
increment operator returns an l-value rather than an r-value. An r-
value requires the creation of a temporary object, whereas an l-value
does not.

prefer
initialization
over assignment

All non-primitives are initialized. Assignment after initialization
may cause unnecessary or duplicate work. There is little difference
with primitive values, however, there is no harm using initialization
over assignment, so applying this to all variable types reduces the
amount you need to remember.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 50 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

primitive Types know by the compiler. Examples include int, char, void*, to
name a few. All points are primitives. All references (we’ve not
come across this yet) are also primitives.

primitive
initialization

Primitives are not initialized by default. We experienced this when
adding the value member data to the Die class. It was not
initialized. We added a constructor to force its initialization. We then
looked at assigning the value in the body of the constructor versus
initializing it in the member-wise initialization list. For primitives,
there’s little difference. However, there are situations where the
member-wise initialization list is mandatory.

private: Access level. Things that are private cannot be accessed outside of
the class unless using “friends”.

r-value A value that can only appear on the right side of an assignment
operator. A copy or a temporary.

special member
functions

Constructors and the destructor are examples of special member
functions.

static variables Static typically means “one” in some manner.
� Static on a variable in a function means there will only be one, it

will be initialized the first time through the function and it will
live for the life of the program.

� Static on a variable in a source file but outside of a function means
there is only one, it will be initialized before its first use (typically
before main() is called in practice) and it is only accessible from
the point in the file where it occurs to the end of the file.

� Static on a function in a file means the function is only available
to this one compilation unit. File-level scope.

� Static on a variable in a class means there will only be one of them
rather than one per object. This is typically called class data.

� Static on a method in a class means that it is a class method. It
does not operate on objects. It does not itself have access to
member data unless it happens to have an instance of the class.

std::tr1 The namespace of classes added as part of technical release 1 of the
C++ language.

template class A class that takes parameters in <>. We have seen two examples up
to this point, std::array and std::vector . A template class is a
partial or meta class. Providing template parameter makes a
complete class. In fact, in C++ a vector<int> and vector<int*> are
two different classes. Using a template causes the creation of a
complete class.

tr1 Technical release 1, or ISO/IEC TR 19768. This is a set of
recommendations, not actually a standard. Several of the classes
were taken from the boost library.

typedef A way in C (and C++) to introduce a synonym for another type. I’ll

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 51 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

be using typedef to remove duplication primarily when using
template classes from the standard library.

uniform_int<int> A class described in tr1 that attempts to provide an even distribution
of values across a range.

using A keyword to bring names from one namespace into another
namespace.

3.9 C++ Idioms

There’s one more group of changes based on things the compiler does by default. The
compiler will add a no-argument constructor if you do not add any constructors to your
class. The compiler will also add three more methods to your class if you do not do so
yourself:

● A destructor
● A copy-constructor
● An assignment operator

This section is about doing this yourself. Ultimately, whether and how these methods are
declared and or defined should be an explicit decision. The first step, however, is
awareness that C++ is adding these methods and then how to override the default
behavior.

3.9.1 Updated Header File

Whether a class will take over the generation of those 4 methods is part of a class’
definition, which is in a header file:

01:01:01:01: #pragma#pragma#pragma#pragma once
02:02:02:02: #ifndef#ifndef#ifndef#ifndef DIE_H_
03:03:03:03: #define#define#define#define DIE_H_
04:04:04:04:
05:05:05:05: classclassclassclass Die {
06:06:06:06: publicpublicpublicpublic:
07:07:07:07: DieDieDieDie();
08:08:08:08: virtualvirtualvirtualvirtual ~Die~Die~Die~Die();
09:09:09:09:
10:10:10:10: intintintint rollrollrollroll();
11:11:11:11: intintintint faceValuefaceValuefaceValuefaceValue() constconstconstconst;
12:12:12:12:
13:13:13:13: privateprivateprivateprivate:
14:14:14:14: int int int int valuevaluevaluevalue;;;;
15:15:15:15:
16:16:16:16: privateprivateprivateprivate:
17:17:17:17: Die(const Die&);Die(const Die&);Die(const Die&);Die(const Die&);
18:18:18:18: Die& operator=operator=operator=operator=(constconstconstconst Die&);
19:19:19:19: };
20:20:20:20:
21:21:21:21: #endif#endif#endif#endif

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 52 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

08 Declare a destructor. This is a special method called when an object is removed
from the system. By convention, we’ll be making all of our destructors virtual.
More on this later. There are situations where this is an inappropriate thing to do,
e.g., embedded systems with strong memory restrictions, or putting objects into
shared memory. Neither of these is relevant for this problem.

17 Declare a copy constructor. It is private, so it is not available for use outside of
the class. In fact, it will not be used inside the class, so there will be no definition
for this method. This makes it impossible to accidentally copy an object of this
class.

18 Ibid. but for the assignment operator. The assignment operator, by convention,
returns a reference to the original receiver. By virtue of the &, the return type is
an original, not a copy, so it is an l-value. Assignment operators are meant to
return l-values, and this is how to do that.

17,
18

Both of these take in a const Die &. The & means reference. The const
suggests that the object passed in will remain unchanged.

Experiment in Failure

Update the header file and attempt to compile. You’ll notice a linking error because your
class’ definition states that the class is providing a destructor. Since the compiler
automatically injects calls to a class’ destructor when it leaves the system, you must
provide a definition if you declare a destructor in the class’ definition.

3.9.2 Updated Source

01:01:01:01: #include #include #include #include "Die.h""Die.h""Die.h""Die.h"
02: 02: 02: 02:
03:03:03:03: #include <tr1/random>#include <tr1/random>#include <tr1/random>#include <tr1/random>
04: 04: 04: 04:
05:05:05:05: Die::Die() : Die::Die() : Die::Die() : Die::Die() : valuevaluevaluevalue(1) {}(1) {}(1) {}(1) {}
06:06:06:06: Die::~Die()Die::~Die()Die::~Die()Die::~Die() {}{}{}{}
07:07:07:07:
08:08:08:08: int Die::roll() {int Die::roll() {int Die::roll() {int Die::roll() {
09:09:09:09: using namespace std::tr1;using namespace std::tr1;using namespace std::tr1;using namespace std::tr1;
10:10:10:10: static mt19937 engine;static mt19937 engine;static mt19937 engine;static mt19937 engine;
11:11:11:11: static uniform_int<int> static uniform_int<int> static uniform_int<int> static uniform_int<int>
 uniform(1, 6);uniform(1, 6);uniform(1, 6);uniform(1, 6);
12:12:12:12:
13:13:13:13: return return return return valuevaluevaluevalue = uniform(engine);= uniform(engine);= uniform(engine);= uniform(engine);
14:14:14:14: }}}}
15:15:15:15:
16:16:16:16: int Die::faceValue() const {int Die::faceValue() const {int Die::faceValue() const {int Die::faceValue() const {
17:17:17:17: return return return return valuevaluevaluevalue;;;;
18:18:18:18: }}}}

Line Description

06 Define the destructor. There’s nothing to do, so the compiler-provided destructor

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 53 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

would have been adequate. However, there’s still a reason to provide it. Doing so
can reduce your object module size and your linking time. Not by much, but on a
large system, you might notice a difference.

It is also not possible to make the destructor virtual if you do not declare it as
such yourself. That is, a compiler-provided destructor will never be virtual.

Back to Green

Add the destructor definition and get back to green

3.9.3 Recap

Term Definition

Assignment
Operator

A method with the following characteristics:
� Its name is operator=
� It must take one parameter, an object of the class, the typical parameter

type is const Type& .
� It should return a reference to an object of the class, so the typical return

type is Type& .

By default, classes will be given an assignment operator. By declaring this
method, you are stopping the compiler from adding this method itself. So
long as it is not used, you do not need to define the method. By making it
private, only your class can use it, which makes it unlikely that it will get
used.

Copy
Constructor

A constructor used when copying the object. Like the assignment
operator, the compiler provides one of these. If you declare it in your
class, the compiler will not provide it for you.

A copy constructor has the following characteristics:
� Its name is the same as your class name. This is a requirement of all

constructors.
� It must take one parameter, a reference to an object of your class. It

should be a const reference, but in any case it must be a reference.
� It has no return type because constructors do not have return types.

Destructor
(dtor)

A destructor is named ~ClassName. It is automatically added by the
compiler if you do not write one. A call to the destructor is automatically
added by the compiler upon an object being removed. We added a
destructor and made it virtual. For now, this is meant to get you practicing
a habit. We’ll come across this again.

Operator
Overloading

You can write operators for your class. There have been several examples
of this so far:
� The assignment operator declaration you just added to your class
� The uniform_int class had an overloaded operator().
� The vector class and the array class both have an operator[], which

makes both classes look like raw arrays.

reference A reference is a primitive type. It allows a variable to refer to another

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 54 Author: Brett L. Schuchert (schuchert@yahoo.com)

variable rather than be a copy. In C, which does not have references, you
accomplish the same thing by using pointers. Here are a few things to
keep in mind with references:
� Their primary use is as parameters sent into methods. While it is

possible to use one in the middle of a function, it is atypical.
� They are primitive types. This means you can use one without including

a header file; though you’ll have to forward-declare non-primitive types
(classes) for which you use a reference.

� When they are created, they must be initialized, and once initialized
always refer to the same thing.

� Assignment to a reference changes the value of the thing referred to, not
the reference itself.

� As we will see later, you cannot put references in template classes. So,
for example, neither std::vector <int&> or std::array<int&> are
valid C++.

� A reference is a synonym for another object.
� You might think of a reference as a dereferenced, initialized pointer.

Then again, you might not.

virtual A keyword saying that a method might be overridden in a sub-class. The
first place where you explicitly used this feature was with the virtual
destructor of Die . However, the TEST macro actually adds a virtual
method to the class it creates to allow for test execution. We will be seeing
much more of this coming up.

Virtual dtor The virtual destructor is a recommendation for any class that might be a
base class. For now, form the habit. As you work through the book, more
will be revealed.

3.10 What’s coming up?

Next up is the DiceGame itself. However, to effectively test the DiceGame, we will
need to learn several new things:

● Inversion of Control & Dependency Injection
● Test Doubles
● The Mechanics of dynamic binding in C++ (virtual methods)
● A light spattering of pointers and references
● Subclass/inheritance and command/query separation
● More on iterators in the standard library.

3.11 Review Game Rules

The DiceGame has a few simple rules:

● Roll < 7, the player looses
● Roll > 7, the player wins
● Roll == 7, it’s a push, neither a win nor a loss

The DiceGame ultimately uses 2 die objects, both of which roll 1 – 6 (with an even
distribution), so the range of possible totals is 2 – 12.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 55 Author: Brett L. Schuchert (schuchert@yahoo.com)

If you are taking a typical approach to this problem, you might simply write the
production code, and be done with it. However, throughout this book we’re only writing
production code with tests in place first. This introduces a challenge: How can you write
a test for a particular situation when what affects the results is a random event? The rules
of the game are fixed, but depend on something outside of our control. Or is it?

3.11.1 Test Control

Consider this updated class diagram:

Imagine if you created a new class, LoadedDie . This class behaves like a Die but it
can be set to always return a particular value. LoadedDie will take the place of Die for
tests in the DiceGame. This allows a test to decide what’s going to happen.

This might seem like cheating. However, you already have tests to verify that Die works.
Given that we know Die works, then if DiceGame uses Die or something that behaves
like Die , it will not invalidate our testing regime. Since we can control a LoadedDie ,
we can control the test results. In reality, we are selecting a particular path through the
production code by controlling the test. This may be a subtle point, so let me restate it in
a different way:

● DiceGame does not depend on how the roll method is implemented, it depends on
what the roll method returns. So any roll method that returns a valid range of values
will do. One that returns a random value is as good as one that returns a controlled or
fixed value.

This idea is fundamental. LoadedDie is going to substitute for Die in the test.
LoadedDie is called a Test Double10. Test Double is a general category. It describes
anything used as a placeholder for a test, used to bring under control things that might
otherwise change the results of the test. In this particular case, LoadedDie returns a
fixed value, so a more specific name is a Stub.

The idea is basic; providing support in your designs for this is fundamental to better
coding. It just so happens that making something testable also tends to lead to better
design. However, at this point it’s time to make a bold, if not misleading statement:

Testing Trumps Design

10 http://xunitpatterns.com/, Meszaros, Gerard.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 56 Author: Brett L. Schuchert (schuchert@yahoo.com)

That is, given a choice between a “great design” and a “design that can be tested”, I’ll
pick the testable design without a compelling reason to do otherwise. This is generally a
false dichotomy as good designs are generally testable. So how can you take advantage of
this idea for the DiceGame? It will require a few moving parts:

● Dependency Injection
● Polymorphism

3.11.2 Dependency Injection

Objects interact by sending messages. When one object talks to another object, the caller
sends a message. A message is associated with a method, which is then executed. There
are two parts to this relationship:

● What message to send
● Which object receives the message

The idea of dependency injection only addresses the second point. It has nothing to do
with the first. So dependency injection is about controlling which objects are being sent
messages.

In our particular situation, we have DiceGame and Die . DiceGame needs to roll()
two die objects and then get their faceValue() . The question then remains, to which
die objects will the DiceGame talk? Alternatively, how will DiceGame get access to
Die objects? There are two general ways this can happen:

● The DiceGame selects which Die objects it talks to
● The DiceGame is told which Die objects to talk to.

The second option is dependency injection. What does this look like from a design
perspective? There are several options; here is one called constructor injection:

This is a UML Communication Diagram. A message starts the whole sequence, that’s the
unnumbered “TestScenario()” message coming “from the outside.” That message results
in three more messages (there’s more, I’m just showing the first three). The first and
second messages create two instances of LoadedDie . Each is created with a value of 3

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 57 Author: Brett L. Schuchert (schuchert@yahoo.com)

passed in. The message create is a convention to show that an object is being
constructed. The DiceGame is then created in step three and it is given two handles two
LoadedDie objects.

Rather than creating Die objects itself, the DiceGame is given those objects. If the
DiceGame creates Die objects directly, controlling what happens is more difficult (not
impossible, just more difficult).

As a sidebar, the first time I was introduced to the idea of Dependency Injection, it
seemed so trivial that I rejected it as a significant idea. Sometimes I would pass things
into constructors and sometimes I would not. I didn’t see its impact on testability. I was
confusing the mechanism, passing an object in, with the intent, providing a hook for
control of a relationship. It took several months for the importance of this seemingly
simple idea to sink in.

Given a DiceGame created with two LoadedDie objects, both of which were created
with the value 3, can you guess the expected result of the test? If the LoadedDie
objects simply return the value they were given at construction time, then 3 + 3 will give
6, which is less than 7. So the player will lose.

However, there are several moving parts to make this work in C++.

3.11.3 Polymorphism Moving Parts

Simply passing in a different object is not enough. We need to write the code in such a
way that we get different behavior with LoadedDie than with Die objects.
Specifically, we want the sum seen by the DiceGame to be under our control. We have
not yet written it as such, but assume for the moment that DiceGame uses faceValue() to
calculate a sum. This means we need LoadedDie to return a controlled value from the
faceValue method. For this to work:

● Die should have a virtual destructor
● Die must have at least one other virtual method, faceValue() in this case
● That virtual method (faceValue()) must be overridden by LoadedDie
● That virtual method (faceValue()) must be called by DiceGame
● DiceGame must hold either pointers or references to Die

The last four bullets enable dynamic binding of the method. That is, the particular method
called depends on the type of the object receiving the message. If the faceValue
message is sent to an instance of the Die class, it will call Die ::faceValue . If the
message is instead sent to an instance of the LoadedDie class, then it will instead
invoke LoadedDie ::faceValue . This determination is made at runtime, rather than at
compile time. Thus, the method is dynamically bound. In C++, most of the work is
calculated at compile time, so while there is some overhead, it’s small. It’s the cost of an
indirect jump versus a direct jump.

That is a whole lot to take it. Rather than just jumping right in, we will continue the
practice of working through a series of automated tests and changing production code to
produce the desired effect.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 58 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.12 Testing Into It: LoadedDieTest

Before we can use LoadedDie , we’ll need to create it. So that’s a good place to start.
Here’s the first version of LoadedDie Test.cpp:

#in#in#in#include "LoadedDie.h"clude "LoadedDie.h"clude "LoadedDie.h"clude "LoadedDie.h"

#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>

TEST_GROUP(LoadedDieShould) {TEST_GROUP(LoadedDieShould) {TEST_GROUP(LoadedDieShould) {TEST_GROUP(LoadedDieShould) {
};};};};

TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue) {TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue) {TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue) {TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue) {
 LoadedDie die(5);LoadedDie die(5);LoadedDie die(5);LoadedDie die(5);
 LONGS_EQUALLONGS_EQUALLONGS_EQUALLONGS_EQUAL((((5, 5, 5, 5, die.faceValue());die.faceValue());die.faceValue());die.faceValue());
}}}}

This test simply demonstrates that:

● There is (or rather will be) a class called LoadedDie
● Constructing an instance of LoadedDie takes a single parameter
● Calling the faceValue method on a LoadedDie returns the value passed into the

constructor.

Of course, if you create just this test, it will not compile because there is no LoadedDie
class yet.

3.12.1 Options: Interface/Concrete Inheritance

There are two ways to accomplish our goal:

● Create LoadedDie as a subclass of Die
● Create a top-level interface11 that both Die and LoadedDie inherit from

The second approach is more pure, but it also includes more moving parts. For now, we
will pick the first option. However, we will use the second option later in this project.

With this decision made, here is LoadedDie ’s header file:

01:01:01:01: #pragma once#pragma once#pragma once#pragma once
02020202:::: #ifndef LOADEDD#ifndef LOADEDD#ifndef LOADEDD#ifndef LOADEDDIE_H_IE_H_IE_H_IE_H_
03030303:::: #define LOADEDDIE_H_#define LOADEDDIE_H_#define LOADEDDIE_H_#define LOADEDDIE_H_
04040404: : : :
05050505:::: #include #include #include #include "Die.h""Die.h""Die.h""Die.h"
06060606: : : :
07070707:::: class Loclass Loclass Loclass LoaaaadedDie: public Die {dedDie: public Die {dedDie: public Die {dedDie: public Die {
08080808:::: public:public:public:public:
09090909:::: LoadedDie(LoadedDie(LoadedDie(LoadedDie(intintintint value);value);value);value);
10101010:::: intintintint faceValue() faceValue() faceValue() faceValue() constconstconstconst;;;;
11111: 1: 1: 1:
12121212:::: private:private:private:private:

11 C++ does not actually support interfaces, but there is an idiomatic way to create something similar.

In any case, an interface is something that describes pure behavior without providing any
implementation. That is, it provides method declarations but no method definitions.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 59 Author: Brett L. Schuchert (schuchert@yahoo.com)

13131313:::: int loadedValue;int loadedValue;int loadedValue;int loadedValue;
14141414:::: };};};};
15151515: : : :
16161616:::: #endif#endif#endif#endif

The only new thing in this example is on line 07. The part from the : to the { is how you
create a subclass. This states that LoadedDie publicly inherits from the class Die . As
we will see, a LoadedDie is “compatible” with or “substitutable for” a Die . Anywhere
code wants a Die , we can provide a LoadedDie .

To use inheritance, the code must include the header file for the base class, Die .h in this
case. Inheritance is simultaneously powerful and highly coupling. I’ll have more to say
on this in a bit.

3.12.2 LoadedDie Implementation

#include "#include "#include "#include "LoadedDie.h"LoadedDie.h"LoadedDie.h"LoadedDie.h"

LoadedDie::LoadedDie(int value) : loadedValue(value) {LoadedDie::LoadedDie(int value) : loadedValue(value) {LoadedDie::LoadedDie(int value) : loadedValue(value) {LoadedDie::LoadedDie(int value) : loadedValue(value) {
}}}}

int LoadedDie::faceValue() const {int LoadedDie::faceValue() const {int LoadedDie::faceValue() const {int LoadedDie::faceValue() const {
 return loadedValue;return loadedValue;return loadedValue;return loadedValue;
}}}}

There is no new syntax in this example. The constructor is provided an int called value.
The member data, loadedValue, is initialized with value in the member-wise initialization
list. The method faceValue returns loadedValue instead of value, which is what
Die ::faceValue() does. LoadedDie ::faceValue is meant to replace, or override,
Die ::faceValue .

3.12.3 Get your test passing

You have three files to create:

● LoadedDie Test.cpp
● LoadedDie .h
● LoadedDie .cpp

Get to green before moving on.

Here’s a question to ask yourself: In Polymorphism Moving Parts on page 57, there’s a
list of bullets. Does this solution conform to those bullets?

3.12.4 Experiment in Failure

Make an update to your LoadedDie test:

TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue) {TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue) {TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue) {TEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue) {
 LoadedDie die(5);LoadedDie die(5);LoadedDie die(5);LoadedDie die(5);
 LONGS_EQUALLONGS_EQUALLONGS_EQUALLONGS_EQUAL((((5, 5, 5, 5, die.faceValue());die.faceValue());die.faceValue());die.faceValue());
 DDDDie &d = die;ie &d = die;ie &d = die;ie &d = die;
 LONGS_EQUAL(5, d.faceValue()LONGS_EQUAL(5, d.faceValue()LONGS_EQUAL(5, d.faceValue()LONGS_EQUAL(5, d.faceValue()););););
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 60 Author: Brett L. Schuchert (schuchert@yahoo.com)

Earlier I mentioned that you do not typically use references in the middle of a method and
here I am violating that. It’s to demonstrate a failure. The variable d is a reference to the
variable die. That is, die and d are the same variable. If they are the same value, then it
seems to make sense that the faceValue method should give the same result. If that’s
the case, then this test will pass.

Check, are you green?

TEST(LoadedDieShould, HaveFaceValueEqualToConTEST(LoadedDieShould, HaveFaceValueEqualToConTEST(LoadedDieShould, HaveFaceValueEqualToConTEST(LoadedDieShould, HaveFaceValueEqualToConstructorParamaterValue)structorParamaterValue)structorParamaterValue)structorParamaterValue)

........\\\\LoadedDieTest.cpp:12: error: Failure in TEST(LoadedDieShould, LoadedDieTest.cpp:12: error: Failure in TEST(LoadedDieShould, LoadedDieTest.cpp:12: error: Failure in TEST(LoadedDieShould, LoadedDieTest.cpp:12: error: Failure in TEST(LoadedDieShould,
HaveFaceValueEqualToConstructorParamaterValue)HaveFaceValueEqualToConstructorParamaterValue)HaveFaceValueEqualToConstructorParamaterValue)HaveFaceValueEqualToConstructorParamaterValue)

 expected <5 0x5>expected <5 0x5>expected <5 0x5>expected <5 0x5>

 but was <1 0x1>but was <1 0x1>but was <1 0x1>but was <1 0x1>

The test fails. The second assertion shows that the faceValue is 1 instead of the
expected (or desired 5). So there’s a problem with the current implementation.

3.12.5 Fixing It

The problem is that C++ does not pick the method at runtime unless the method is
declared virtual in the base class’ definition. So the faceValue method needs to be
declared virtual. As soon as there’s one virtual method in a class, the destructor should be
declared virtual as well12. While nothing bad will happen here, there is a possibility of a
memory leak if you do not do this. So form the habit of making destructors virtual unless
you have a good reason not to.

Simply change Die .h so that the destructor and the faceValue methods are declared
virtual:

classclassclassclass Die {Die {Die {Die {
public:public:public:public:
 DieDieDieDie();();();();
 virtualvirtualvirtualvirtual ~Die();~Die();~Die();~Die();
 intintintint roll();roll();roll();roll();
 virtualvirtualvirtualvirtual intintintint faceValue() faceValue() faceValue() faceValue() constconstconstconst;;;;

Make this change and see that your tests are now passing. Congratulations, you’ve just
used a test to confirm the need for a virtual method.

3.12.6 Overloading faceValue versus roll

Why did LoadedDie override faceValue versus roll? A quick answer is “because
that’s how we wrote it.” More fundamentally, how would you choose given this
situation? Alternatively, how can we render the decision moot?

12 This is a surface-level rule. In fact, if sub-classes do no dynamic memory allocation then the

destructor does not need to be virtual. There’s even more. However, the overhead of making the
destructor virtual when you have another virtual method is much lower than adding the first virtual
method.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 61 Author: Brett L. Schuchert (schuchert@yahoo.com)

Command-query separation suggests that a method should either produce a change or
return a value, but not do both. The roll() method violates this as it, presumably, changes
the value of a Die and returns the value just rolled.

That means that a client of a Die could simply call roll() and never call faceValue .
Do you see a problem with this? In the section Polymorphism Moving Parts, on 57, one
of the bullets states that the client must call the virtual method. If the only method that is
virtual is faceValue , and it is possible that a client could call roll and get the same
result, then it is possible that a client will not call the virtual method.

There are several ways to address this problem:

● Ignore it. Buyer beware. Some assembly required. Not a great option, but a common
one.

● Change the roll() method to call faceValue .
● Change roll() to not return a value, forcing clients to call faceValue .

Let’s look at those last two options:

Fixing DRY violation

The current implementation violations DRY. There are two ways in which the
faceValue can be acquired by client code. Here’s the current implementation:

intintintint Die::roll() {Die::roll() {Die::roll() {Die::roll() {
 usingusingusingusing namespacenamespacenamespacenamespace std::tr1;std::tr1;std::tr1;std::tr1;
 staticstaticstaticstatic mt19937 engine;mt19937 engine;mt19937 engine;mt19937 engine;
 staticstaticstaticstatic uniform_int<uniform_int<uniform_int<uniform_int<intintintint> uniform(1, 6);> uniform(1, 6);> uniform(1, 6);> uniform(1, 6);

 returnreturnreturnreturn valuevaluevaluevalue = uniform(engine);= uniform(engine);= uniform(engine);= uniform(engine);
}}}}

Here is a version with the DRY violation removed:

intintintint Die::roll() {Die::roll() {Die::roll() {Die::roll() {
 usingusingusingusing nnnnamespaceamespaceamespaceamespace std::tr1;std::tr1;std::tr1;std::tr1;
 staticstaticstaticstatic mt19937 engine;mt19937 engine;mt19937 engine;mt19937 engine;
 staticstaticstaticstatic uniform_int<uniform_int<uniform_int<uniform_int<intintintint> uniform(1, 6);> uniform(1, 6);> uniform(1, 6);> uniform(1, 6);

 valuevaluevaluevalue = uniform(engine);= uniform(engine);= uniform(engine);= uniform(engine);
 returnreturnreturnreturn faceValue();faceValue();faceValue();faceValue();
}}}}

This solves the problem because faceValue is always called. There were two ways in
which the faceValue was returned. Now there is only 1 way; there is always a path
through the faceValue .

This is a good solution; however, it may not be not an obvious one until you consider the
possibility of a subclass.

Fix command-query separation violation

Another way to fix the problem is to change roll to not return a value. This forces the
client to call faceValue if it needs the value. The updated roll() method becomes:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 62 Author: Brett L. Schuchert (schuchert@yahoo.com)

voidvoidvoidvoid Die::roll() {Die::roll() {Die::roll() {Die::roll() {
 usingusingusingusing namespacenamespacenamespacenamespace std::tr1;std::tr1;std::tr1;std::tr1;
 staticstaticstaticstatic mt19937 engine;mt19937 engine;mt19937 engine;mt19937 engine;
 staticstaticstaticstatic uniform_int<uniform_int<uniform_int<uniform_int<intintintint> uniform(1, > uniform(1, > uniform(1, > uniform(1, 6);6);6);6);

 valuevaluevaluevalue = uniform(engine);= uniform(engine);= uniform(engine);= uniform(engine);
}}}}

Notice that these two approaches result in nearly the same code.

3.12.7 Fixing Die: Command Query Separation

Update the Die class to remove the command-query separation. The definition is above.
You will also need to change the declaration (in the header file). Make sure you are green
before continuing.

3.12.8 Review

Inheritance is defining one class in terms of another. LoadedDie ’s definition depends
on Die ’s definition, so much so that the header file of LoadedDie must include the
header file of Die . In fact, inheritance is the highest form of coupling in class-based,
statically typed languages (e.g., C++, Java, C#). This is ironic in the sense that
inheritance offers the possibility of flexibility at the cost of being fragile.

If you plan to use inheritance and polymorphism in your solution, there are several steps
required in C++ to make it happen:

● There must be a base class.
● There must be a derived class
● There must be method declared virtual in the base class
● The derived class must override the base class method
● A client must invoke the method through a pointer or reference to the base class
● You should make the destructor virtual in the base class.

That’s a bit to remember. Practice it.

Even if you understand the mechanics, however, knowing when to do this is something
that only comes with experience. You need to try things out to see if they work. One
thing that helps is trying to put methods with objects that have the information to make
decisions or do the work. This is one of Craig Larman’s GRASP patterns; specifically
Information Expert. If you find yourself using a lot of if then else blocks or switch
statements, you may be missing an opportunity.

Once you figure out how, and then even when, there’s still the issue of avoiding a DRY
violation and watching out for command-query separation violations. You’ll see several
more examples later.

3.13 What’s on Deck?

It’s time to create the actual DiceGame class. There’s some work to be done, so this is
what’s coming up:

● Creating the DiceGame from scratch, strictly using tests
● Generalizing production code by adding tests

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 63 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Refactoring code by extracting classes
● Making tests easier by changing the APIs of classes
● We’ll revisit dependency injection
● Dynamic memory allocation
● Using destructors

3.14 Test-Driven Walkthrough

Here’s a first test to cover one of the conditions of the DiceGame:

01:01:01:01: #include "LoadedDie.h"#include "LoadedDie.h"#include "LoadedDie.h"#include "LoadedDie.h"
02:02:02:02: #include "DiceGame.h"#include "DiceGame.h"#include "DiceGame.h"#include "DiceGame.h"
03:03:03:03: #include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>
04: 04: 04: 04:
05:05:05:05: TEST_GROUP(DiceGame) {};TEST_GROUP(DiceGame) {};TEST_GROUP(DiceGame) {};TEST_GROUP(DiceGame) {};
06: 06: 06: 06:
07:07:07:07: TEST(DiceGame, BalanceDecreasesForLosTEST(DiceGame, BalanceDecreasesForLosTEST(DiceGame, BalanceDecreasesForLosTEST(DiceGame, BalanceDecreasesForLoss) {s) {s) {s) {
08:08:08:08: LoadedDie *d1 = new LoadedDie(3);LoadedDie *d1 = new LoadedDie(3);LoadedDie *d1 = new LoadedDie(3);LoadedDie *d1 = new LoadedDie(3);
09:09:09:09: LoadedDie *d2 = new LoadedDie(3);LoadedDie *d2 = new LoadedDie(3);LoadedDie *d2 = new LoadedDie(3);LoadedDie *d2 = new LoadedDie(3);
10:10:10:10: DiceGame game (d1, d2);DiceGame game (d1, d2);DiceGame game (d1, d2);DiceGame game (d1, d2);
11:11:11:11: game.play();game.play();game.play();game.play();
12:12:12:12: LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(----1, game.getBalance());1, game.getBalance());1, game.getBalance());1, game.getBalance());
13:13:13:13: }}}}

Line Description

08,
09

Create an instance of a LoadedDie using new. The new operator allocates
enough memory to hold the thing being created, calls a constructor (if what is
being created is non-primitive), and returns a pointer to the allocated memory.

Objects created with new live until the code uses the delete operator to release
the memory. This code does not use delete, so either there is a memory leak or
the game calls delete to free memory.

10 Create a DiceGame. This is a local variable, so it will go away once this block
of code finishes. The DiceGame ’s constructor is passed two LoadedDie
pointers. Initially we will do nothing with those pointers, and then we’ll release
the memory properly.

11 Call the game’s play method. The play method will decide if the game is a win,
lose or draw based on the sum of the die objects passed into the constructor.

12 This test controlled what’s going to happen. Another way to think about this is
that the test has picked one particular path through the production code. The
expected result is a loss, so the balance, assumed to be initially 0, is reduced by
one. The test defines its own reality.

3.14.1 What’s required to make this work?

First, of course, is the DiceGame class. It does not exist. A review of the test suggests
several demands on the DiceGame class:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 64 Author: Brett L. Schuchert (schuchert@yahoo.com)

● It must have a constructor that takes two parameters. Pointers to something. While the
code creates LoadedDie objects, we’ll be treating them as Die objects.

● The game must have a play method.
● The game must have a getBalance method.
● The game, apparently, is responsible for properly handing the dynamically allocated

memory of the LoadedDie objects.

3.14.2 DiceGame Header

Here’s a minimal header that, with the provided source, will get the code back to
compiling:

01:01:01:01: #pragma#pragma#pragma#pragma onceonceonceonce
02:02:02:02: #ifndef#ifndef#ifndef#ifndef DICEGAME_H_DICEGAME_H_DICEGAME_H_DICEGAME_H_
03:03:03:03: #define#define#define#define DICEGAME_H_DICEGAME_H_DICEGAME_H_DICEGAME_H_
04: 04: 04: 04:
05:05:05:05: classclassclassclass Die;Die;Die;Die;
06: 06: 06: 06:
07:07:07:07: classclassclassclass DiceGame {DiceGame {DiceGame {DiceGame {
08:08:08:08: public:public:public:public:
09:09:09:09: DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);
10: 10: 10: 10:
11:11:11:11: voidvoidvoidvoid play();play();play();play();
12:12:12:12: intintintint getBalance() getBalance() getBalance() getBalance() constconstconstconst;;;;
13:13:13:13: };};};};
14: 14: 14: 14:
15:15:15:15: #endif#endif#endif#endif

Line Description

05 Declare that there is a class Die . This is also known as a forward-declare. There
is a header file that contains the Die definition. Including header files is
expensive. A review of the rest of this header file only shows one more use of
the Die type (so far). Line 09 makes a reference to Die *. Die * is a pointer. All
pointers are primitives, and more importantly, the same size. So the compiler
does not need size information, therefore it does not require a definition of Die ,
it just needs to know that the class exists.

09 The constructor takes in two Die pointers. The test creates LoadedDie with
new. New returns pointers, which we are providing to DiceGame. Since
LoadedDie inherits from Die (using so-called public inheritance), a pointer to
a Die can also point to a LoadedDie . You already saw something similar in a
test where a reference to a Die (also a primitive type) referred to a
LoadedDie .

3.14.3 DiceGame Source

This will get the code compiling but with a failing test:

#include "DiceGame.h"#include "DiceGame.h"#include "DiceGame.h"#include "DiceGame.h"

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 65 Author: Brett L. Schuchert (schuchert@yahoo.com)

DiceGame::DiceGame(Die *d1, Die *d2) {DiceGame::DiceGame(Die *d1, Die *d2) {DiceGame::DiceGame(Die *d1, Die *d2) {DiceGame::DiceGame(Die *d1, Die *d2) {
}}}}

void DiceGame::play() {void DiceGame::play() {void DiceGame::play() {void DiceGame::play() {
}}}}

int DiceGame::getBalaint DiceGame::getBalaint DiceGame::getBalaint DiceGame::getBalance() const {nce() const {nce() const {nce() const {
 return return return return ----1;1;1;1;
}}}}

3.14.4 Get it Compiling

You have a little bit of work:

● Create DiceGameTest.cpp
● Create DiceGame.h
● Create DiceGame.cpp

Get the code compiling and run all tests. The code should fail, but the failure may be a
surprise:

TEST(DiceGame, BaTEST(DiceGame, BaTEST(DiceGame, BaTEST(DiceGame, BalanceDecreasesForLoss)lanceDecreasesForLoss)lanceDecreasesForLoss)lanceDecreasesForLoss)

........\\\\DiceGameTest.cpp:7: error: Failure in TEST(DiceGame, DiceGameTest.cpp:7: error: Failure in TEST(DiceGame, DiceGameTest.cpp:7: error: Failure in TEST(DiceGame, DiceGameTest.cpp:7: error: Failure in TEST(DiceGame,
BalanceDecreasesForLoss)BalanceDecreasesForLoss)BalanceDecreasesForLoss)BalanceDecreasesForLoss)

 Memory leak(s) found.Memory leak(s) found.Memory leak(s) found.Memory leak(s) found.

Leak size: 12 Allocated at: ..Leak size: 12 Allocated at: ..Leak size: 12 Allocated at: ..Leak size: 12 Allocated at: ..\\\\DiceGameTest.cpp and line: 8. Type: DiceGameTest.cpp and line: 8. Type: DiceGameTest.cpp and line: 8. Type: DiceGameTest.cpp and line: 8. Type:
"new" Content: "ÈÇA""new" Content: "ÈÇA""new" Content: "ÈÇA""new" Content: "ÈÇA"

Leak size: 12 Allocated at: ..Leak size: 12 Allocated at: ..Leak size: 12 Allocated at: ..Leak size: 12 Allocated at: ..\\\\DiceGaDiceGaDiceGaDiceGameTest.cpp and line: 9. Type: meTest.cpp and line: 9. Type: meTest.cpp and line: 9. Type: meTest.cpp and line: 9. Type:
"new" Content: "ÈÇA""new" Content: "ÈÇA""new" Content: "ÈÇA""new" Content: "ÈÇA"

Total number of leaks: 2Total number of leaks: 2Total number of leaks: 2Total number of leaks: 2

There’s a memory leak. This is the primary reason I chose to use CppUTest for this book.
It has simple memory leak detection built in. There are other solutions I could have used,
but all of them require more moving parts, so I decided to keep it simple.

You have two quick options to fix this memory leak:

● Have the test free the memory
● Have the DiceGame free the memory

If we have the test free the memory, then every test will have to do it. That’s a DRY
violation. It also seems like a poor assignment of responsibility. If we have the
DiceGame free the memory, it resolves the DRY violation, but it complicates the
DiceGame class and it requires “tribal knowledge” of your clients. Your clients will
have to know to only pass in objects created using new. There is no language-defined

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 66 Author: Brett L. Schuchert (schuchert@yahoo.com)

way to determine if a given pointer can safely be deleted or not13, so you must just “be
careful” (at least for now).

We are going to have DiceGame free the memory. We will remove the requirement of
tribal knowledge for successful use through a better API design. We’re going to do that
later.

3.14.5 Handle the memory leak, fix the test

DiceGame needs to hold on to two Die pointers. We have several options to
accomplish that:

● Hold two attributes
● Use an std::array
● Use an std::vector

Since I want you to learn how to use some of the standard libraries, we’ll use the vector
class. However, any of these solutions would work.

Update the header

01:01:01:01: #pragma#pragma#pragma#pragma onceonceonceonce
02:02:02:02: #ifndef#ifndef#ifndef#ifndef DICDICDICDICEGAME_H_EGAME_H_EGAME_H_EGAME_H_
03:03:03:03: #define#define#define#define DICEGAME_H_DICEGAME_H_DICEGAME_H_DICEGAME_H_
04: 04: 04: 04:
05:05:05:05: class Die;class Die;class Die;class Die;
06:06:06:06: #include #include #include #include <vector><vector><vector><vector>
07: 07: 07: 07:
08:08:08:08: classclassclassclass DiceGame {DiceGame {DiceGame {DiceGame {
09:09:09:09: public:public:public:public:
10:10:10:10: typedeftypedeftypedeftypedef std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;
11:11:11:11: typedeftypedeftypedeftypedef DiceCollection::iterator iterator;DiceCollection::iterator iterator;DiceCollection::iterator iterator;DiceCollection::iterator iterator;
12: 12: 12: 12:
13:13:13:13: DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);
14141414:::: virtualvirtualvirtualvirtual ~DiceGame();~DiceGame();~DiceGame();~DiceGame();
15151515: : : :
16161616:::: voidvoidvoidvoid play();play();play();play();
17171717:::: intintintint getBalance() getBalance() getBalance() getBalance() constconstconstconst;;;;
18181818: : : :
19191919:::: private:private:private:private:
20202020:::: DiceCollection DiceCollection DiceCollection DiceCollection theDicetheDicetheDicetheDice;;;;
21212121:::: };};};};
22222222: : : :
23232323:::: #endif#endif#endif#endif

Line Description

06 Use the std::vector class.

10 Use a nested typedef to make using the std::vector just a bit easier.

13 That is, given a pointer, there is no language-defined way to tell if it points to something created with

new or not. You can only delete things created with new.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 67 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

DiceCollection is a synonym for a vector of pointer to Die .

11 The vector class has an iterator. Create a synonym in the DiceGame class with
the same name as the nested typedef. An iterator is included with all of the
standard collections and it is one way to work with each of the elements in a
given collection.

20 Store an std::vector<Die *>, but make it read well.

Update the source

01:01:01:01: #include "DiceGame.h"#include "DiceGame.h"#include "DiceGame.h"#include "DiceGame.h"
02: 02: 02: 02:
03:03:03:03: #include #include #include #include "Die.h""Die.h""Die.h""Die.h"
04: 04: 04: 04:
05:05:05:05: DiceGame::DiceGame(Die *d1, Die *d2) {DiceGame::DiceGame(Die *d1, Die *d2) {DiceGame::DiceGame(Die *d1, Die *d2) {DiceGame::DiceGame(Die *d1, Die *d2) {
06:06:06:06: theDicetheDicetheDicetheDice.push_back(d1);.push_back(d1);.push_back(d1);.push_back(d1);
07:07:07:07: theDicetheDicetheDicetheDice.push_back(d2);.push_back(d2);.push_back(d2);.push_back(d2);
08:08:08:08: }}}}
09: 09: 09: 09:
10:10:10:10: DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {
11:11:11:11: for(iterator for(iterator for(iterator for(iterator
 iteriteriteriter ==== theDicetheDicetheDicetheDice.begin(); iter.begin(); iter.begin(); iter.begin(); iter != != != != ttttheDiceheDiceheDiceheDice.end(); ++iter).end(); ++iter).end(); ++iter).end(); ++iter)
12:12:12:12: delete *iter;delete *iter;delete *iter;delete *iter;
13:13:13:13: }}}}
14: 14: 14: 14:
15:15:15:15: void DiceGame::play() {void DiceGame::play() {void DiceGame::play() {void DiceGame::play() {
16:16:16:16: }}}}
17: 17: 17: 17:
18:18:18:18: int DiceGame::getBalance() const {int DiceGame::getBalance() const {int DiceGame::getBalance() const {int DiceGame::getBalance() const {
19:19:19:19: return return return return ----1;1;1;1;
20:20:20:20: }}}}

Line Description

06,
07

Add d1 and then d2 to the end of the vector. This is in the body of the
constructor. By the time the code reaches this point, the vector’s constructor has
already been called. It is not possible to use a constructor to automatically insert
these, so it is done after initialization of the vector.

11 Iterate over the entire vector, one element at a time.

12 Call delete, one by one, on each item in the vector.

Get to green

Make these changes, you should be green.

Follow the idiom

There is one more problem with the class. It can be copied. This might not seem like a
bad idea, but if a copy is made, the copy will get copies of the pointers stored in the
contained vector. Let me say that again: The copied object will have copies of the
pointers to the Die objects, not copies of the Die objects. Eventually the original (or the

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 68 Author: Brett L. Schuchert (schuchert@yahoo.com)

copy) will go away, freeing memory. The remaining version will either use the now
deallocated objects or attempt to delete them as well. What happens in both cases is not
defined, but it falls under the category of “things your mother told you to avoid.”

The easiest thing to do is not allow copies. Simply add this section to your DiceGame ’s
header file just before the close curly bracket:

private:private:private:private:
 DiceGame(DiceGame(DiceGame(DiceGame(constconstconstconst DiceGame&);DiceGame&);DiceGame&);DiceGame&);
 DiceGame& operator=(DiceGame& operator=(DiceGame& operator=(DiceGame& operator=(constconstconstconst DiceGame&);DiceGame&);DiceGame&);DiceGame&);

At this point it may be worth mentioning that the private: is not necessary if there’s
already another private: above. I do this by convention. The bottom of my class has
private, but unimplemented methods.

Make sure your solution is still green, and then continue.

3.14.6 Always losing is no fun

The implementation leaves a lot to be desired. On the one hand, since the value -1 is
already returned, the worse you can ever do is losing once. On the other hand, you always
lose once. To infinitely improve the odds of winning, it’s time for another test:

TEST(DiceGame, BalanceIncreasesForWin) {TEST(DiceGame, BalanceIncreasesForWin) {TEST(DiceGame, BalanceIncreasesForWin) {TEST(DiceGame, BalanceIncreasesForWin) {
 LoadedDie *d1 = LoadedDie *d1 = LoadedDie *d1 = LoadedDie *d1 = newnewnewnew LoadedDie(4);LoadedDie(4);LoadedDie(4);LoadedDie(4);
 LoadedDie *d2 = LoadedDie *d2 = LoadedDie *d2 = LoadedDie *d2 = newnewnewnew LoaLoaLoaLoadedDie(4dedDie(4dedDie(4dedDie(4););););
 DiceGame game (d1, d2);DiceGame game (d1, d2);DiceGame game (d1, d2);DiceGame game (d1, d2);
 game.play();game.play();game.play();game.play();
 LONGS_EQUAL(1, game.getBalance());LONGS_EQUAL(1, game.getBalance());LONGS_EQUAL(1, game.getBalance());LONGS_EQUAL(1, game.getBalance());
}}}}

Create this test and verify that it fails.

What all do we need?

This one simple test is going to force a bit of coding:

● The code needs to actually check for winning or losing
● The code needs either a balance or a way to remember if the previous time was a

wind or a loss

Here is one way to get this test to pass:

Add a new field to the class:

private:private:private:private:
 DiceCollection DiceCollection DiceCollection DiceCollection theDicetheDicetheDicetheDice;;;;
 intintintint balance;balance;balance;balance;

Don’t forget to initialize that balance

Add a member-wise initialization list to set balance to 0:

DiceGame::DiceGame(Die *d1, Die *d2) : DiceGame::DiceGame(Die *d1, Die *d2) : DiceGame::DiceGame(Die *d1, Die *d2) : DiceGame::DiceGame(Die *d1, Die *d2) : balancebalancebalancebalance(0) {(0) {(0) {(0) {

You do not need to do anything with the other member data, theDice. Its no-argument
constructor is called automatically.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 69 Author: Brett L. Schuchert (schuchert@yahoo.com)

Now do something in play

01:01:01:01: voidvoidvoidvoid DiceGame::play() {DiceGame::play() {DiceGame::play() {DiceGame::play() {
02:02:02:02: intintintint sum = 0;sum = 0;sum = 0;sum = 0;
03:03:03:03: forforforfor(iterator (iterator (iterator (iterator
 iter = iter = iter = iter = theDicetheDicetheDicetheDice.begin(); iter != .begin(); iter != .begin(); iter != .begin(); iter != theDicetheDicetheDicetheDice.end(); ++iter) {.end(); ++iter) {.end(); ++iter) {.end(); ++iter) {
04:04:04:04: (*iter)(*iter)(*iter)(*iter)---->roll();>roll();>roll();>roll();
05:05:05:05: sum += (*iter)sum += (*iter)sum += (*iter)sum += (*iter)---->faceValue();>faceValue();>faceValue();>faceValue();
06:06:06:06: }}}}
07: 07: 07: 07:
08:08:08:08: ifififif (sum > 7)(sum > 7)(sum > 7)(sum > 7)
09090909:::: ++++++++balancebalancebalancebalance;;;;
10:10:10:10: ifififif (sum < 7)(sum < 7)(sum < 7)(sum < 7)
11:11:11:11: --------balancebalancebalancebalance;;;;
12:12:12:12: }}}}

Line Description

03 Iterate over every element in the collection.

04 Roll the current die object. Since the vector holds pointers and an iterator is a
pointer to what the vector holds, the iterator type is actually Die **. The
expression (*iter) results in a pointer to a die object. -> then sends a message
through a pointer. You could also write this (**iter).roll().

05 Add to the sum the faceValue() of the current die object.

08 –
11

Conditionally increment or decrement the balance depending on the sum. Note I
could have used an else if on line 10, but the code is clear enough that I don’t do
so.

Return the balance

Since balance now holds the results, getBalance() needs to return it:

intintintint DiceGame::getBalance() DiceGame::getBalance() DiceGame::getBalance() DiceGame::getBalance() constconstconstconst {{{{
 returnreturnreturnreturn balance;balance;balance;balance;
}}}}

Get back to green

Make these changes and get back to green.

One final test

There’s no test for a “push”. Even though reviewing code suggests it is handled correctly,
let’s write a test. This test serves as a reminder of the rules of the game and it constrains
the implementation to work for all the conditions we know about.

TEST(DiceGame, BalanceRemainsSameForPush) {TEST(DiceGame, BalanceRemainsSameForPush) {TEST(DiceGame, BalanceRemainsSameForPush) {TEST(DiceGame, BalanceRemainsSameForPush) {
 LoadedDie *d1 = LoadedDie *d1 = LoadedDie *d1 = LoadedDie *d1 = newnewnewnew LoadedDie(4);LoadedDie(4);LoadedDie(4);LoadedDie(4);
 LoadedDie *d2 = LoadedDie *d2 = LoadedDie *d2 = LoadedDie *d2 = newnewnewnew LoadedDie(3);LoadedDie(3);LoadedDie(3);LoadedDie(3);
 DiceGame gamDiceGame gamDiceGame gamDiceGame game (d1, d2);e (d1, d2);e (d1, d2);e (d1, d2);
 game.play();game.play();game.play();game.play();
 LONGS_EQUAL(0, game.getBalance());LONGS_EQUAL(0, game.getBalance());LONGS_EQUAL(0, game.getBalance());LONGS_EQUAL(0, game.getBalance());
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 70 Author: Brett L. Schuchert (schuchert@yahoo.com)

Add this final test and verify that your solution is still green.

3.14.7 Experiments in Failure

Now for a few experiments to see what might happen if you make a few common
mistakes. Here’s what’s on deck:

● Removing the body of the DiceGame destructor
● Removing virtual from the declaration of the Die destructor
● Removing virtual from the declaration of Die ::faceValue
● Removing const from the declaration and definition of LoadedDie ::faceValue
● Adding virtual to the declaration of Die ::roll

Body of ~DiceGame

Make the following change to the body of DiceGame:

DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {
// for(iterator // for(iterator // for(iterator // for(iterator
// // // // iteriteriteriter = theDice.begin(); = theDice.begin(); = theDice.begin(); = theDice.begin(); iteriteriteriter != theDice.end(); ++!= theDice.end(); ++!= theDice.end(); ++!= theDice.end(); ++iteriteriteriter))))
// delete *// delete *// delete *// delete *iteriteriteriter;;;;
}}}}

Run your tests and notice what happens. In my solution, I end up with three failures. All
of those failures related to memory leaks. If you do a little research, you’ll notice that
there are three tests using the DiceGame class.

This is a demonstration of a memory leak, but why is there a memory leak?

In a nutshell:

● The std::vector class is a generic container, so it knows nothing about what you
are choosing to put into it. This includes the difference between pointers and non-
pointers.

● There is nothing built into the language making it possible to tell if something that
happens to be a pointer also happens to be dynamically allocated or not. There are
things you can do under the covers to strongly suggest such a thing, and it is possible
to use custom libraries to make it possible, but no language-defined way.

● Since the std::vector class can only depend on standards, there’s no way to
know if what is holds is a pointer to dynamically allocated memory.

● Even if there were a way to make that determination, there’s no way the
std::vector could know that it is responsible for cleaning up that memory. It
would be possible add some kind of flag, but then you’re back to the issue of not
having a standard way to know if something is both a pointer and that it points to
dynamically allocated memory.

● Therefore, the vector has no policy regarding what is put in it.

That’s not to say that the std::vector does not handle its own memory allocation. A
vector holds onto a block of memory that it dynamically allocated. The vector manages
an initial block, which can change size over time. Here’s a logical image of some sample
code:

void foo() {void foo() {void foo() {void foo() {

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 71 Author: Brett L. Schuchert (schuchert@yahoo.com)

 std::vector<int*> v;std::vector<int*> v;std::vector<int*> v;std::vector<int*> v;
 int valueOnStack;int valueOnStack;int valueOnStack;int valueOnStack;
 int *valueOnHeap = new int;int *valueOnHeap = new int;int *valueOnHeap = new int;int *valueOnHeap = new int;
 v.push_back(&valueOnStack);v.push_back(&valueOnStack);v.push_back(&valueOnStack);v.push_back(&valueOnStack);
 v.push_back(valueOnHeap);v.push_back(valueOnHeap);v.push_back(valueOnHeap);v.push_back(valueOnHeap);
}}}}

Given this simple code, what does this logically look like in memory?

The code example includes three local variables, v, valueOnStack and valueOnHeap.
Those variables are stored on the program stack. The std::vector holds onto a block
of memory (its default size is typically 10). After putting two values onto the vector using
push_back , the value at index 0 is an address to the local variable valueOnStack. The
value at index 1 is a copy of the address held onto by the variable valueOnHeap.

When this method exits, the program stack is cleared. Anything that is an object on the
program stack will have its destructor called. Primitive values like int and int* do not
have destructors. So given this code example, this is what the stack and the heap will
resemble after the program terminates:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 72 Author: Brett L. Schuchert (schuchert@yahoo.com)

The std::vector class assumes no responsibility for what is added to it. It assumes
responsibility for the memory it allocates, which is what it uses to hold on to the things
you add to it. However, if you add a pointer to a dynamically allocated object, then you
have to take care of releasing that memory.

The body of the destructor was doing that. We’ll revisit this in a bit to see another way to
make this happen automatically.

Before moving on to the next experiment, uncomment the body of the destructor and
verify your code is still green.

Removing virtual on ~Die declaration

In this next experiment, you’re going to simply remove virtual to “see” what happens. So
remove the keyword virtual from the declaration of the Die destructor and run your tests.
What happens?

It appears as if nothing happens, and in this particular case nothing bad happens. To have
this kind of change cause a problem requires several steps:

● A derived class inheriting from a base class (we have this)
● Creating an instance of a derived class using new (we have this)
● Holding on to that newly-created object via a pointer (we have this)
● Releasing memory to that newly-created object through its pointer (we have this)
● The base class’ destructor must be non-virtual (we just did this)
● The derived class must dynamically allocate memory (missing)

In fact, it takes quite a few moving parts to have a non-virtual destructor in a base class
cause problems for a derived class. However, to convince you of the problem, make the
following change to your LoadedDie .h (add an std::vector):

#include #include #include #include <vector><vector><vector><vector>

class LoadedDie: public Die {class LoadedDie: public Die {class LoadedDie: public Die {class LoadedDie: public Die {
public:public:public:public:
 LoadedDie(int value);LoadedDie(int value);LoadedDie(int value);LoadedDie(int value);

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 73 Author: Brett L. Schuchert (schuchert@yahoo.com)

 int faceValue() const;int faceValue() const;int faceValue() const;int faceValue() const;

private:private:private:private:
 int loadedValue;int loadedValue;int loadedValue;int loadedValue;
 std::vector<int>std::vector<int>std::vector<int>std::vector<int> problemChildproblemChildproblemChildproblemChild;;;;
};};};};

Now change your LoadedDie .cpp (just the constructor):

LoadedDie::LoadedDie(LoadedDie::LoadedDie(LoadedDie::LoadedDie(LoadedDie::LoadedDie(intintintint value) : value) : value) : value) : loadedValueloadedValueloadedValueloadedValue(value) {(value) {(value) {(value) {
 problemChildproblemChildproblemChildproblemChild.push_back(value);.push_back(value);.push_back(value);.push_back(value);
}}}}

Make these changes, run your tests. You’ll notice three tests failing due to memory leaks.

Now, make the destructor in Die virtual and see that the tests pass. Finally, remove the
use of std::vector in LoadedDie (both the header and the source).

What just happened?

Your LoadedDie class had a destructor even if you do not write one for it. Even if you
do write one for it, the call to the destructor of contained objects is added by the compiler
(remember, destructors are special). The std::vector class allocates memory.
Exactly when is left to a given implementation, however adding the line to the
constructor to put a single value on the vector forces the vector to perform dynamic
memory allocation. When the DiceGame ’s destructor is called, it calls delete on each of
its contained pointers to Die objects:

DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {
 forforforfor(iterator (iterator (iterator (iterator
 iter = iter = iter = iter = theDicetheDicetheDicetheDice.begin(); iter != .begin(); iter != .begin(); iter != .begin(); iter != theDicetheDicetheDicetheDice.end(); ++iter).end(); ++iter).end(); ++iter).end(); ++iter)
 deletedeletedeletedelete *iter;*iter;*iter;*iter;
}}}}

The question is this, “which destructor gets called?” If the destructor is declared virtual in
Die , then the compiler will insert just enough code to make sure that the correct
destructor is called14 at runtime. If the destructor is not declared virtual, then the compiler
inserts a call to the destructor of the type returned by *iter). Since iter is a pointer to a
Die , *iter is a Die , so the destructor called is ~Die , regardless of what the pointer
actually points to.

Adding virtual to even one method comes with a cost, which is discussed later on.
However, adding a second virtual method when there is already one is a much smaller
cost. So if you have even one virtual method, just make the destructor virtual. If you are
not using inheritance, then you do not need a virtual destructor. If you’re not certain that
either:

● The class you are working on will never serve as a base class
● The class won’t be substituted with a test double during test
● Subclasses, if there are any, will not need to perform any dynamic allocation

Then you can safely leave off the virtual destructor.

14 This has to do with virtual method dispatch. More on this later.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 74 Author: Brett L. Schuchert (schuchert@yahoo.com)

On the other hand, if you are writing unit tests as you write the rest of your code, you’ll
probably find pretty quickly if there’s a missing virtual destructor, so you can probably
get away with leaving this until you need it.

Make sure your code is green before moving on to the next experiment.

Removing virtual from the declaration of Die::faceV alue

This is an experiment you should have already performed. In any case, make this change
and see what happens.

You’ll notice several failing tests, 4 in my case. Why is this? For the same reason that the
wrong destructor is called, the wrong version of faceValue is called.

Here’s the offending code:

01:01:01:01: voidvoidvoidvoid DiceGame::play() {DiceGame::play() {DiceGame::play() {DiceGame::play() {
02020202:::: intintintint sum = 0;sum = 0;sum = 0;sum = 0;
03030303:::: forforforfor(iterator (iterator (iterator (iterator
04040404:::: iter = iter = iter = iter = theDicetheDicetheDicetheDice.begin(); iter != .begin(); iter != .begin(); iter != .begin(); iter != theDicetheDicetheDicetheDice.end(); ++iter) {.end(); ++iter) {.end(); ++iter) {.end(); ++iter) {
05050505:::: (*iter)(*iter)(*iter)(*iter)---->roll();>roll();>roll();>roll();
06060606:::: sum += (*iter)sum += (*iter)sum += (*iter)sum += (*iter)---->faceValue();>faceValue();>faceValue();>faceValue();
07070707:::: }}}}

Notice the call to faceValue on line 06? Which version of faceValue is called? If
the method is declared virtual, then the compiler inserts just enough code to make sure
that the correct version of faceValue is called. If the faceValue method is not
declared virtual, then the compiler inserts enough code to call the method based on the
type of *iter. Since *iter is equal to Die **, *iter results in a pointer to a Die , or Die *.
The compiler selects the method Die ::faceValue as a result. Making faceValue
virtual forces the compiler to insert a little bit more to make this work.

At this point it is worth mentioning a few more groups of terms:

Term Description

static type (or)

compiler-time type

The type known by the compiler based on a static analysis
(compile-time reading) of the type information. This is what can
be determined strictly from looking at the compilation unit.

dynamic type (or)

run-time type

The actual type of the object at runtime. This may or may not be
different from the static type. If the static type is either a pointer
or a reference to an object, then the static type and dynamic type
can be different.

In this most recent example, the static type of iter is Die **. The static type of the
expression *iter is Die *. However, given that our tests created instances of
LoadedDie , here’s how the analysis goes. The static type of iter is still Die **, as is the
dynamic type. However, while the static type of *iter is Die *, the actual type is
LoadedDie *. This only becomes important upon calling a method that is virtual. For
non-virtual methods, the compiler selects the method based on the static type. For virtual
methods, the compiler selects the method based on the dynamic type. Since the compiler
cannot possibly know what the actual run-time type is, it instead inserts a level of

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 75 Author: Brett L. Schuchert (schuchert@yahoo.com)

indirection that, when the program runs, causes the correct method to be called. This is
called virtual function dispatch. There’s more on this subject later.

Add the virtual keyword back on to the declaration of faceValue . Get your code back
to green, and then move to the next section.

Removing const from the declaration and definition of LoadedDie::faceValue

When you mean to override methods, the signatures need to match exactly15. Remove the
const keyword from both the declaration and definition of faceValue in
LoadedDie and run your tests. If you only remove it from one but not the other, your
code will not compile.

Interestingly, you’ll have the same tests failing as before. In this case, while the base
method is virtual, the derived method, as written, does not match so it does not override.
That is, it’s an unrelated method and it does not have any impact on dynamic method
selection.

In general, when I override a method from a base class in a derived class, I’ll copy the
method signature from the base class’ definition into the derived class’ definition.
Another thing to consider, when writing automated tests meaning to invoke overridden
methods, hold a reference or pointer to the base class rather than the derived class. This is
a sure way to make sure you’ve actually overridden a base class method as intended.

Return your code to green. Add the const keyword back on to the method declaration in
the header file and the method definition in the source file.

Adding virtual to the declaration of Die::roll

Is there any value in making roll virtual? There are no subclasses that override roll, so
making it virtual will have no noticeable effect. You could look at the size of the
executable before and after. When I do that, before I make the change, my executable is
784,060 bytes. After the change, the size is unchanged. Without creating a subclass, or
doing some sophisticated timings, it will be hard to tell whether or not roll is in fact
virtual.

Originally, the roll() method had a return value. This violated command-query separation,
and you fixed it. Now it returns no value, so it makes it less likely that a client can
depend on its effect directly. So this experiment is not too fruitful.

You can return roll to non-virtual or leave it virtual. The end result will not change.

3.15 Recap

Term Description

: public die The syntax for making one class inherit from another. After
class LoadedDie and before the open curly bracket { , add
this to define that one class is a subclass of another.

In all of the examples in this book we will use : public , but
private and protected are available as options and outside our

15 This is somewhat simplified, return types can be co-variant, but this is the only mention of that idea

in this book. It’s too advanced for this book.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 76 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

scope.

Using this for, so-called public inheritance, makes the class in the
definition substitutable for the base class.

base class A class used as part of the definition of another class, specifically
in an inheritance relationship. All of a base class becomes part of
the derived class. Whether what comes from the base class is
available to the derived class depends on the whether the thing in
question (method or attribute) is declared to be public, protected or
private. Private data, for example, is part of the overall structure
but a derived class cannot directly access it.

child class In an inheritance relationship, it is the class that is defined in terms
of another class. A child class knows its parent (or base class). The
reverse is not true.

communication
diagram

A type of UML diagram that shows objects, connections between
objects and interactions, or message flows. Before UML 2.0, this
was called a collaboration diagram.

compile-time type The type of a variable that can be determined strictly looking at the
source code. It is independent of the order of execution (run time
information).

The compile-time type limits what is available to be used. Only
things in the public interface of the compile-time type are available
to be used by code.

create A special method used on UML diagrams. It typically suggests the
execution of a constructor. This is a standard convention on
dynamic diagrams in UML, which includes sequence and
communication diagrams.

delete Delete is somewhat analogous to free in C with several key
differences.
� It is built into the language and it is known as the delete

operator. Whereas free() is standard function in a library.
� If delete is used on a pointer to an object, e.g., Die *, it will

automatically call a destructor. If it instead points to a raw time,
then there is no destructor to call.

� There are three forms but I only use 1 in this book. The three
forms are delete, delete[] and delete(). The second and third
form are array delete and placement delete.

In C++ you should use new for all allocation and delete for all
deallocation. Mixing new with malloc is not defined. Using delete
on something allocated with malloc or free on something allocated
with new is also not defined. It’s easy to predict what will typically
happen, but the standard says the results are undefined.

delete versus free See the discussion on delete.

dependency Making it possible for a client class to provide dependent objects.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 77 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

injection For example, the DiceGame requires two Die * for its
constructor, so its dependent objects must be provided.

derived class A class that has a parent or base class. LoadedDie is an example
of a derived class. This is a synonym for child class and subclass.

dynamic allocation Using malloc or new are examples of dynamic allocation.
Acquiring space for data at runtime rather than pre-allocating at
compile time.

dynamic binding Selection of a method at runtime rather than compile-time. In C++,
virtual methods invoked through pointers or references are
dynamically bound rather than statically bound.

dynamic type A pointer or reference to a class or struct can in fact point (or refer
to) an object of its particular type or any class or structure publicly
derived from that structure. For example, Die * can legally point
to either a Die * or a LoadedDie *.

heap A region of memory used for dynamic allocation. Things created
with new (or malloc) are put on the heap rather than the stack.
Things placed on the heap remain there until they are explicitly
removed using delete (or free if malloc was used). The
heap is also cleared when a program terminates.

inheritance A relationship between classes. A base class serves as part of
another class’ definition. All structural parts of the base class are
in the derived class. Accessibility is determined by whether the
thing in particular is public, protected or private. Items that are
protected are available for derived classes. Things that are private
are there, but not available for access.

interface C++ does not support interfaces directly. An interface represents a
concept that describes behaviour but, provides no implementation
for that behaviour.

message When a client makes a request of an object, is sends the target
object a message. A message gets turned into a method at some
point. In C++, that translation can be done at compile time or
runtime. If the target is an object, then the determination is done at
compile time. If the target is a pointer or reference to an object,
then the determination is done at runtime if the message is virtual
or compile time if the method is non-virtual.

method A synonym for member function. A method is a behaviour of an
object. A class declares a number of methods, some virtual, others
non-virtual. Methods that are declared virtual can be overridden by
sub-classes.

new A keyword in C++, it provides a mechanism for allocating
memory at runtime rather than compile time. Whereas malloc() is
standard function in a library, new is a built-in operator.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 78 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

new versus malloc When new is used to create an object, the compiler automatically
calls a constructor. The sequence of steps for new used on an
object:
� Allocate an appropriately-sized chunk of memory.
� Call the constructor to initialize the memory.
� Return the address of the allocated memory.

Unlike new, malloc skips the middle step. There are three forms of
new: new, new[], new(). The second and third forms are called
array new and placement new, respectively. These forms are out of
scope for this book.

non-virtual
destructor

By default, destructors are non-virtual. If a class may serve as a
base class and it is possible that derived classes might perform
dynamic memory allocation, then it is a good idea to make base-
class destructors virtual. There are several conditions required to
make a memory leak happen, but it is possible.

override Method overriding is where a derived class replaces an
implementation of a virtual base-class method suitable for its
purposes. We have one explicit example of this where the
faceValue method of LoadedDie returns a predictable result.

parent class Synonym for base class or superclass.

polymorphism Pithy: same message, different method. That is, the same message
sent to multiple objects results in different methods being executed
based on which object receives a message. For example, sending
faceValue to a Die object results in the most recent roll value
(or 1 if the die has not been rolled) to be returned. Whereas,
sending faceValue to a LoadedDie will always return the
value passed into its constructor.

request A synonym for message.

response A synonym for method.

run-time type The actual type of an object at program execution time. A pointer
or reference to an object in C++ can point to or refer to a publicly
derived subclass at runtime.

stack AKA program stack. The place where local variables are
automatically stored by the compiler. A variable on the stack lives
as long as the block of code containing that variable lives.
Variables on the stack automatically go away when a method or
function returns. If a variable is a non-primitive, then its destructor
is also called.

Be careful here. Remember that pointers and references are
primitive types. So, for example, a pointer to a die on the stack,
when it goes away, does not result in a destructor call.

static type Same as compile-time type. It is the type of a variable known to

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 79 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

the compiler.

stub LoadedDie is an example of a stub class. It is a particular kind
of test double that has a fixed value. You can think of a stub as a
“snapshot in time.”

sub class Synonym for derived class or child class.

super class Synonym for base class or parent class.

test double A place-holder for a real object used to put some part of a test
under control. We created LoadedDie as a test double for Die to
make sure we are able to test all of the rules of the DiceGame.

test isolation There are several interpretations. Tests should not impact each
other. However, in this section we introduce the possibility of
using test doubles by using dependency injection to fully control
what one particular test is doing.

virtual A keyword added to member function declarations. A virtual
method can be overridden by subclasses. If that method is invoked
through a pointer or reference to a base class, the correct method
will be selected at runtime based on the dynamic type of the
object. That is, if faceValue is sent to a Die , then
Die ::faceValue is called, whereas if faceValue is sent to a
LoadedDie , then LoadedDie ::faceValue is invoked.

virtual destructor Destructors for base classes should be declared virtual. If they are
not, there’s a possibility of a memory leak, as demonstrated in
Experiment in Failure stating on page 59.

virtual method A method declared virtual can be overridden by subclasses. See
virtual above.

virtual method
override

Subclasses wishing to replace a base-class’ method with its own
implementation override a virtual method declared in a base class.

3.16 What’s coming up?

In this section we will revisit:

● Refactoring – specifically Extract Class
● Dependency Inversion Principle

We will additionally improve memory management by using std::shared_ptr and then
have a first look at a design pattern called the Abstract Factory pattern.

3.16.1 Remember Cup class?

Remember some time ago the mention of a Cup class:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 80 Author: Brett L. Schuchert (schuchert@yahoo.com)

Now it is time to revisit Cup. The code already exists, it just happens to be in the
DiceGame. This burdens the implementation of DiceGame with both business rules as
well as knowing how to store, roll, and deallocate multiple Die objects.

To fix this, you are going to apply an “Extract Class” refactoring. That is, there’s a class
in the middle of another, and you are going to make it its own class.

3.16.2 Refactoring: Definition

You have already performed some refactoring. Even so, it’s worth remembering just what
refactoring means: Changing the structure of a solution without changing its behavior.

In this class, you’ll move code from DiceGame into a new class called Cup.

3.16.3 Updated Cup Header

Here is a header file that captures the Cup-related concepts from the DiceGame class.
Notice that this is a new file. You are not yet making changes to existing code.

#pragma once#pragma once#pragma once#pragma once
#ifndef CU#ifndef CU#ifndef CU#ifndef CUP_HP_HP_HP_H
#define CUP_H#define CUP_H#define CUP_H#define CUP_H

class Die;class Die;class Die;class Die;
#include #include #include #include <vector><vector><vector><vector>

class Cup {class Cup {class Cup {class Cup {
public:public:public:public:
 typedeftypedeftypedeftypedef std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;
 typedeftypedeftypedeftypedef DiceCollection::iterator iterator;DiceCollection::iterator iterator;DiceCollection::iterator iterator;DiceCollection::iterator iterator;

 Cup(Die *d1, Die *d2);Cup(Die *d1, Die *d2);Cup(Die *d1, Die *d2);Cup(Die *d1, Die *d2);
 ~Cup();~Cup();~Cup();~Cup();

 voidvoidvoidvoid roll();roll();roll();roll();
 intintintint totaltotaltotaltotal()()()();;;;

private:private:private:private:
 DiceCollectiDiceCollectiDiceCollectiDiceCollection on on on dicedicedicedice;;;;
};};};};

#endif#endif#endif#endif

This code mirrors the code in DiceGame. So far, there is nothing new.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 81 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.16.4 Updated Cup Source

The source code can be copied from DiceGame as well:

#include #include #include #include "Cup.h""Cup.h""Cup.h""Cup.h"

#include #include #include #include "Die.h""Die.h""Die.h""Die.h"

Cup::Cup(Die *d1, Die *d2) {Cup::Cup(Die *d1, Die *d2) {Cup::Cup(Die *d1, Die *d2) {Cup::Cup(Die *d1, Die *d2) {
 dicedicedicedice.push_back(d1);.push_back(d1);.push_back(d1);.push_back(d1);
 dicdicdicdiceeee.push_back(d2);.push_back(d2);.push_back(d2);.push_back(d2);
}}}}

Cup::~Cup() {Cup::~Cup() {Cup::~Cup() {Cup::~Cup() {
 for(iterator i = for(iterator i = for(iterator i = for(iterator i = dicedicedicedice.begin(); i != .begin(); i != .begin(); i != .begin(); i != dicedicedicedice.end(); ++i).end(); ++i).end(); ++i).end(); ++i)
 delete *i;delete *i;delete *i;delete *i;
}}}}

void Cup::roll() {void Cup::roll() {void Cup::roll() {void Cup::roll() {
 for(iterator i = for(iterator i = for(iterator i = for(iterator i = dicedicedicedice.begin(); i != .begin(); i != .begin(); i != .begin(); i != dicedicedicedice.end(); ++i).end(); ++i).end(); ++i).end(); ++i)
 (*i)(*i)(*i)(*i)---->roll();>roll();>roll();>roll();
}}}}

int Cup::total() {int Cup::total() {int Cup::total() {int Cup::total() {
 int sum = 0;int sum = 0;int sum = 0;int sum = 0;
 for(iteratfor(iteratfor(iteratfor(iterator i = or i = or i = or i = dicedicedicedice.begin(); i != .begin(); i != .begin(); i != .begin(); i != dicedicedicedice.end(); ++i).end(); ++i).end(); ++i).end(); ++i)
 sum += (*i)sum += (*i)sum += (*i)sum += (*i)---->faceValue();>faceValue();>faceValue();>faceValue();
 return sum;return sum;return sum;return sum;
}}}}

As with the header file, there’s nothing explicitly new in this code. The one big
difference is that the original code (still) has this coupled for loop in DiceGame::play:

voidvoidvoidvoid DiceGame::play() {DiceGame::play() {DiceGame::play() {DiceGame::play() {
 intintintint sum = 0;sum = 0;sum = 0;sum = 0;
 forforforfor(iterator (iterator (iterator (iterator
 iter = iter = iter = iter = theDicetheDicetheDicetheDice.begin(); iter != .begin(); iter != .begin(); iter != .begin(); iter != theDicetheDicetheDicetheDice.end(); ++iter) {.end(); ++iter) {.end(); ++iter) {.end(); ++iter) {
 (*iter)(*iter)(*iter)(*iter)---->roll();>roll();>roll();>roll();
 sum += (*iter)sum += (*iter)sum += (*iter)sum += (*iter)---->faceValue();>faceValue();>faceValue();>faceValue();
 }}}}

This look both rolls the dice and calculates the total. The Cup’s implementation of roll()
and total() have had this one loop split into two loops. In fact, Martin Fowler calls this a
“split loop” refactoring. The original code unnecessarily coupled rolling and calculating
the total.

3.16.5 Getting to Compiling

Before changing any of the old production code, get the header file and source file for
Cup created and compiling. Get you code back to Green.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 82 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.16.6 Updating DiceGame

Now it is time to change the DiceGame to use the new code. However, rather than just
changing all of the code in place, these next steps use a technique often called parallel
development. The goal is to get the code as close to complete as possible so that the
amount of time that your automated tests fail is as small as possible.

Updating class definition

First, we’ll add some kind of “handle” to a Cup. You have three general options (right
now):

● A full Cup
private:private:private:private:
 Cup cup;Cup cup;Cup cup;Cup cup;
● A pointer to a Cup
private:private:private:private:
 Cup *cup;Cup *cup;Cup *cup;Cup *cup;
● A reference to a Cup
private:private:private:private:
 Cup ∪Cup ∪Cup ∪Cup ∪

All three will work but there are some advantages and disadvantages:

● A full Cup will be automatically instantiated correctly. Its destructor will be called
automatically as well. However, there’s no chance for dynamic binding, so testing is a
bit more difficult. Also, to hold a full Cup, the DiceGame header file will have to
include the Cup header file. Including header files is relatively expensive.

● A pointer is not automatically instantiated or released. Some code somewhere will
have to call new and delete or something more convoluted. However, you do not have
to include the header file of Cup in the header file of DiceGame. A pointer also
allows for the possibility of virtual methods to play a role in the game.

● A reference has nearly the same characteristics as a pointer. The primary difference is
that a reference must be initialized, which will require you to use a member-wise
initialization list. Once initialized, it can never point to anything else.

My preference for testability leads me to the second two options. References are OK as
attributes, but I typically reserve them for parameters and return values. For this solution,
therefore, I’ll go with a pointer. With that in mind, here’s an updated DiceGame using
parallel development:

01:01:01:01: #pragma once#pragma once#pragma once#pragma once
02:02:02:02: #ifndef DICEGAME_H_#ifndef DICEGAME_H_#ifndef DICEGAME_H_#ifndef DICEGAME_H_
03:03:03:03: #define DICEGAME_H_#define DICEGAME_H_#define DICEGAME_H_#define DICEGAME_H_
04: 04: 04: 04:
05:05:05:05: class Die;class Die;class Die;class Die;
06:06:06:06: #include #include #include #include <vector><vector><vector><vector>
07:07:07:07: class Cup;class Cup;class Cup;class Cup;
08: 08: 08: 08:
09:09:09:09: class DiceGame {class DiceGame {class DiceGame {class DiceGame {
10:10:10:10: public:public:public:public:
11:11:11:11: typedeftypedeftypedeftypedef std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;
12:12:12:12: typedeftypedeftypedeftypedef DiceCollection::iterator iterator;DiceCollection::iterator iterator;DiceCollection::iterator iterator;DiceCollection::iterator iterator;

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 83 Author: Brett L. Schuchert (schuchert@yahoo.com)

13: 13: 13: 13:
14:14:14:14: DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);
15:15:15:15: virtualvirtualvirtualvirtual ~DiceGame();~DiceGame();~DiceGame();~DiceGame();
16161616: : : :
17:17:17:17: voidvoidvoidvoid play();play();play();play();
18:18:18:18: intintintint getBalance() getBalance() getBalance() getBalance() constconstconstconst;;;;
19: 19: 19: 19:
20:20:20:20: private:private:private:private:
21:21:21:21: DiceCollection DiceCollection DiceCollection DiceCollection theDicetheDicetheDicetheDice;;;;
22:22:22:22: Cup *Cup *Cup *Cup *cupcupcupcup;;;;
23:23:23:23: intintintint balance;balance;balance;balance;
24: 24: 24: 24:
25:25:25:25: private:private:private:private:
26:26:26:26: DiceGame(DiceGame(DiceGame(DiceGame(constconstconstconst DiceGame&);DiceGame&);DiceGame&);DiceGame&);
27:27:27:27: DiceGame& operator=(DiceGame& operator=(DiceGame& operator=(DiceGame& operator=(constconstconstconst DiceGame&);DiceGame&);DiceGame&);DiceGame&);
28:28:28:28: };};};};
29: 29: 29: 29:
30:30:30:30: #en#en#en#endifdifdifdif

Line Description

07 Forward declare the Cup class. This just tells the compiler that there is a class
called Die somewhere in the system.

22 Add a pointer to a Cup as member data. This only requires a forward declare
because all pointers are primitive types, and therefore the compiler knows their
size, which is necessary to calculate the size of a single instance of a
DiceGame.

These changes will leave the code in a compiling state and the tests still pass.

Initial Updating of Method Definitions

To introduce this new Cup into the DiceGame eco system, we will update a few of the
existing methods to use it as well as the original vector.

First, the construction and destruction:

01:01:01:01: #include #include #include #include "Cup.h""Cup.h""Cup.h""Cup.h"
02:02:02:02: DiceGame::DiceGame(Die *d1, Die *d2) : DiceGame::DiceGame(Die *d1, Die *d2) : DiceGame::DiceGame(Die *d1, Die *d2) : DiceGame::DiceGame(Die *d1, Die *d2) : cupcupcupcup(0), (0), (0), (0), balbalbalbalanceanceanceance(0) {(0) {(0) {(0) {
03:03:03:03: theDicetheDicetheDicetheDice.push_back(d1);.push_back(d1);.push_back(d1);.push_back(d1);
04:04:04:04: theDicetheDicetheDicetheDice.push_back(d2);.push_back(d2);.push_back(d2);.push_back(d2);
05:05:05:05: }}}}
06: 06: 06: 06:
07:07:07:07: DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {
08:08:08:08: for(iterator for(iterator for(iterator for(iterator
 iter = iter = iter = iter = theDicetheDicetheDicetheDice.begin(); iter != .begin(); iter != .begin(); iter != .begin(); iter != theDicetheDicetheDicetheDice.end(); ++iter).end(); ++iter).end(); ++iter).end(); ++iter)
09:09:09:09: delete *iter;delete *iter;delete *iter;delete *iter;
10:10:10:10: delete delete delete delete cupcupcupcup;;;;
11:11:11:11: }}}}

Line Description

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 84 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

01 The code will be using Cup, so it must include Cup.h. Remember, Cup was
forward declared in the header file. The source file includes it because it needs to
know more about the class than the header file.

02 Initialize the cup pointer to 0. This is how you initialize pointers in C++, use 0;
do not use NULL.

10 Delete the pointer held in the member data. Right now this pointer is 0. By
definition, it is safe to delete a pointer initialized to 0, so this is safe.

This change keeps the code compiling and running. However, there’s a bit of an issue
going any further. The destructor in DiceGame calls delete on the pointers passed into
the constructor. If we add those same Die pointers to the Cup, which also calls delete,
then the same address will be deleted twice. This is forbidden, or rather undefined.

Here’s a quick experiment to convince yourself that this is a bad idea:

01:01:01:01: DiceGame::DiceGame(Die *d1, Die *d2) DiceGame::DiceGame(Die *d1, Die *d2) DiceGame::DiceGame(Die *d1, Die *d2) DiceGame::DiceGame(Die *d1, Die *d2)
02:02:02:02: : : : : cupcupcupcup((((newnewnewnew Cup(d1, d2)), Cup(d1, d2)), Cup(d1, d2)), Cup(d1, d2)), balancebalancebalancebalance(0) {(0) {(0) {(0) {
03:03:03:03: theDicetheDicetheDicetheDice.push_back(d1);.push_back(d1);.push_back(d1);.push_back(d1);
04:04:04:04: theDitheDitheDitheDicececece.push_back(d2);.push_back(d2);.push_back(d2);.push_back(d2);
05:05:05:05: }}}}

On line 5, construct a new Cup, passing in d1 and d2. This will cause some kind of
segmentation violation or some other undefined behavior. It will fail in some way that
will vary by your platform and by what you have installed. In my particular situation I am
using Eclipse and I have Visual Studio installed, so I get a prompt to bring up the Visual
Studio debugger for this violation. On an XP installation without Visual Studio installed,
I’ll get a dialog saying that a program terminated and I’ll be given the option of mailing a
report somewhere.

However, this does suggest an unorthodox intermediate form. Simply update the
constructor as shown and the remove the code that releases memory in the destructor:

DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {
 deletedeletedeletedelete cupcupcupcup;;;;
}}}}

The Cup now owns that memory and its destructor releases it.

Make these two changes and your code should be green.

At this point, if you update the DiceGame::play method, then the original solution, the
std::vector , won’t really be partaking in the solution:

voidvoidvoidvoid DiceGame::play() {DiceGame::play() {DiceGame::play() {DiceGame::play() {
 cupcupcupcup---->roll();>roll();>roll();>roll();
 intintintint sum = sum = sum = sum = cupcupcupcup---->total();>total();>total();>total();

 ifififif (sum > 7)(sum > 7)(sum > 7)(sum > 7)
 ++++++++balancebalancebalancebalance;;;;
 ifififif (sum < 7)(sum < 7)(sum < 7)(sum < 7)
 --------balancebalancebalancebalance;;;;
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 85 Author: Brett L. Schuchert (schuchert@yahoo.com)

Simply roll the cup and then get its total. Making this change leaves bits of the previous
solution:

● In the header file
• include of <vector>
• two typedefs
• member data called theDice

● In the source file
• include of Die .h
• call to push_back in the constructor

Removing these bits results in the following DiceGame header:

#pragma once#pragma once#pragma once#pragma once
#ifndef#ifndef#ifndef#ifndef DICEGAME_H_DICEGAME_H_DICEGAME_H_DICEGAME_H_
#define#define#define#define DICDICDICDICEGAME_H_EGAME_H_EGAME_H_EGAME_H_

class Cup;class Cup;class Cup;class Cup;
class Die;class Die;class Die;class Die;

class DiceGame {class DiceGame {class DiceGame {class DiceGame {
public:public:public:public:
 DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);
 virtualvirtualvirtualvirtual ~DiceGame();~DiceGame();~DiceGame();~DiceGame();

 voidvoidvoidvoid play();play();play();play();
 intintintint getBalance() getBalance() getBalance() getBalance() constconstconstconst;;;;

private:private:private:private:
 Cup *Cup *Cup *Cup *cupcupcupcup;;;;
 intintintint balance;balance;balance;balance;

private:private:private:private:
 DiceGame(DiceGame(DiceGame(DiceGame(constconstconstconst DiceGame&);DiceGame&);DiceGame&);DiceGame&);
 DiceGame& operatoDiceGame& operatoDiceGame& operatoDiceGame& operator=(r=(r=(r=(constconstconstconst DiceGame&);DiceGame&);DiceGame&);DiceGame&);
};};};};

#endif#endif#endif#endif

And the final DiceGame source file:

#include "DiceGame.h"#include "DiceGame.h"#include "DiceGame.h"#include "DiceGame.h"

#include #include #include #include "Cup.h""Cup.h""Cup.h""Cup.h"

DiceGame::DiceGame(Die *d1, Die *d2)DiceGame::DiceGame(Die *d1, Die *d2)DiceGame::DiceGame(Die *d1, Die *d2)DiceGame::DiceGame(Die *d1, Die *d2)
 : : : : cupcupcupcup(new Cup(d1, d2)), (new Cup(d1, d2)), (new Cup(d1, d2)), (new Cup(d1, d2)), balancebalancebalancebalance(0) {(0) {(0) {(0) {
}}}}

DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {
 delete delete delete delete cupcupcupcup;;;;
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 86 Author: Brett L. Schuchert (schuchert@yahoo.com)

void DiceGame::play() {void DiceGame::play() {void DiceGame::play() {void DiceGame::play() {
 cupcupcupcup---->roll();>roll();>roll();>roll();
 int sum = int sum = int sum = int sum = cupcupcupcup---->total();>total();>total();>total();

 if (sum > 7)if (sum > 7)if (sum > 7)if (sum > 7)
 ++++++++balancebalancebalancebalance;;;;
 if (sum < 7)if (sum < 7)if (sum < 7)if (sum < 7)
 --------balancebalancebalancebalance;;;;
}}}}

int DiceGame::getBalance() const {int DiceGame::getBalance() const {int DiceGame::getBalance() const {int DiceGame::getBalance() const {
 return return return return balancebalancebalancebalance;;;;
}}}}

Notice that these files are quite a bit smaller, which makes sense since much of the work
was dealing with the details of an std::vector <Die *>, which has been delegated to
the Cup class.

Make these changes; get your solution back to green.

3.16.7 What of the idiom?

Remember the copy constructor and assignment operator? Should you hide these two
methods? In fact, if you do not hide them, you could end up with serious problems. This
code would cause the same Die object to get deleted multiple times:

01:01:01:01: Die *d1 = new Die;Die *d1 = new Die;Die *d1 = new Die;Die *d1 = new Die;
02:02:02:02: Die *d2 = new Die;Die *d2 = new Die;Die *d2 = new Die;Die *d2 = new Die;
03:03:03:03: Cup c1(d1, d2);Cup c1(d1, d2);Cup c1(d1, d2);Cup c1(d1, d2);
04:04:04:04: Cup c2(c1);Cup c2(c1);Cup c2(c1);Cup c2(c1);
05:05:05:05: Cup c3 = c1;Cup c3 = c1;Cup c3 = c1;Cup c3 = c1;
06:06:06:06: CCCCup c4(0, 0);up c4(0, 0);up c4(0, 0);up c4(0, 0);
07:07:07:07: c4 = c1;c4 = c1;c4 = c1;c4 = c1;

Line Description

01 Create a die, nothing new here.

02 Ibid.

03 Create a cup called c1, it holds onto (and therefore owns) d1 and d2.

04 Create a cup called c2, using the compiler-provided copy constructor. c2 will
hold a copy of d1 and d2 and it will think that it owns d1 and d2. Now there are
two objects, c1 and c2 that own d1 and d2. The second cup will get destroyed
first, and then the first cup will get destroyed. When that happens you’ll see
some kind of serious program failure.

05 Adding insult to injury, construct another cup called c3 using the copy
constructor. This line is equivalent to line 04, just a different syntax. You can
distinguish this from assignment (line 07) because this line involves a variable
definition. Oh, now three objects think they own d1 and d2.

06 Create a cup called c4, it initially points to two non-die objects. This will work,
but don’t roll the cup, or the program fails.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 87 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

07 Assign c1 to c4. This uses the compiler-provided assignment operator. Now c4
will think it owns d1 and d2. So there are 4 objects, all taking responsibility for
releasing the same memory. This is a crash waiting to happen.

How can you fix this? First, make the assignment operator and copy constructor private:

private:private:private:private:
 Cup(Cup(Cup(Cup(constconstconstconst Cup&);Cup&);Cup&);Cup&);
 Cup& operator=(Cup& operator=(Cup& operator=(Cup& operator=(constconstconstconst Cup&);Cup&);Cup&);Cup&);

Another thing you can do is coming up; use an std::shared_ptr. Even so, unless you have
a compelling reason to do otherwise, make these methods private. If you do so, then lines
04, 05 and 07 will not compile.

3.16.8 A Logical Fix to Cup

Remember faceValue on Die ? It is constant. The Cup’s analog, total, is not the same.
It could do with a change:

intintintint total();total();total();total();

This method does not change the Cup, so it should be const :

intintintint total() const;total() const;total() const;total() const;

Of course, to make this change, you will have to change the method definition:

intintintint Cup::total() const {Cup::total() const {Cup::total() const {Cup::total() const {
............
}}}}

 If you try just this, your code will not compile and the error probably won’t give you
much of a clue what’s wrong with your code. Here’s the compilation error from my
machine (yours may vary):

..\C up.cpp: In member function 'int Cup::total() consup.cpp: In member function 'int Cup::total() consup.cpp: In member function 'int Cup::total() consup.cpp: In member function 'int Cup::total() const':

........\\\\Cup.cpp:22: error: conversion from Cup.cpp:22: error: conversion from Cup.cpp:22: error: conversion from Cup.cpp:22: error: conversion from
'__gnu_cxx::__normal_iterator<Die* const*, std::vector<Die*, '__gnu_cxx::__normal_iterator<Die* const*, std::vector<Die*, '__gnu_cxx::__normal_iterator<Die* const*, std::vector<Die*, '__gnu_cxx::__normal_iterator<Die* const*, std::vector<Die*,
std::allocator<Die*> > >' to nonstd::allocator<Die*> > >' to nonstd::allocator<Die*> > >' to nonstd::allocator<Die*> > >' to non----scalar type scalar type scalar type scalar type
'__gnu_cxx::__normal_iterator<Die'__gnu_cxx::__normal_iterator<Die'__gnu_cxx::__normal_iterator<Die'__gnu_cxx::__normal_iterator<Die**, std::vector<Die*, **, std::vector<Die*, **, std::vector<Die*, **, std::vector<Die*,
std::allocator<Die*> > >' requestedstd::allocator<Die*> > >' requestedstd::allocator<Die*> > >' requestedstd::allocator<Die*> > >' requested

Containers have a nested typedef for iterator. This defines a type you use when iterating
over the contents of a collection. However, adding const to the method makes the
current object const . When this happens, the collection is considered const . The
iterator is for non-const collections. However, the standard collections have a second
nested typedef, const _iterator. So you can make the following changes to get this back
to compiling and working:

01010101:::: class Cup {class Cup {class Cup {class Cup {
02:02:02:02: public:public:public:public:
03:03:03:03: typedeftypedeftypedeftypedef std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;std::vector<Die*> DiceCollection;
04:04:04:04: typedeftypedeftypedeftypedef DiceCollection::iterator iterator;DiceCollection::iterator iterator;DiceCollection::iterator iterator;DiceCollection::iterator iterator;
05:05:05:05: typedeftypedeftypedeftypedef DiceCollection::const_iterator const_iterator;DiceCollection::const_iterator const_iterator;DiceCollection::const_iterator const_iterator;DiceCollection::const_iterator const_iterator;

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 88 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

03,
04

The original nested typedefs.

05 A new nested typedef for a const _iterator. This is the thing you’ll use in any
methods denoted as const .

The total() method definition changes to use const _iterator:

01010101: : : : int Cup::total() const {int Cup::total() const {int Cup::total() const {int Cup::total() const {
02020202: : : : intintintint sum = 0;sum = 0;sum = 0;sum = 0;
03030303: : : : forforforfor(const_iterator i = (const_iterator i = (const_iterator i = (const_iterator i = dicedicedicedice.begin(); i != .begin(); i != .begin(); i != .begin(); i != dicedicedicedice.end(); ++i).end(); ++i).end(); ++i).end(); ++i)
04040404: : : : sum += (*i)sum += (*i)sum += (*i)sum += (*i)---->faceValue();>faceValue();>faceValue();>faceValue();
05050505: : : : returnreturnreturnreturn sum;sum;sum;sum;
06060606: : : : }}}}

Line Description

03 Switch from iterator to const_iterator , and viola the code compiles
and passes.

3.17 What is going on with const?

The const keyword says something is const . What exactly is const depends on
where the const is located. Here are the typical examples you’ll see under a discussion
of const :

Code Description

int *pi = 0; Just a pointer to an integer.

const int *pci = 0;

int const *pci = 0;

A pointer to an integer constant. That is, the pointer can
point anywhere, and where it points to can change, but
you cannot change the underlying integer to which it
points. These are equivalent definitions.

int *const cpi = 0; A constant pointer to an integer. That is, this pointer will
always point to the same place in memory (0 in this case).
The value pointed to can be changed (if it didn’t point to 0
that is).

const int * const cpic =
0;

int const * const cpic =
0;

A constant pointer to a constant integer. Nothing can
change, neither the value pointed to nor the address in
memory. These are equivalent definitions.

This is a typical introduction to this subject, but it’s very hard to figure out how to
remember all of these details. I learned a secret reading something by Andrew Koenig
called the right-left rule. The basics to reading declarations and definitions goes
something like this:

● Find the name – that’s the one potential hard part.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 89 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Once you have the name, read right until either:
• You’ve reached the end of the statement, a ; – or an = works the same way
• You have one more open parentheses) than close parentheses (

● Now read to the left until either:
• If you just found a ; going right, read all the way to the left
• If you just found an unmatched) going right, read to the matching (.

Here are those definitions read using this rule:

Code Description

int *pi = 0; The name is pi. Going to the right there’s an =, so read all
the way to the left, which gives pi is a pointer to an int.

const int *pci = 0;

int const *pci = 0;

The name is pci. Going to the right, there’s an =, so read
all the way to the left, which gives either:
� pointer to an integer constant
� pointer to a constant integer

int *const cpi = 0; The name is cpi. Going to the right is an =, so now reading
to the left, cpi is a constant pointer to an integer.

const int * const cpic =
0;

int const * const cpic =
0;

The name is cpic. Going to the right is an =, so now
reading back to the left:
� constant pointer to an int that is constant
� constant pointer to a constant int

Those are relatively simple examples. Here’s something that is a bit more complex:

18181818: : : : intintintint getBalance() getBalance() getBalance() getBalance() constconstconstconst;;;;

The name is getBalance(), what of the rest?

● Going to the right is (, the rules don’t say anything about that, but it means that
getBalance appears to be a function.

● Continuing right, there’s a). However, that matches the (, so getBalance is a function
that takes no arguments. You don’t start reading left because the () are balanced,
there’s not an extra close parentheses.

● Continuing right, is const . So this is a method on something that is const – the
object, it turns out.

● Continuing right, is the ;, so finish to the left;
● Going left is int, which is the return type of the method.

So getBalance is a method taking no parameters, which is const and it returns an int. So
what does the const mean?

The current Object

How does any method know “the current object”? For example:

Die d1;Die d1;Die d1;Die d1;
Die d2;Die d2;Die d2;Die d2;
d1.roll();d1.roll();d1.roll();d1.roll();
d2.roll();d2.roll();d2.roll();d2.roll();

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 90 Author: Brett L. Schuchert (schuchert@yahoo.com)

The roll method sets the value of a die, but there’s only one roll method and in this
example there are two Die objects. How does this work?

Here’s a key to thinking about C++, everything in C++ can be, and often is, represented
in C. That is, everything you write in C++ can be translated to structs, functions and
pointers.

The member function Die ::roll() appears to take no arguments, but in fact it takes one
argument, the current object. Logically there is a method whose name includes both roll
and the name of the class. Let’s call this method Die __roll. This method takes one
argument, a pointer to a die. That pointer is called “this”, so here’s a more complete
function declaration16:

void void void void Die__roll(Die *this);Die__roll(Die *this);Die__roll(Die *this);Die__roll(Die *this);

This is not quite correct, because in a method, it is not possible to change to which object
the so-called this pointer points to, so it should be a constant pointer:

void Die__roll(Die *const this);void Die__roll(Die *const this);void Die__roll(Die *const this);void Die__roll(Die *const this);

Using the right-left rule to read this: “this” is a constant pointer to a Die .

In the body of the roll method is the code assigns to value:

voidvoidvoidvoid Die::roll() {Die::roll() {Die::roll() {Die::roll() {

 valuevaluevaluevalue = uniform(eng= uniform(eng= uniform(eng= uniform(engine);ine);ine);ine);
}}}}

This is equivalent to the following17:

voidvoidvoidvoid Die::roll() {Die::roll() {Die::roll() {Die::roll() {

 thisthisthisthis---->>>>valuevaluevaluevalue = uniform(engine);= uniform(engine);= uniform(engine);= uniform(engine);
}}}}

So logically (and in some cases nearly literally), the compiler converts the simple
example above to:

Die d1;Die d1;Die d1;Die d1;
Die d2;Die d2;Die d2;Die d2;
Die__roll(&d1);Die__roll(&d1);Die__roll(&d1);Die__roll(&d1);
Die__roll(&d2)Die__roll(&d2)Die__roll(&d2)Die__roll(&d2);;;;

So now it is hopefully clear how methods know the current object. It’s passed in as a
hidden parameter. In fact, that’s what makes a method a method, a hidden first parameter.

So, again, what does a const method do?

Consider the method faceValue :

intintintint DieDieDieDie::faceValue() ::faceValue() ::faceValue() ::faceValue() constconstconstconst {{{{

16 Note that this is close to valid C++. There are 2 problems. First, this is a reserved word, so you

cannot name a variable this. Second, the name of the method includes two _. While technically valid,
the compiler and preprocessor reserve names with two or more _ (typically at the beginning of a
name). So in practice I would not put two consecutive underscores in a name.

17 In fact, this is literally equivalent as this form will compile and work just fine.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 91 Author: Brett L. Schuchert (schuchert@yahoo.com)

 returnreturnreturnreturn valuevaluevaluevalue;;;;
}}}}

What’s constant in this? The current object, or the this pointer. Here’s a logical rewrite:

intintintint Die__faceValue(Die__faceValue(Die__faceValue(Die__faceValue(const const const const Die *Die *Die *Die *const thisconst thisconst thisconst this) {) {) {) {
 returnreturnreturnreturn valuevaluevaluevalue;;;;
}}}}

So this is a constant pointer (which is always is) to a Die that is itself constant (which it
normally is not). What this does is prevents changes to the current object. It’s still
possible to make changes. The object is not physically constant, but you have to do
something special in modern compilers to remove the const characteristic18.

3.18 Taking Small Steps, Recap

This started off as an exercise to reduce the complexity in DiceGame by refactoring.
Specifically, you extracted a class out of DiceGame and called in Cup. In general,
refactoring starts with creating new code rather than changing existing code. You can
certainly change code in place, but that is a bit riskier. Taking small steps and keeping
your code green leaves you in a better state to be interrupted. Since a modern work day
involves interruption, this style of code modification can make your daily live a touch
easier.

The steps for extracting class are:

● Create a new class by copying existing code
• Create a standard header file
• Create the source file
• Get to compiling

● Add the Cup into the DiceGame using parallel development
• Get as much changed in DiceGame as you can manage while keeping the

solution green
• Finally make the plunge
• Clean up after the change

● Quick review
• We made the copy constructor and assignment operator private
• We made total() const

In general, refactoring starts with creation rather than making inline changes. You do not
have to do this, but if you change code first and get to a non-compiling state, when you
get interrupted, and you will get interrupted, you might lose your train of thought. If you
leave the code compiling and the tests passing most of the time, getting interrupted means
you still have a working system with some possibly unnecessary code.

Any reasonably mature code base is inconsistent, contains unnecessary code and is in a
constant state of decay. That’s the reality of any successful system. So if you happen to
get interrupted but tests are still passing, then you’ve simply added a little white noise
until you get back to the work.

18 You can use const_cast<Die*>(this) to remove the const-ness. That’s the last you’ll hear of it in this

book as it is out of scope.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 92 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.19 Memory Allocation

How can clients of DiceGame, or Cup for that matter, know that these classes expect a
dynamically allocated pointer? Consider the constructors for DiceGame:

class DiceGame {class DiceGame {class DiceGame {class DiceGame {
public:public:public:public:
 DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);

Either of these examples successfully creates a DiceGame:

Die d1;Die d1;Die d1;Die d1; Die *d1 = new Die;Die *d1 = new Die;Die *d1 = new Die;Die *d1 = new Die;
Die d2;Die d2;Die d2;Die d2; Die *d2 = new Die;Die *d2 = new Die;Die *d2 = new Die;Die *d2 = new Die;
DiceGameDiceGameDiceGameDiceGame troubleAhead(&d1, &d2);troubleAhead(&d1, &d2);troubleAhead(&d1, &d2);troubleAhead(&d1, &d2); DiceGame noWorries(d1, d2);DiceGame noWorries(d1, d2);DiceGame noWorries(d1, d2);DiceGame noWorries(d1, d2);

The one on the left will lead to problems at the time of destruction and there’s no good
way to with the current API to make that clear. You could use a nested typedef such as:

class DiceGame {class DiceGame {class DiceGame {class DiceGame {
public:public:public:public:
 typedeftypedeftypedeftypedef Die* dyno_die;Die* dyno_die;Die* dyno_die;Die* dyno_die;
 DiceGame(dyno_die d1, dyno_die d2);DiceGame(dyno_die d1, dyno_die d2);DiceGame(dyno_die d1, dyno_die d2);DiceGame(dyno_die d1, dyno_die d2);

This is better because it documents an expectation and it does so in a way that must
compile. Can we do better? Can we also clean up the implementation and take care of the
allocation a bit more automatically?

3.19.1 std::shared_ptr

There are classes in the standard library that help with allocation. We’ll have a look at
one such class, though there are several. As with the rest of the book, let’s start with a
failing test:

MemoryLeakDemonstration.cpp

01:01:01:01: #include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>
02: 02: 02: 02:
03:03:03:03: TEST_GROUP(MemoryLeakDemonstration) {TEST_GROUP(MemoryLeakDemonstration) {TEST_GROUP(MemoryLeakDemonstration) {TEST_GROUP(MemoryLeakDemonstration) {
04:04:04:04: };};};};
05: 05: 05: 05:
06:06:06:06: TEST(MemoryLeakDemonstration, ThisTEST(MemoryLeakDemonstration, ThisTEST(MemoryLeakDemonstration, ThisTEST(MemoryLeakDemonstration, ThisLeaksLeaksLeaksLeaks) {) {) {) {
07:07:07:07: int *int *int *int *badbadbadbad((((new intnew intnew intnew int))));;;;
08:08:08:08: }}}}

This allocates memory on the heap on line 07. There’s no other code that releases the
memory, and in fact without doing something with writing a custom memory allocation
solution, there no way to recover after the test terminates. This is what memory logically
looks like over time:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 93 Author: Brett L. Schuchert (schuchert@yahoo.com)

The problem is that the variable is a raw type and raw types don’t have constructors.
What we need to do is convert the raw type into a non-raw type so that the pointer will
have delete called automatically when the method terminates. Here’s a similar test, but
this one passes:

01:01:01:01: #include #include #include #include <<<<memory>memory>memory>memory>
02: 02: 02: 02:
03:03:03:03: #include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>
04: 04: 04: 04:
05:05:05:05: TEST_GROUP(MemoryLeakDemonstration) {TEST_GROUP(MemoryLeakDemonstration) {TEST_GROUP(MemoryLeakDemonstration) {TEST_GROUP(MemoryLeakDemonstration) {
06:06:06:06: };};};};
07: 07: 07: 07:
08:08:08:08: TEST(MeTEST(MeTEST(MeTEST(MemoryLeakDemonstration, ThisWorksmoryLeakDemonstration, ThisWorksmoryLeakDemonstration, ThisWorksmoryLeakDemonstration, ThisWorks) {) {) {) {
09:09:09:09: std::std::std::std::shared_ptr<int> good(new int);shared_ptr<int> good(new int);shared_ptr<int> good(new int);shared_ptr<int> good(new int);
10:10:10:10: }}}}

Line Description

01 Include the header file for std::shared_ptr<>.

09 Create a shared pointer instead of a raw pointer. Since this is a non-raw type, it
has a destructor, which will get called when good goes out of scope.

09 Notice that the template parameter type is <int> and not <int*> . The class
is designed to work with pointers to dynamically allocated memory. So a
std::shared_ptr<int> is a shared pointer to an integer. The name of the
class suggests it is a pointer already. The second example,
std::shared_ptr<int*> is valid, but it is a shared pointer to a pointer to an int .
It’s like an int** .

The std::shared_ptr class maintains a count of the number of times the pointer is shared.
The deallocation only happens if the count goes to zero. Here’s what memory logically
looks like over time:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 94 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.19.2 Fixing DiceGame

With this in mind, now you can fix DiceGame. Here’s the updated header file:

01: 01: 01: 01: #include #include #include #include <memory><memory><memory><memory>
02020202: : : :
03030303: : : : class DiceGame {class DiceGame {class DiceGame {class DiceGame {
04040404: : : :
05050505: : : :
06060606: : : : private:private:private:private:
07070707: : : : std::shared_ptr<Cup> std::shared_ptr<Cup> std::shared_ptr<Cup> std::shared_ptr<Cup> cupcupcupcup;;;;
00008888: : : :
09090909: : : : };};};};

Line Description

01 Include the header file for std::shared_ptr<>.

07 Change the cup member data to be a shard pointer instead of a raw pointer. This
will make calling delete unnecessary; it won’t compile either.

The source file needs one change for this to compile and work:

00001111: : : : DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {DiceGame::~DiceGame() {
00002222: : : : }}}}

Delete the body of the destructor. The std::shared_ptr takes care of memory deallocation,
so you can (and must) remove it.

The design of the class is meant to make it look just like a pointer.

Notice the play method is unchanged:

voidvoidvoidvoid DiceGame::play() {DiceGame::play() {DiceGame::play() {DiceGame::play() {
 cupcupcupcup---->roll();>roll();>roll();>roll();
 intintintint sum = sum = sum = sum = cupcupcupcup---->total();>total();>total();>total();

}}}}

How does this work?

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 95 Author: Brett L. Schuchert (schuchert@yahoo.com)

Operator Overloading

You’ve already seen examples of operator overloading, specifically the assignment
operator. It turns out that another operator you can overload is -> . If you were to create
such an operator for one of your classes, say Die , it could look like this:

Die* operatorDie* operatorDie* operatorDie* operator---->() { >() { >() { >() { returnreturnreturnreturn thisthisthisthis; }; }; }; }

Then the following code, while redundant, would work:

Die d1;Die d1;Die d1;Die d1;
d1d1d1d1---->roll();>roll();>roll();>roll();

Don’t do this. I’m just demonstrating what this might look like. Here’s what the same
operator might look like for the std::shared_ptr class:

01:01:01:01: namespacenamespacenamespacenamespace stdstdstdstd {{{{
02:02:02:02: template<class template<class template<class template<class PPPP> class shared_ptr {> class shared_ptr {> class shared_ptr {> class shared_ptr {
03:03:03:03: public:public:public:public:
04:04:04:04: shared_ptr(shared_ptr(shared_ptr(shared_ptr(PPPP *v) : *v) : *v) : *v) : targettargettargettarget(v) {}(v) {}(v) {}(v) {}
05:05:05:05: PPPP* operator* operator* operator* operator---->() { return >() { return >() { return >() { return targettargettargettarget; }; }; }; }
06:06:06:06: private:private:private:private:
07:07:07:07: PPPP* * * * targettargettargettarget;;;;
08:08:08:08: };};};};
09:09:09:09: }}}}
10:10:10:10:
11:11:11:11: exp::shared_ptr<exp::shared_ptr<exp::shared_ptr<exp::shared_ptr<intintintint> example(> example(> example(> example(newnewnewnew intintintint););););

Line Description

01 Everything from this line to the matching close } is in the namespace std.

02 Define a template class with one parameter19. The class is called shared_ptr.

04 Declare and immediately define a constructor. This kind of method is called an
implicit inline method. The combination of declaring and then immediately
defining a method is what makes it implicit.

05 Declare and then immediately define a method called operator->. The
method returns the target pointer stored in the constructor.

11 Create an instance of the shared_ptr.

This is in no way near a full implementation of the class. For that you should have a look
at the <memory> header file.

How can C++ tell the difference?

How can the compiler decide between a “regular” -> and one you have declared for your
class? You cannot change the definition of the language. This means that while you can
write your own operators for your class, you cannot write your own operators for
primitive types. All pointers are primitive types, therefore you cannot change the
behavior of -> on a pointer. For example:

19 The actual class has more than one template argument; this is logically showing what’s necessary to

get a working operator-> method added to a class like the shared_ptr class.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 96 Author: Brett L. Schuchert (schuchert@yahoo.com)

Die d1;Die d1;Die d1;Die d1;
d1d1d1d1---->roll();>roll();>roll();>roll();

There’s only two things that can happen here:

● If your Die class has declared an operator-> method, it will compile.
● If your Die class does not declare an operator-> method, this will not compile.

Contrast that with this example:

Die *d1 = new Die;Die *d1 = new Die;Die *d1 = new Die;Die *d1 = new Die;
d1d1d1d1---->roll();>roll();>roll();>roll();
delete d1;delete d1;delete d1;delete d1;

There’s only one thing that happens here. The type of d1 is pointer to Die . All pointers
are primitive types, so this uses the built-in version of operator->. There is no ambiguity
in what happens with either of these examples.

3.19.3 Fixing Cup

The Header File

Now it’s time to get a little more creative and fix the Cup class. Since Cup holds a vector
of Die objects, we’re going to have to do a bit more work:

01:01:01:01: class Die;class Die;class Die;class Die;
02:02:02:02: #include #include #include #include <vector><vector><vector><vector>
03030303:::: #include #include #include #include <<<<memory>memory>memory>memory>
04: 04: 04: 04:
05:05:05:05: class Cup {class Cup {class Cup {class Cup {
06:06:06:06: public:public:public:public:
07:07:07:07: typedeftypedeftypedeftypedef std::shared_ptr<Die> spDie;std::shared_ptr<Die> spDie;std::shared_ptr<Die> spDie;std::shared_ptr<Die> spDie;
08:08:08:08: typedeftypedeftypedeftypedef std::vector<spDie> DiceCollection;std::vector<spDie> DiceCollection;std::vector<spDie> DiceCollection;std::vector<spDie> DiceCollection;

Line Description

03 Include the necessary header file for the shared pointer.

07 Unlike the last example, define a nested typedef because it will make the
changes to the source code easier.

08 Update the typedef to use spDie instead of Die *. Note the use of typedefs
minimize the changes in the header file to one line.

The Source File

The source changes in terms of construction and destruction only:

01:01:01:01: Cup::Cup(Die *d1, Die *d2) {Cup::Cup(Die *d1, Die *d2) {Cup::Cup(Die *d1, Die *d2) {Cup::Cup(Die *d1, Die *d2) {
02:02:02:02: dicedicedicedice.push_back(spDie(d1));.push_back(spDie(d1));.push_back(spDie(d1));.push_back(spDie(d1));
03:03:03:03: dicedicedicedice.push_back(spDie(d2));.push_back(spDie(d2));.push_back(spDie(d2));.push_back(spDie(d2));
04:04:04:04: }}}}
05: 05: 05: 05:
06:06:06:06: Cup::~Cup() {Cup::~Cup() {Cup::~Cup() {Cup::~Cup() {
07:07:07:07: }}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 97 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

02,
03

Instead of putting raw Die pointers into the std::vector , put spDie . Why
you have to do this has to do with the design of the shared_ptr class. The
push_back method on vector is expecting an spDie but you have a
Die* . There is a constructor in shared_ptr that would work, but the design
of shared_ptr makes the implicit use of that forbidden (by use of the
explicit keyword). So you must explicitly create an instance of
std::shared_ptr , for which we have already created a nested typedef .
This is by design because accidentally creating a second shared pointer on
something that already has a shared pointer will cause the program to crash
when memory is either released multiple times or if memory that was released
is then read.

06 All memory is now taken care of by std::shared_ptr , simply remove the
body of the destructor.

3.20 Warning: Circular References

While std::shared_ptr solves the basic problem of releasing memory, as with all solutions,
it comes with problems. Specifically, circular references will not get removed.

3.20.1 The Problem: A concrete example

Here is a simple domain using shared pointers:

Here’s a version of this diagram in code (CircularReferenceExample.cpp):

01:01:01:01: #include#include#include#include <memory><memory><memory><memory>
02020202: : : :
03030303:::: struct Movie;struct Movie;struct Movie;struct Movie;
04040404:::: struct Renter {struct Renter {struct Renter {struct Renter {
05050505:::: std::shared_ptr<Movie> std::shared_ptr<Movie> std::shared_ptr<Movie> std::shared_ptr<Movie> moviemoviemoviemovie;;;;
06060606:::: };};};};
07070707:::: structstructstructstruct Movie {Movie {Movie {Movie {
08080808:::: std::shared_ptr<Renter> std::shared_ptr<Renter> std::shared_ptr<Renter> std::shared_ptr<Renter> checkedOutBycheckedOutBycheckedOutBycheckedOutBy;;;;
09090909:::: };};};};
10101010: : : :
11111111:::: structstructstructstruct RentAMovieSystem {RentAMovieSystem {RentAMovieSystem {RentAMovieSystem {
12121212:::: std::shared_ptr<Renter> createRenter() {std::shared_ptr<Renter> createRenter() {std::shared_ptr<Renter> createRenter() {std::shared_ptr<Renter> createRenter() {
13131313:::: returnreturnreturnreturn std::shared_ptr<Renter>(std::shared_ptr<Renter>(std::shared_ptr<Renter>(std::shared_ptr<Renter>(newnewnewnew Renter);Renter);Renter);Renter);

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 98 Author: Brett L. Schuchert (schuchert@yahoo.com)

14141414:::: }}}}
15151515: : : :
16161616:::: voidvoidvoidvoid rentAnyMovieTo(std::shared_ptr<RerentAnyMovieTo(std::shared_ptr<RerentAnyMovieTo(std::shared_ptr<RerentAnyMovieTo(std::shared_ptr<Renter> &renter) {nter> &renter) {nter> &renter) {nter> &renter) {
17171717:::: Movie *someMovie = Movie *someMovie = Movie *someMovie = Movie *someMovie = newnewnewnew Movie;Movie;Movie;Movie;
18181818:::: renterrenterrenterrenter---->movie.reset(someMovie);>movie.reset(someMovie);>movie.reset(someMovie);>movie.reset(someMovie);
19191919:::: someMoviesomeMoviesomeMoviesomeMovie---->>>>checkedOutBycheckedOutBycheckedOutBycheckedOutBy = renter;= renter;= renter;= renter;
20202020:::: }}}}
21212121:::: };};};};
22222222: : : :
23232323:::: #include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>
24242424: : : :
25252525:::: TEST_GROUP(CircularReference) {TEST_GROUP(CircularReference) {TEST_GROUP(CircularReference) {TEST_GROUP(CircularReference) {
26262626:::: };};};};
27272727: : : :
22228888:::: TEST(CircularReference, Broken) {TEST(CircularReference, Broken) {TEST(CircularReference, Broken) {TEST(CircularReference, Broken) {
29292929:::: RentAMovieSystem system;RentAMovieSystem system;RentAMovieSystem system;RentAMovieSystem system;
30303030:::: std::shared_ptr<Renter> renter = system.createRenter();std::shared_ptr<Renter> renter = system.createRenter();std::shared_ptr<Renter> renter = system.createRenter();std::shared_ptr<Renter> renter = system.createRenter();
31313131:::: system.rentAnyMovieTo(renter);system.rentAnyMovieTo(renter);system.rentAnyMovieTo(renter);system.rentAnyMovieTo(renter);
32323232:::: }}}}

Line Description

01 Include the required header file.

03 Forward-declare the Movie class, so it can be used on line 05.

04 For this example, use struct . Everything is public by default.

05 A Renter has a single movie. This is a simplified version of the diagram where
a Renter can either 0 or 1 movies rented rather than 0 to many. Adding a
collection here simply complicates the example without making it any more
broken.

07 Observation, this single file has both a declaration of Movie and Definition.
That’s OK, as stated above, declarations can repeat, definitions cannot.

08 A movie knows who it was checked out by, which is 0 by default.

13 This is like a simulated lookup method. Just creating rather than looking up a
Renter object.

16 This is where the magic happens

17 Create a new movie

18 Store the newly-created movie in the std::shared_ptr, replacing the current
value in that object. It was built using its no-argument constructor, which sets
its internal pointer to 0, and its count to 0.

19 Now set the movie’s Renter shared_ptr back to the current Renter. This is the
line that creates the circular reference. At this point, unless the circle is broken,
neither object will be released from memory.

29 Create a rental system used in the rest of the test.

30 Ask the rental system to create a Renter. This is like a lookup, I just didn’t want
to have to simulate too much to demonstrate the principle.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 99 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

31 Call the method that forms the circle. Now memory will not be deallocated.

What follows are some logic views of memory at critical points in the code.

After Line 30 Completes

HeapStack

renter

:shared_ptr<Renter>
:Renter

movie

:shared_ptr<Movie>

1

0

0

Line 30 requests the creation of a Renter by calling createRenter, which returns an
std::shared_ptr. The method first creates a new Renter , which is on the heap. A renter
holds an instance of an std::shared_ptr<Movie> . That object is fully contained
within the Renter object, but that object itself holds a shared count, initially 0 and a
pointer to a Movie, initially assigned to 020. The return std::shared_ptr object is then
copied (via the copy constructor) into a local variable called renter , which is wholly
on the stack, but it holds a shared counter, 1 after the line completes (but for a short time
2) and a pointer to dynamically allocated Renter object. Remember, these are logical
views. The actual implementation of the std::shared_ptr is different. This
representation is analogous.

Next, the test calls rentAnyMoveTo. Internally this creates a new Movie, stores that
pointer (thereby resetting the Renter’s movie std::shared_ptr) and then tells the
Movie who the renter is checking it out.

20 This is logical; an implementation won’t allocate the shared count until necessary, typically.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 100 Author: Brett L. Schuchert (schuchert@yahoo.com)

After rentAnyMovieTo Completes

When all of this is done, the renter’s shared pointer to a Movie has a count of 1 and it
now refers to a newly-created Movie. That Movie is wholly on the heap. It physically
contains an std::shared_ptr<Renter>, which has a shared count of 2 and refers back to the
first (and only) renter object created.

 After The Test Finishes

The test finishes and its program stack is cleared. The renter variable goes out of scope,
which means its destructor is called. During destruction, it decrements the shared count
from 2 to 1. While you may have expected the Renter on the heap to be released, its count
is 1, so it is still around. It holds a reference to a Movie, with a count of 1. These objects
are forever pegged in memory.

3.20.2 Options

There are several ways to fix this.

● Change your design to remove the circular reference
● Use a std::weak_ptr

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 101 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Use a raw pointer

Changing you design

Circular references are real problems. They are certainly a code smell, meaning they are
worth reviewing. If it happens to be possible to simply break the circular reference then
that is your best option. This may not be a viable option for any number of reasons, so
what can you do if that is not an option?

Fixing With weak_ptr

One option is to use an std::weak_ptr on one side of the relationship. Make a decision
about which side is the primary side. This is the side that tends to be the primary or most
common path of access. If there’s not a clear winner, then go back and review your
design. In this example, assume that Renter is the primary side of the relationship:

One issue with this is that to create a weak_ptr requires the original shared_ptr. We have
this handy, in the rentAnyMovieTo method, so here are a few changes to fix the circular
reference:

structstructstructstruct Movie {Movie {Movie {Movie {
 std::weak_ptr<Renter> std::weak_ptr<Renter> std::weak_ptr<Renter> std::weak_ptr<Renter> checkedOutBycheckedOutBycheckedOutBycheckedOutBy;;;;
};};};};

So long as you have the original shared_ptr available, simply changing from the type of
checkedOutBy from a shared_ptr to a weak_ptr fixes the problem. However, this solution
happens to have the correct shared_ptr around. If it did not, then you’d need to find it
first. So using a weak_ptr can be easy if your program makes it easy.

If for some reason getting access to the original shared_ptr of Renter is difficult or
impractical, then use a raw pointer.

Fixing with raw pointer

The diagram is even easier with a raw pointer:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 102 Author: Brett L. Schuchert (schuchert@yahoo.com)

And the code is nearly the same:

structstructstructstruct Movie {Movie {Movie {Movie {
 Movie() : Movie() : Movie() : Movie() : checkedOutBycheckedOutBycheckedOutBycheckedOutBy(0) {}(0) {}(0) {}(0) {}
 Renter *Renter *Renter *Renter *checkedOutBycheckedOutBycheckedOutBycheckedOutBy;;;;
};};};};

And:

voidvoidvoidvoid rentAnyMovieTo(std::shared_ptr<Renter> &renter) {rentAnyMovieTo(std::shared_ptr<Renter> &renter) {rentAnyMovieTo(std::shared_ptr<Renter> &renter) {rentAnyMovieTo(std::shared_ptr<Renter> &renter) {

 someMoviesomeMoviesomeMoviesomeMovie---->>>>checkedOutBycheckedOutBycheckedOutBycheckedOutBy = renter.get();= renter.get();= renter.get();= renter.get();
}}}}

Even though these two solutions are not too bad, removing circular references will make
your code age better over time.

3.21 Recap

The standard library offers a shared pointer to automatically release memory at the right
time. It does this by keeping a reference count. When the reference count goes to 0, the
memory is released.

However, you need to be careful:

● Do not give an address to a shared pointer that was not created using new (not malloc,
or address-of, just new)

● Do not give the same address to two different shared pointers you create yourself.
They will copy correctly if passed around, but do not create two different shared
pointers that both point to the same address.

● Do not have circular references between shared pointers. Either remove the circularity
or break the shared pointer chain with a weak pointer or a raw pointer.

If you use shared pointers and follow these rules, you can remove quite a bit of manual
memory releasing and you’re more likely to have a well behaved system.

3.22 What’s Coming Up?

Now we’ll have a look at refactoring by using built-in features of the standard library to
improve the implementation of the Cup class. Specifically, we’ll look at:

● std::for_each
● std::accumulate

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 103 Author: Brett L. Schuchert (schuchert@yahoo.com)

● std::bind to call member functions
● Pointers to member functions
● std::tr1::placeholders and _1

This section introduces a few of the build-in algorithms in the standard library.

3.23 A Few Built-In Algorithms

3.23.1 Updated roll()

Here is Cup::roll() in its current form:

voidvoidvoidvoid Cup::roll() {Cup::roll() {Cup::roll() {Cup::roll() {
 forforforfor(iterator i = (iterator i = (iterator i = (iterator i = dicedicedicedice.begin(); i != .begin(); i != .begin(); i != .begin(); i != dicedicedicedice.end(); ++i).end(); ++i).end(); ++i).end(); ++i)
 (*i)(*i)(*i)(*i)---->roll();>roll();>roll();>roll();
}}}}

There is a method in the standard library called for_each that accomplishes something
like this. It takes two iterators, dice.begin() & dice.end() and a function or function object
that should be applied to each element in the collection.

Here is an example of just that:

01:01:01:01: #include#include#include#include <algorithm><algorithm><algorithm><algorithm>
02020202: : : :
03030303:::: staticstaticstaticstatic voidvoidvoidvoid rollADie(Cup::spDie &dierollADie(Cup::spDie &dierollADie(Cup::spDie &dierollADie(Cup::spDie &die) {) {) {) {
04040404:::: diediediedie---->roll();>roll();>roll();>roll();
05050505:::: }}}}
06060606: : : :
00007777:::: voidvoidvoidvoid Cup::roll() {Cup::roll() {Cup::roll() {Cup::roll() {
08080808:::: std::for_each(std::for_each(std::for_each(std::for_each(dicedicedicedice.begin(), .begin(), .begin(), .begin(), dicedicedicedice.end(), rollADie);.end(), rollADie);.end(), rollADie);.end(), rollADie);
09090909:::: }}}}

Line Description

01 Include the header file that contains, among other things, std::for_each

03 –
05

Define a function that will be used by std::for_each on each element in its
collection. This method is declared static, meaning it is only available in this
compilation unit. It takes a reference to an element of the vector containing
shared_ptr to dice. Luckily, there’s already a nested typedef, so use it.

This is a place where you can use a reference to avoid making an unnecessary
copy of an std::shared_ptr. If you do not use a reference, then when rollADie is
called from the for_each method, it will pass a copy. This will increase the
reference count and copy the pointer. Then the function ultimately calls roll via
a pointer to a die and returns. Upon return, the copy of the std::shared_ptr is
removed, its destructor is called, it decrements the reference count by one.

So while not using a reference will work because the thing being copied is a
handle to a pointer to a Die object, it required unnecessary work.

04 Actually roll a die. Remember, die is an std::shared_ptr to Die . This uses the
overloaded operator-> method, which returns a Die *, to which the built-in
-> operator applies to the Die * and invokes the roll method.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 104 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

08 Call a template function called std::for_each . This function starts at the
first parameter (dice.begin()), an iterator, and continues while its internal
copy of the iterator does not equal the second parameter (dice.end()). For
each element in the collection, call the function rollADie .

Make this change

This change is relatively self-contained. Make this change and get to green.

Removing the rollADie method

The third parameter to std::for_each is either a pointer to a function or an object
that has an operator() method defined on it. You have seen such a beast in the engine
class21. Here is a hand-rolled version of that, which we’ll migrate into the final form
using more built-in standard library features.

Here is the same code, with the function written as a function object, or a functor:

01:01:01:01: #include#include#include#include <algorithm><algorithm><algorithm><algorithm>
02020202: : : :
03030303:::: structstructstructstruct RollFunctor {RollFunctor {RollFunctor {RollFunctor {
04040404:::: voidvoidvoidvoid operator()(Cup::spDie &die) {operator()(Cup::spDie &die) {operator()(Cup::spDie &die) {operator()(Cup::spDie &die) {
05050505:::: diediediedie---->roll();>roll();>roll();>roll();
06060606:::: }}}}
07070707:::: };};};};
08080808: : : :
09090909:::: voidvoidvoidvoid Cup::roll() {Cup::roll() {Cup::roll() {Cup::roll() {
11110000:::: std::for_each(std::for_each(std::for_each(std::for_each(dicedicedicedice.begin(), .begin(), .begin(), .begin(), dicedicedicedice.end(), RollFunctor());.end(), RollFunctor());.end(), RollFunctor());.end(), RollFunctor());
11111111:::: }}}}

Line Description

03 Define a struct called RollFunctor. It has a single method, operator() taking the
same parameter type as the previous function. This example uses struct since I
want everything to be public by default.

05 This is the same code as the previous function. It’s just represented as a
member function instead of a stand-alone function.

10 For the third parameter, do not pass in a pointer to a function, instead pass in an
instance of the class RollFunctor. The expression RollFunctor() creates a
temporary instance, which the compiler passes into the std::for_each
method. This works because the std::for_each method requires something
that can respond to () in its third parameter. A pointer to a function does, but
so does an object with an overloaded operator() method. The input
parameter type must match the type stored in the underlying vector.

Try this version. Make the change and confirm you solution is green

21 Review the code in Updated Source on page 53. Specifically the discussion of the line including

uniform(engine) .

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 105 Author: Brett L. Schuchert (schuchert@yahoo.com)

Removing even the functor

The boost library introduced the bind library to make this kind of thing a bit more
automatic. The standard library had some built-in support for this that was seldom used.
Those classes still exist, but tr1 recommended the inclusion of the boost::bind
functionality, which is a bit clearer, having the advantage of being second instead of first.

Here’s the same thing using bind:

01:01:01:01: #include#include#include#include <algorithm><algorithm><algorithm><algorithm>
02020202:::: #include#include#include#include <tr1/functional><tr1/functional><tr1/functional><tr1/functional>
03030303:::: using namespace std::trusing namespace std::trusing namespace std::trusing namespace std::tr1;1;1;1;
04040404:::: usingusingusingusing namespacenamespacenamespacenamespace std::tr1::placeholders;std::tr1::placeholders;std::tr1::placeholders;std::tr1::placeholders;
05050505: : : :
06060606:::: voidvoidvoidvoid Cup::roll() {Cup::roll() {Cup::roll() {Cup::roll() {
07070707:::: std::for_each(std::for_each(std::for_each(std::for_each(
 dicedicedicedice.begin(), .begin(), .begin(), .begin(), dicedicedicedice.end(), bind(&Die::roll, _1));.end(), bind(&Die::roll, _1));.end(), bind(&Die::roll, _1));.end(), bind(&Die::roll, _1));
08080808:::: }}}}

Line Description

02 This is the header file that provides std::tr1::bind and std::tr1::placeholders.

07 Use the bind function to build a function object that calls the method Die ::roll.
_1 represents the parameter passed from the std::for_each function into the
operator() method.

Give this a try, verify that it also works. Make sure your solution is green before trying
the final version.

Using lambdas

All of this leads up to something that many compliers do not yet support, and even the
ones that do support it are not quite “there” yet. Even so, this gives you an idea of what
this will look like with modern compilers maybe by 201222:

01:01:01:01: voidvoidvoidvoid Cup::roll() {Cup::roll() {Cup::roll() {Cup::roll() {
02020202:::: std::for_each(std::for_each(std::for_each(std::for_each(
03030303:::: dice.begin(), dice.begin(), dice.begin(), dice.begin(),
04040404:::: dice.end(), dice.end(), dice.end(), dice.end(),
05050505:::: [](spDie &d[](spDie &d[](spDie &d[](spDie &dieieieie){ d){ d){ d){ dieieieie---->roll(); });>roll(); });>roll(); });>roll(); });
06060606:::: }}}}

Line Description

05 Pass in a lambda expression. There are three parts to this expression (there can
be more):
� [] – this is a way to refer to local variables; there’s no need in this example

use, so it is empty. It’s required.
� (spDie &die) – this is the signature of the method, like its predecessors, it

22 This code requires gcc 4.5 or later or VS 2010. So it might not work with your configuration.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 106 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

takes a reference to an spDie .
� { ... } – the body of the code, which has been constant throughout

This is one place where you might not be able to make this example work in your system.
If you are using gcc 4.5 or later, it will work23.

3.23.2 Updated total()

The total method can also be improved a bit. Like roll(), there’s an appropriate template
function for accumulating (summing values):

01:01:01:01: #include#include#include#include <numeric><numeric><numeric><numeric>
02020202:::: intintintint sumIt(sumIt(sumIt(sumIt(intintintint currentSum, currentSum, currentSum, currentSum, constconstconstconst Cup::spDie &die) {Cup::spDie &die) {Cup::spDie &die) {Cup::spDie &die) {
03030303:::: returnreturnreturnreturn currentSum + diecurrentSum + diecurrentSum + diecurrentSum + die---->faceValue();>faceValue();>faceValue();>faceValue();
04040404:::: }}}}
05050505: : : :
06060606:::: intintintint Cup::totaCup::totaCup::totaCup::total() l() l() l() constconstconstconst {{{{
07070707:::: returnreturnreturnreturn std::accumulate(std::accumulate(std::accumulate(std::accumulate(dicedicedicedice.begin(), .begin(), .begin(), .begin(), dicedicedicedice.end(), 0, sumIt);.end(), 0, sumIt);.end(), 0, sumIt);.end(), 0, sumIt);
08080808:::: }}}}

Line Description

01 Include the header file that includes, among other template functions,
std::accumulate.

02 The accumulate method takes a function with two parameters. The first
parameter is the kind of value we are accumulating into, an int. The second
parameter is an element type of the underlying collection type, a vector. Since
this method is called from total, which is a const method, the value type is
actually a const Cup::spDie .

03 Take whatever the current total is (it starts at 0 as we’ll see), add to that value
the current die’s faceValue and return that value. The value returned is
passed in the next time through the loop.

07 Use std::accumulate to sum up the faceValue ’s of all of the die objects. This
method takes 4 parameters:
� The beginning of the collection
� The end of the collection
� A seed value, sums start at 0, so 0 is the seed value.
� A function taking two parameters, as described above.

For the first element in the collection, std::accumulate calls sumIt with two parameters:

● 0 – the seed value
● dice[0]

The sumIt method returns - + dice[0]->faceValue . Let’s say for argument the first die
has a face value of 6 and the second has a face value of 3. At the second element in the

23 Most of this book is written using gcc 4.4, but for this example I used 4.5. I stick to 4.4 throughout

the book because it represents a good middle ground in what you can expect in modern compilers.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 107 Author: Brett L. Schuchert (schuchert@yahoo.com)

collection, std::accumulate passes in the value returned from the first time through the
loop and dice[1]:

● 6 – the value of the seed and dice[0]->faceValue
● dice[1]

The result of that addition is 9, which is returned by sumIt. Since this is the last time
through the loop (there are only 2 spDie in the vector), the current sum, 9, is returned.
That value is then immediately returned from Cup::total().

The bind version

The version of this using bind is nearly universally shunned. So I’ll provide it for your
review and then point you to a discussion of how to derive at it:

intintintint Cup::total() Cup::total() Cup::total() Cup::total() constconstconstconst {{{{
 returnreturnreturnreturn std::accumulate(std::accumulate(std::accumulate(std::accumulate(
 dicedicedicedice.begin(),.begin(),.begin(),.begin(),
 dicedicedicedice.end(),.end(),.end(),.end(),
 0,0,0,0,
 std::tr1::bind(std::tr1::bind(std::tr1::bind(std::tr1::bind(
 std::plus<std::plus<std::plus<std::plus<intintintint>(),>(),>(),>(),
 _1,_1,_1,_1,
 bind(&Die::faceValue, _2)bind(&Die::faceValue, _2)bind(&Die::faceValue, _2)bind(&Die::faceValue, _2)
))))
););););
}}}}

For a detailed description of this, please review:
http://schuchert.wikispaces.com/cpptraining.SummingAVector

The lambda version 24

The lambda version fairs much better:

01:01:01:01: intintintint Dice::total() Dice::total() Dice::total() Dice::total() constconstconstconst {{{{
02020202:::: rrrreturneturneturneturn std::accumulate(std::accumulate(std::accumulate(std::accumulate(
03030303:::: dice.begin(), dice.begin(), dice.begin(), dice.begin(),
04040404:::: dice.end(), dice.end(), dice.end(), dice.end(),
05050505:::: 0, 0, 0, 0,
06060606:::: []([]([]([](intintintint v, v, v, v, constconstconstconst spDie &d)spDie &d)spDie &d)spDie &d){ { { { returnreturnreturnreturn v + dv + dv + dv + d---->faceValue(); }>faceValue(); }>faceValue(); }>faceValue(); }
07070707::::););););
08080808:::: }}}}

In this case, the lambda takes two parameters, just as the original sumIt function. The
body of the code is the same. This may seem a bit obscure. Here is a version similar to
the original method using std::for_each instead:

01:01:01:01: intintintint Dice::total() Dice::total() Dice::total() Dice::total() constconstconstconst {{{{
02020202:::: intintintint sum = 0;sum = 0;sum = 0;sum = 0;
03030303:::: std::for_each(std::for_each(std::for_each(std::for_each(

24 As with the previous lambda version, this example requires gcc 4.5 or later or Visual Studio 2010. It

might work with other compilers as well, your mileage may vary.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 108 Author: Brett L. Schuchert (schuchert@yahoo.com)

04040404:::: dice.begin(),dice.begin(),dice.begin(),dice.begin(),
05050505:::: dice.end(),dice.end(),dice.end(),dice.end(),
06060606:::: [&sum]([&sum]([&sum]([&sum](constconstconstconst spDie &die){ sum += diespDie &die){ sum += diespDie &die){ sum += diespDie &die){ sum += die---->faceValue(); }>faceValue(); }>faceValue(); }>faceValue(); }
07070707::::););););
08080808:::: returnreturnreturnreturn sum;sum;sum;sum;
09090909:::: }}}}

This version may seem more familiar. The only new syntax is [&sum], which makes the
sum local variable by reference into the lambda. This makes the lambda a so-called block
closure because access data in its containing scope.

3.23.3 Recap

This section introduces two template functions from the standard library. Both of these
functions operate over some range of elements in a collection. You define the range by
passing in the starting element and the ending element. The range is closed on the left
side and open on the right side, meaning it includes the first element, but it excludes the
right element. It goes just up to but does not include the end element.

The first template method is std::for_each. Use it to iterate over a collection and do
something to or with each element. We looked at several forms:

● In the first form, you provided the name of a function (rollADie) that the template
function calls on each element in the collection.

● In the second form, you accomplished the same thing using a so-called function
object, or functor, which is a class that declares an operator() method.

● The third form uses the std::bind method to call a member function directly. This was
taken from the boost library. The standard implementation is a bit more long-winded
than the original boost version, but it’s certainly usable for simple examples.

● The final form uses a lambda expression, which is new to C++0x. You may not have
access to a compiler that supports this syntax, so treat this as what’s ahead in the near
future for C++.

In all cases, the final parameter was:

● Something that can respond to (), either a function or an instance of a class with an
operator() method.

● The parameter passed into either the function or functor you provided is a reference to
the element type in the vector.

Next, you worked with std::accumulate. This template method takes an additional
parameter, a seed, to start the accumulation. This additional parameter means that the
function passed in (or function object) needs to take two parameters, the seed value, and a
reference to the element type in the vector.

For std::accumulate, you saw three forms:

● The first form took a function called sumIt, which calculates the current total and
returns it.

● The second form went directly to the bind version. Like std::for_each, you can hand-
write a function object taking the same signature as the sumIt function.

● The third form uses a lambda expression.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 109 Author: Brett L. Schuchert (schuchert@yahoo.com)

There are many more functions in the standard library; a good place to start is Effective
STL by Scott Meyers.

3.24 Improved Test Writing?

Review the DiceGame ’s constructor, here’s what you have right now:

DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);DiceGame(Die *d1, Die *d2);

Looking at this constructor, there is no way to tell that those die objects must be
dynamically allocated. You have tests that demonstrate that. This one signature exposes a
few issues with the design of the class:

● Strongly suggests the number of die objects used, which is a weak DRY violation
because of the implied rules for win, lose, push.

● There’s no clear way to guarantee that the actual arguments are dynamically
allocated, exposing the class to a failure at destruction time. This fails another design
principle: fail fast – it doesn’t fail until long after the defect is introduced.

How can you improve upon this?

One way to improve at least part of this is to simply change the signature of the
constructor to take shared pointers:

DiceGame(std::shared_ptr<Die> d1, std::shared_ptr<DiceGame(std::shared_ptr<Die> d1, std::shared_ptr<DiceGame(std::shared_ptr<Die> d1, std::shared_ptr<DiceGame(std::shared_ptr<Die> d1, std::shared_ptr<Die> d2);Die> d2);Die> d2);Die> d2);

This addresses the ambiguity of memory allocation as that the std::shared_ptr class is not
only well defined, but specified as part of a standard. Rather than take that approach,
however, we’ll instead use a factory.

3.24.1 Pass a factory into DiceGame

For better or worse, the implementation requires dynamic allocation. Rather than force
that requirement out to the calling class, we can instead force the client to provide an
object that does that work instead. Of course, the current design supports testability in the
form of providing test doubles, so we don’t want to lose that ability in a redesign. Here is
one such design using an object called a factory:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 110 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.24.2 Oh Wait, testability

The existing solution allows LoadedDie or Die objects during construction. To mimic
this, we either need to construct both kinds of Die Objects in a single factory, or, better
yet, have two different kinds of factories:

Die is a base class, LoadedDie is a derived class. The LoadedDie class is really part
of the test solution. When you created this relationship, it was an example of inheriting
from a concrete class, which has its issues. The other option is to inherit from an abstract
class, or a class that cannot be instantiated. Generally, inheriting from a concrete class is
more fragile than inheriting from an abstract class. Why?

● Concrete things, by their very nature, have more details. So more things can change,
increasing the likelihood of something breaking down the road.

● Abstract classes tend to be stable both because they have fewer details to change but
also by their very nature. Since they are abstract, other classes depend on them. Since
other classes depend on them, they are stable, a self-fulfilling prophecy. Since classes
depend on them, they have a certain amount of inertia to resist change; changing them
might break dependent classes. This is called the stable dependencies principles.
Things are stable because they are depended upon.

As this diagram shows, there will be an interface called IDie Factory. It will serve as an
API only. It contains the stereo type <<interface>> which says that this class will not
have any concrete methods. How can we accomplish that? Also, this is going to require
quite a bit of change. How can we manage to migrate to this new solution while still
living in our production house?

Before we get into all of that, let’s digress into why re refactor code as we do.

3.25 The 4-contact points of software development

The three laws of TDD are:

● Write no production code without a failing test
● Write just enough of a test to fail
● Write just enough production code to get the test to pass

This list doesn’t include refactoring, which is typically an assumed activity. In fact, some
people refer to these rules as “red, green, refactor”. An even older version of this, from
the Smalltalk community, is Red, Green, Blue. (Why Blue for refactor? I think someone
was thinking RBG for a color space, luckily they didn’t try to use CMYK or LAB!)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 111 Author: Brett L. Schuchert (schuchert@yahoo.com)

In this simple model, there two kinds of code: test & production. There are two kinds of
activity: writing & refactoring. Interestingly, at one level it is all code. The thing that
distinguishes both sets is intent.

The intent of a test is to demonstrate or maybe specify behavior. The intent of production
code is to implement (hopefully) business-relevant functionality.

The intent of writing code is creation. The intent of refactoring code is to change
(hopefully improve) its structure without changing its behavior (this is oversimplified but
essentially correct).

If you mix those combinations you have the 4-limbs of development:

● Writing a test
● Writing production code
● Refactoring a test
● Refactoring production code

An important behavior to practice is doing only one of these at a time. That is, when you
are writing tests, don’t also write production code. Sure, you might use tools to stub out
missing methods and classes, but the heart of what you are doing is writing a test. Finish
that train of thought before focusing on writing production code.

On the other hand, if you are refactoring production code, do just that. Don’t change tests
at the same time; try to only do one refactoring at a time, etc.

3.25.1 Why?

First an analogy that almost always misses since most developers don’t additionally rock
climb.

When rock climbing, a good general bit of advice is to only move one contact point at a
time. For this discussion, consider your two hands and two feet as your four contact
points. Sure, you can use your face or knee, but neither are much fun. So just considering
two hands and two feet, that suggests that if, for example, you move your right hand, then
leave your left hand and both feet in place.

This gives you stability, a chance to easily recover by simply moving the most recent
appendage back in place and, when the inevitable happens, another appendage slips, you
have a better chance of not eating rock face. If you move more than one thing at a time,
you are in more danger because you’ve taken a risky action and reduced the number of
points of contact, or stability.

Will you sometimes move multiple appendages? Sure. But not as a habit. Sometimes you
need to take risks. The rock face may not always offer up movement patterns that make
applying this recommendation possible. Since you know the environment will
occasionally work against you, you need to maintain some slack for the inevitable.

Practicing Test Driven Development is similar. If you change production code and tests
at the same time, what happens if a test fails? What is wrong? The production code, the
test, both, neither? An even more subtle problem is that tests pass but the test is fragile or
heavily implementation-dependent. While not necessarily an immediate threat, it
represents design debt that will eventually cause problems. (This also happens frequently

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 112 Author: Brett L. Schuchert (schuchert@yahoo.com)

when tests are written after the production code as it’s seductively easy to write tests that
exercise code, expressing the production’s code implementation but fundamentally hiding
the intent.)

Notice, if you had only refactored code, then you know the problem is in one place.
When you change both, the problem space actually goes from 1 to 3 (4 if you allow for
neither). Furthermore, if you are changing both production and test code at the same time
and you get to a point where you’ve entered a bottomless pit, you’ll end up throwing
away more work if you choose to restore from the repository.

Are there going to be times when you change both? Sure. Sometimes you may not see a
clear path that gives you the option to do only one thing at a given time. Sometimes the
tests and code will work against you. Often, you’ll be working in a legacy code base
where there are no tests. Given that the environment will occasionally (or frequently)
work against you, you need to maintain some slack.

Essentially, be focused on a single goal at any given time: write a test. then get it to pass.
clean up production code & keep the tests first unchanging and then passing.

I find that this is a hard thing both to learn and to apply. I frequently jump ahead of
myself. Unfortunately I’m “lucky” enough when I do jump ahead that when I fail, I
thoroughly fall flat on my face.

This approach is contextual (aren’t they all?). Every time you start working on code,
you’ll be faced with these four possibilities. Each time you are, you need to figure out
what is the most important thing in the moment, and do that one thing. Once you’ve taken
care of the most important thing, you may have just promoted the second most important
thing to first place. Even so, reassess. What is the most important thing now? Do that.

3.26 Create a concrete Factory

We have existing tests and the solution is green. So we’ll start by writing a new test to
create a concrete factory. Which one, the Die Factory or LoadedDie Factory? We have
automated tests that require the creation of LoadedDie , so that’s where we will start.

3.26.1 First Test against the Factory

Here’s a test that confirms we can build LoadedDie out of a factory. This uses several
things you’ve already seen:

#include#include#include#include "LoadedDieFactory.h""LoadedDieFactory.h""LoadedDieFactory.h""LoadedDieFactory.h"
#inc#inc#inc#includeludeludelude "Die.h""Die.h""Die.h""Die.h"
#include#include#include#include <memory><memory><memory><memory>
#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

TEST_GROUP(LoadedDieFactoryShould) {TEST_GROUP(LoadedDieFactoryShould) {TEST_GROUP(LoadedDieFactoryShould) {TEST_GROUP(LoadedDieFactoryShould) {
};};};};

TEST(LoadedDieFactoryShould, ReturnLoadedDie) {TEST(LoadedDieFactoryShould, ReturnLoadedDie) {TEST(LoadedDieFactoryShould, ReturnLoadedDie) {TEST(LoadedDieFactoryShould, ReturnLoadedDie) {
 LoadedDieFactory factory(5);LoadedDieFactory factory(5);LoadedDieFactory factory(5);LoadedDieFactory factory(5);
 spDie d = factory.build();spDie d = factory.build();spDie d = factory.build();spDie d = factory.build();
 LONGS_EQUAL(5, dLONGS_EQUAL(5, dLONGS_EQUAL(5, dLONGS_EQUAL(5, d---->faceValue());>faceValue());>faceValue());>faceValue());
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 113 Author: Brett L. Schuchert (schuchert@yahoo.com)

This shows the creation of a LoadedDie Factory that returns LoadedDie objects always
rolling 5. This is a good start, what of its implementation?

3.26.2 Define the class: LoadedDieFactory

The header file has nothing you’ve not already seen in other examples at this point:

#pragma once#pragma once#pragma once#pragma once
#ifndef LOADEDDIEFACTORY_H_#ifndef LOADEDDIEFACTORY_H_#ifndef LOADEDDIEFACTORY_H_#ifndef LOADEDDIEFACTORY_H_
#define LOADEDDIEFACTORY_H_#define LOADEDDIEFACTORY_H_#define LOADEDDIEFACTORY_H_#define LOADEDDIEFACTORY_H_

class Die;class Die;class Die;class Die;
#include #include #include #include <memory><memory><memory><memory>
typedef std::shared_ptr<Die> spDie;typedef std::shared_ptr<Die> spDie;typedef std::shared_ptr<Die> spDie;typedef std::shared_ptr<Die> spDie;

class LoadedDieFactory {class LoadedDieFactory {class LoadedDieFactory {class LoadedDieFactory {
public:public:public:public:
 LoadedDieFactory(int value);LoadedDieFactory(int value);LoadedDieFactory(int value);LoadedDieFactory(int value);
 virtual ~LoadedDieFactory();virtual ~LoadedDieFactory();virtual ~LoadedDieFactory();virtual ~LoadedDieFactory();
 spDie build()spDie build()spDie build()spDie build();;;;
private:private:private:private:
 int int int int faceValuefaceValuefaceValuefaceValue;;;;
};};};};

#endif#endif#endif#endif

3.26.3 Define the methods: LoadedDieFactory

The implementation offers no surprises either:

#include#include#include#include "LoadedDieFactory.h""LoadedDieFactory.h""LoadedDieFactory.h""LoadedDieFactory.h"
#include#include#include#include "LoadedDie.h""LoadedDie.h""LoadedDie.h""LoadedDie.h"

LoadedDieFactory::LoadedDieFactory(LoadedDieFactory::LoadedDieFactory(LoadedDieFactory::LoadedDieFactory(LoadedDieFactory::LoadedDieFactory(intintintint value) :value) :value) :value) :
 faceValuefaceValuefaceValuefaceValue(value) {(value) {(value) {(value) {
}}}}

LoadeLoadeLoadeLoadedDieFactory::~LoadedDieFactory() {dDieFactory::~LoadedDieFactory() {dDieFactory::~LoadedDieFactory() {dDieFactory::~LoadedDieFactory() {
}}}}

spDie LoadedDieFactory::build() {spDie LoadedDieFactory::build() {spDie LoadedDieFactory::build() {spDie LoadedDieFactory::build() {
 returnreturnreturnreturn spDie(spDie(spDie(spDie(newnewnewnew LoadedDie(LoadedDie(LoadedDie(LoadedDie(faceValuefaceValuefaceValuefaceValue));));));));
}}}}

Create the new test, header and source file. Get your solution to green.

3.27 Update the cup

The Cup needs to be created using shared pointer to die objects, so it’s time for a new
test.

3.27.1 The Test

Here’s a simple test that grows the Cup by requiring an overloaded constructor:

#include #include #include #include "Cup.h""Cup.h""Cup.h""Cup.h"

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 114 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include "LoadedDieFactory.h"#include "LoadedDieFactory.h"#include "LoadedDieFactory.h"#include "LoadedDieFactory.h"

#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>#include <CppUTest/TestHarness.h>

TEST_GROUP(CupShould) {TEST_GROUP(CupShould) {TEST_GROUP(CupShould) {TEST_GROUP(CupShould) {
};};};};

TEST(CupShoulTEST(CupShoulTEST(CupShoulTEST(CupShould, BeConstructableWithSharedPointers) {d, BeConstructableWithSharedPointers) {d, BeConstructableWithSharedPointers) {d, BeConstructableWithSharedPointers) {
 LoadedDieFactory factory(3);LoadedDieFactory factory(3);LoadedDieFactory factory(3);LoadedDieFactory factory(3);
 Cup cup(factory.build(), factory.build());Cup cup(factory.build(), factory.build());Cup cup(factory.build(), factory.build());Cup cup(factory.build(), factory.build());
 LONGS_EQUAL(6, cup.total());LONGS_EQUAL(6, cup.total());LONGS_EQUAL(6, cup.total());LONGS_EQUAL(6, cup.total());
}}}}

Notice that this is a new test file. The Cup came into existence as a refactoring exercise.
Now there’s a simple test file for it. This class is tested, just not in a classical unit test
style. If this class becomes more heavily used, it might be a good idea to remediate the
missing tests. For now, all we’ll do is test the new code for this class.

3.27.2 A new constructor

The constructor looks almost the same as the last one (and in fact, it could be written
using the same code):

classclassclassclass Cup {Cup {Cup {Cup {
public:public:public:public:

 Cup(spDie d1, spDie d2);Cup(spDie d1, spDie d2);Cup(spDie d1, spDie d2);Cup(spDie d1, spDie d2);

The constructor declaration uses the existing nested typedef . The constructor
definition is just a few lines:

Cup::Cup(spDie d1, spDie d2) {Cup::Cup(spDie d1, spDie d2) {Cup::Cup(spDie d1, spDie d2) {Cup::Cup(spDie d1, spDie d2) {
 dicedicedicedice.push_back(d1);.push_back(d1);.push_back(d1);.push_back(d1);
 dicedicedicedice.push_back(d2);.push_back(d2);.push_back(d2);.push_back(d2);
}}}}

Create the new test and missing constructor. Get back to green before moving on.

3.28 Dice Game Instantiation

Now is where we need to move slowly, choosing to make one change at a time before
moving to another change. There are three tests to verify the game’s rules when rolling
greater than, less than and equal to 7. Rather than try to fix all of those at once, we’ll
change one. This will force us to add a constructor, but it will allow the old and new
approach to co-exist, keeping code compiling and tests passing more often.

3.28.1 First a test

Update the first test in DiceGameTest.cpp:

#include#include#include#include "LoadedDie.h""LoadedDie.h""LoadedDie.h""LoadedDie.h"
#include#include#include#include "DiceGame.h""DiceGame.h""DiceGame.h""DiceGame.h"
#include#include#include#include "LoadedDieFactory.h""LoadedDieFactory.h""LoadedDieFactory.h""LoadedDieFactory.h"
#includ#includ#includ#includeeee <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 115 Author: Brett L. Schuchert (schuchert@yahoo.com)

TEST_GROUP(DiceGame) {};TEST_GROUP(DiceGame) {};TEST_GROUP(DiceGame) {};TEST_GROUP(DiceGame) {};

TEST(DiceGame, BalanceDecreasesForLoss) {TEST(DiceGame, BalanceDecreasesForLoss) {TEST(DiceGame, BalanceDecreasesForLoss) {TEST(DiceGame, BalanceDecreasesForLoss) {
 LoadedDieFactory factory(3);LoadedDieFactory factory(3);LoadedDieFactory factory(3);LoadedDieFactory factory(3);
 DiceGame game (factory);DiceGame game (factory);DiceGame game (factory);DiceGame game (factory);
 game.play();game.play();game.play();game.play();
 LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(----1, game.getBalance());1, game.getBalance());1, game.getBalance());1, game.getBalance());
}}}}

This test refers to a to-be-defined constructor.

3.28.2 Notice a pattern? New Constructor

We’re adding a lot of constructors all over the place. This is pretty standard since we are
dealing with object creation. Here’s the updated constructor:

classclassclassclass Die;Die;Die;Die;
classclassclassclass LoadedDieFactory;LoadedDieFactory;LoadedDieFactory;LoadedDieFactory;

classclassclassclass DiceGame {DiceGame {DiceGame {DiceGame {
public:public:public:public:
 DiceGame(LoadedDieFactory &factory);DiceGame(LoadedDieFactory &factory);DiceGame(LoadedDieFactory &factory);DiceGame(LoadedDieFactory &factory);

The new constructor takes in a reference to a LoadedDie Factory. References are
primitive, so the header file only needs to forward declare LoadedDie Factory rather than
include the header file.

Of course, that defers the including the header file to the source file:

#include#include#include#include "DiceGame.h""DiceGame.h""DiceGame.h""DiceGame.h"
#include#include#include#include "LoadedDieFactory.h""LoadedDieFactory.h""LoadedDieFactory.h""LoadedDieFactory.h"
#include#include#include#include "Cup.h""Cup.h""Cup.h""Cup.h"

DiceGame::DiceGame(LoadedDieFactory &factory) : DiceGame::DiceGame(LoadedDieFactory &factory) : DiceGame::DiceGame(LoadedDieFactory &factory) : DiceGame::DiceGame(LoadedDieFactory &factory) : balancebalancebalancebalance(0) {(0) {(0) {(0) {
 spDie d1 = factory.build();spDie d1 = factory.build();spDie d1 = factory.build();spDie d1 = factory.build();
 spDie d2 = factory.build();spDie d2 = factory.build();spDie d2 = factory.build();spDie d2 = factory.build();
 cupcupcupcup.reset(.reset(.reset(.reset(nnnnewewewew Cup(d1, d2));Cup(d1, d2));Cup(d1, d2));Cup(d1, d2));
}}}}

The last line of the constructor uses the reset method to replace the existing pointer stored
by the shared pointer with a new pointer. The existing pointer is 0.

Update the test, add the constructor declaration and definition and get back to green.

3.28.3 Update the second test

With the work form the first test, the second test should smoothly translate:

TEST(DiceGame, BalanceIncreasesForWin) {TEST(DiceGame, BalanceIncreasesForWin) {TEST(DiceGame, BalanceIncreasesForWin) {TEST(DiceGame, BalanceIncreasesForWin) {
 LoadedDieFactory factory(5);LoadedDieFactory factory(5);LoadedDieFactory factory(5);LoadedDieFactory factory(5);
 DiceGame game (factory);DiceGame game (factory);DiceGame game (factory);DiceGame game (factory);
 game.play();game.play();game.play();game.play();
 LONGS_EQUAL(1, game.geLONGS_EQUAL(1, game.geLONGS_EQUAL(1, game.geLONGS_EQUAL(1, game.getBalance());tBalance());tBalance());tBalance());
}}}}

Get your solution to green.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 116 Author: Brett L. Schuchert (schuchert@yahoo.com)

You might have noticed that this test is actually checking for a different value. The
original test used 4 and 5, for a total of 9. This test uses 5 and 5. That’s OK since those
values are in the same range of values for the rules of the game; they are in the same
equivalence-class. Even so, it suggests a problem for the next test.

3.28.4 Oops, not there yet

The next logical thing to try is conversion of the third and final test, but we hit a brick
wall. The current test uses 7 for a total. The current LoadedDie Factory class doesn’t
support that, so before we change that test, we need to extend the definition of the
LoadedDie Factory to support this.

3.29 Extending Loaded Die Factory

This class is a test double. This doesn’t mean we just write bad code and get it over with,
but it does suggest that we only have to make it as flexible as the tests require. That is,
you already have a good idea of what you need:

● Creating a factory with one value is convenient.
● Creating a factory that can produce two different loaded die, one for 3 and one for 4,

is all the flexibility we need.

You could create an entirely different LoadedDie Factory, or just update the current one
in place. Assuming you want to update in place, the next thing is a test.

3.29.1 Here’s a test

TEST(LoadedDieFactoryShould, BeAbleToTakeTwoValues) {TEST(LoadedDieFactoryShould, BeAbleToTakeTwoValues) {TEST(LoadedDieFactoryShould, BeAbleToTakeTwoValues) {TEST(LoadedDieFactoryShould, BeAbleToTakeTwoValues) {
 LoadedDieFactory factory(3, 4);LoadedDieFactory factory(3, 4);LoadedDieFactory factory(3, 4);LoadedDieFactory factory(3, 4);
 spDie d1 = factory.build();spDie d1 = factory.build();spDie d1 = factory.build();spDie d1 = factory.build();
 spDie d2 = factory.build();spDie d2 = factory.build();spDie d2 = factory.build();spDie d2 = factory.build();
 LONGS_EQUAL(3, d1LONGS_EQUAL(3, d1LONGS_EQUAL(3, d1LONGS_EQUAL(3, d1---->faceValue());>faceValue());>faceValue());>faceValue());
 LONGS_EQUAL(4, d2LONGS_EQUAL(4, d2LONGS_EQUAL(4, d2LONGS_EQUAL(4, d2---->faceValue());>faceValue());>faceValue());>faceValue());
}}}}

This test expresses one way that will give us what we need. Notice that it introduces
(adds) a constructor rather than changing the existing constructor. Why? Fewer moving
parts; change a test, get it to work. Then consider if removing the old constructor makes
sense or not (we’re not going to).

3.29.2 The Updated Class

This was the first solution I came up with:

#pragma once#pragma once#pragma once#pragma once
#ifndef#ifndef#ifndef#ifndef LOADEDDIEFACTORY_H_LOADEDDIEFACTORY_H_LOADEDDIEFACTORY_H_LOADEDDIEFACTORY_H_
#define#define#define#define LOADEDDIEFACTORY_H_LOADEDDIEFACTORY_H_LOADEDDIEFACTORY_H_LOADEDDIEFACTORY_H_

classclassclassclass Die;Die;Die;Die;
#include #include #include #include <memory><memory><memory><memory>
typedeftypedeftypedeftypedef std::shared_ptr<Die> spDie;std::shared_ptr<Die> spDie;std::shared_ptr<Die> spDie;std::shared_ptr<Die> spDie;

classclassclassclass LoadedDieFactory {LoadedDieFactory {LoadedDieFactory {LoadedDieFactory {
public:public:public:public:
 LoadedDieFactory(LoadedDieFactory(LoadedDieFactory(LoadedDieFactory(intintintint firstValue, firstValue, firstValue, firstValue, intintintint secondValue);secondValue);secondValue);secondValue);

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 117 Author: Brett L. Schuchert (schuchert@yahoo.com)

 LoadedDieFactory(LoadedDieFactory(LoadedDieFactory(LoadedDieFactory(intintintint value);value);value);value);
 virtualvirtualvirtualvirtual ~LoadedDieFactory();~LoadedDieFactory();~LoadedDieFactory();~LoadedDieFactory();
 spDie build();spDie build();spDie build();spDie build();

private:private:private:private:
 intintintint valuesvaluesvaluesvalues[2];[2];[2];[2];
 intintintint lastIndex;lastIndex;lastIndex;lastIndex;
};};};};

#endif#endif#endif#endif

The class will hold an array of two values and an index indicating the last one returned.
The idea is that it will toggle between the first and second values. The original
constructor will still work; it will just populate the two values with the same value.

#include#include#include#include "LoadedDieFactory.h""LoadedDieFactory.h""LoadedDieFactory.h""LoadedDieFactory.h"
#include#include#include#include "LoadedDie.h""LoadedDie.h""LoadedDie.h""LoadedDie.h"

LoadedDieFactoLoadedDieFactoLoadedDieFactoLoadedDieFactory::LoadedDieFactory(ry::LoadedDieFactory(ry::LoadedDieFactory(ry::LoadedDieFactory(intintintint value) : value) : value) : value) : lastIndexlastIndexlastIndexlastIndex((((----1) {1) {1) {1) {
 valuesvaluesvaluesvalues[0] = value;[0] = value;[0] = value;[0] = value;
 valuesvaluesvaluesvalues[1] = value;[1] = value;[1] = value;[1] = value;
}}}}

LoadedDieFactory::LoadedDieFactory(LoadedDieFactory::LoadedDieFactory(LoadedDieFactory::LoadedDieFactory(LoadedDieFactory::LoadedDieFactory(intintintint firstValue, firstValue, firstValue, firstValue, intintintint secondValue)secondValue)secondValue)secondValue)
 : : : : lastIndexlastIndexlastIndexlastIndex((((----1) {1) {1) {1) {
 valuesvaluesvaluesvalues[0] = firstValue;[0] = firstValue;[0] = firstValue;[0] = firstValue;
 valuesvaluesvaluesvalues[1] = secondValue;[1] = secondValue;[1] = secondValue;[1] = secondValue;
}}}}

LoadedDieFactory:LoadedDieFactory:LoadedDieFactory:LoadedDieFactory::~LoadedDieFactory() {:~LoadedDieFactory() {:~LoadedDieFactory() {:~LoadedDieFactory() {
}}}}

spDie LoadedDieFactory::build() {spDie LoadedDieFactory::build() {spDie LoadedDieFactory::build() {spDie LoadedDieFactory::build() {
 lastIndex = (lastIndex + 1) % 2;lastIndex = (lastIndex + 1) % 2;lastIndex = (lastIndex + 1) % 2;lastIndex = (lastIndex + 1) % 2;
 returnreturnreturnreturn spDie(spDie(spDie(spDie(newnewnewnew LoadedDie(LoadedDie(LoadedDie(LoadedDie(valuesvaluesvaluesvalues[[[[lastIndexlastIndexlastIndexlastIndex]));]));]));]));
}}}}

3.29.3 Return to green

This is a bit of a jump from the previous version; however the recommendation of doing
the simplest thing that could possibly work is for situations where you don’t know how to
proceed. I’ve used this kind of thing before, so it’s really not complex to me.

Get your solution back to green.

3.29.4 Back to that final test

Now you can update the final test in DiceGameTest.cpp:

TEST(DiceGame, BalanceRemainsSameForPush) {TEST(DiceGame, BalanceRemainsSameForPush) {TEST(DiceGame, BalanceRemainsSameForPush) {TEST(DiceGame, BalanceRemainsSameForPush) {
 LoadedDieFactory factory(4, 3);LoadedDieFactory factory(4, 3);LoadedDieFactory factory(4, 3);LoadedDieFactory factory(4, 3);
 DiceGame game (factory);DiceGame game (factory);DiceGame game (factory);DiceGame game (factory);
 game.play();game.play();game.play();game.play();
 LONGS_EQUAL(0, game.getBalance());LONGS_EQUAL(0, game.getBalance());LONGS_EQUAL(0, game.getBalance());LONGS_EQUAL(0, game.getBalance());
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 118 Author: Brett L. Schuchert (schuchert@yahoo.com)

Since the factory works, this test should work. Make the change, get to green.

3.29.5 Why modify this final test at all?

The goal is to migrate the design to a new approach, to do that all existing code
depending on the old constructor needs to be updated. Now that it is, you can remove the
old constructor can generally clean up the code before moving to the next section.

3.30 Final Cleanup

The current implementation requires a little housekeeping. It might seem that more
methods make a class more flexible but the exact opposite can be true depending on what
you’re trying to manage. If you want to build systems that are easier to maintain over
time, smaller classes with minimal interfaces age better than large classes. Generally, the
vast majority of time and money over the life of a project is spent in so-called
maintenance, so anything you can do to help maintenance will be a big win. Keeping
things clean is certainly a big help. Bigger still is a trail of automated tests as you work.

With that in mind, it’s time to clean up unnecessary code.

3.30.1 DiceGame

There are three unnecessary things in the class:

● Forward declaration of Die ;
● Declaration of a constructor taking two die pointers
● Definition of that same constructor.

Make these changes and confirm your solution is green.

3.30.2 Cup

Once you’ve cleaned up the DiceGame, this enables cleaning up Cup:

● Cup has an unused constructor
● Cup has a duplicated typedef for std::shared_ptr<Die >

For now, we can safely remove the constructor taking two Die pointers.

Make these changes and confirm your solution is green,

3.30.3 Common typedef

Now there’s the duplicate typedef. While it does not cause problems, it is a DRY
violation. So first introduce a new header file (spDie .h):

#pragma once#pragma once#pragma once#pragma once
#ifndef#ifndef#ifndef#ifndef SPDIE_H_SPDIE_H_SPDIE_H_SPDIE_H_
#define#define#define#define SPDIE_H_SPDIE_H_SPDIE_H_SPDIE_H_

#include #include #include #include <memory><memory><memory><memory>
classclassclassclass Die;Die;Die;Die;
typedeftypedeftypedeftypedef std::shared_ptr<Die> spDie;std::shared_ptr<Die> spDie;std::shared_ptr<Die> spDie;std::shared_ptr<Die> spDie;

#endif#endif#endif#endif

Now include that where that type is needed and remove the duplicated typedef:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 119 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Cup.h
● Cup.cpp (replace Cup::spDie with spDie)
● LoadedDie Factory.h

Make these changes and get back to green.

3.31 Is this better?

So is this better? Constructing with a factory rather that two Die objects? What about
hiding the dynamic memory allocation deeper in the system?

3.31.1 Can we even play a real game

Right now there is a definitive answer, the current solution is clearly worse in one key
respect. It’s not possible to build a system with real Die objects! By making the most
recent changes, it’s no longer possible to build a system without a factory and there’s
only one kind of factory, LoadedDie Factory.

3.31.2 Problem with Test Doubles

This represents something you need to watch out for when using test doubles; you can
build a system with missing real code. That’s what remains and along the way you’ll see
an important feature of C++, pure virtual member functions.

3.32 Refactor: Extract Interface

To get started, we need to build the Die Factory. Before doing so, review the class
diagram:

This shows a top-level interface as the base of the two concrete factories. This is the
common form of the abstract factory design pattern; a common abstraction, which one or
more concrete classes implement. We have a leg up on this because we have a working
class already in place, so we can extract an interface.

3.32.1 The Class Definition

First, create a new class, IDie Factory by extracting what needs to be common:

01:01:01:01: #pragma once#pragma once#pragma once#pragma once
02020202:::: #ifndef#ifndef#ifndef#ifndef IDIEFACTORY_H_IDIEFACTORY_H_IDIEFACTORY_H_IDIEFACTORY_H_
03030303:::: #define#define#define#define IIIIDIEFACTORY_H_DIEFACTORY_H_DIEFACTORY_H_DIEFACTORY_H_
04040404: : : :
05050505:::: #include #include #include #include "spDie.h""spDie.h""spDie.h""spDie.h"
06060606: : : :
07070707:::: classclassclassclass IDieFactory {IDieFactory {IDieFactory {IDieFactory {

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 120 Author: Brett L. Schuchert (schuchert@yahoo.com)

08080808:::: public:public:public:public:
09090909:::: virtualvirtualvirtualvirtual ~I~I~I~IDieFactory() = 0;DieFactory() = 0;DieFactory() = 0;DieFactory() = 0;
10101010:::: virtualvirtualvirtualvirtual spDie build()spDie build()spDie build()spDie build() = 0;= 0;= 0;= 0;
11111:1:1:1: };};};};
12121212: : : :
13131313:::: #endif#endif#endif#endif

Line Description

09 This is a base class, so declare a virtual destructor. The = 0 syntax at the end
indicate this as a pure virtual function. This makes the method abstract and it
also makes the class abstract; it is not possible to make an instance of this class.
Normally, a subclass will have to provide a declaration and definition of all
pure virtual methods or it too will be abstract. In the special case of destructors,
this is not true. More on this with the source file.

10 The build method also pure virtual. Subclasses will have to provide a
declaration and definition of this method or be abstract.

3.32.2 Implementing the pure virtual destructor

#include#include#include#include "IDieFactory.h""IDieFactory.h""IDieFactory.h""IDieFactory.h"

IDieFactory::~IDieFactory() {IDieFactory::~IDieFactory() {IDieFactory::~IDieFactory() {IDieFactory::~IDieFactory() {
}}}}

Notice the definition of the destructor? If you do not include such a definition for a pure
virtual destructor, the subclasses will be forced to provide one. To be safe, a base class
should declare a virtual destructor. Why make it pure virtual?

In this particular case, the intention of this class is to serve as a behavior-only abstraction
– an interface. C++ does not have interfaces, but it can have a class with all pure virtual
methods, the next best thing.

So a pure virtual destructor declaration suggests the intent of the class. Providing a
definition for the destructor minimizes the requirements for a base class; they will not
have to write a destructor, but if they do, the correct one will get called.

3.32.3 Update LoadedDieFactory

With an extracted interface, it’s quick to update LoadedDie Factory to implement that
interface:

#include#include#include#include "IDieFactory.h""IDieFactory.h""IDieFactory.h""IDieFactory.h"

classclassclassclass LoadedDieFactory : LoadedDieFactory : LoadedDieFactory : LoadedDieFactory : publicpublicpublicpublic IDieFacIDieFacIDieFacIDieFactory {tory {tory {tory {

Make these changes and get your solution back to green.

3.33 Now DieFactory

Time to create the class we need to build a proper system, the Die Factory. As with other
examples, we’ll start with a test. This will use new C++ syntax.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 121 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.33.1 First the test

#include#include#include#include "DieFactory.h""DieFactory.h""DieFactory.h""DieFactory.h"
#include#include#include#include "Die.h""Die.h""Die.h""Die.h"
#include#include#include#include <typeinfo><typeinfo><typeinfo><typeinfo>
#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

TEST_GROUP(DieFactoryShould) {TEST_GROUP(DieFactoryShould) {TEST_GROUP(DieFactoryShould) {TEST_GROUP(DieFactoryShould) {
};};};};

TEST(DieFactoryShould, ReturnOnlyDie) {TEST(DieFactoryShould, ReturnOnlyDie) {TEST(DieFactoryShould, ReturnOnlyDie) {TEST(DieFactoryShould, ReturnOnlyDie) {
 DieFactory factory;DieFactory factory;DieFactory factory;DieFactory factory;
 spDie die = factory.build();spDie die = factory.build();spDie die = factory.build();spDie die = factory.build();

 CHECK(CHECK(CHECK(CHECK(typeidtypeidtypeidtypeid(Die) == (Die) == (Die) == (Die) == typeidtypeidtypeidtypeid(*die.get()(*die.get()(*die.get()(*die.get()));));));));
}}}}

There’s something new in this code, the use of typeid . The typeid operator returns
back a think called a type_info object. This comparison verifies that the kind object held
onto by the shared pointer returned from the factory is actually a Die and not a
LoadedDie .

3.33.2 The Implementation

Here’s a minimal implementation of Die Factory. First the header file:

#pragma once#pragma once#pragma once#pragma once
#ifndef#ifndef#ifndef#ifndef DIEFACTORY_H_DIEFACTORY_H_DIEFACTORY_H_DIEFACTORY_H_
#define#define#define#define DIEFACTORY_H_DIEFACTORY_H_DIEFACTORY_H_DIEFACTORY_H_

#include#include#include#include "IDieFactory.h""IDieFactory.h""IDieFactory.h""IDieFactory.h"

classclassclassclass DieFactory: DieFactory: DieFactory: DieFactory: publicpublicpublicpublic IDieFactory {IDieFactory {IDieFactory {IDieFactory {
public:public:public:public:
 spDie build();spDie build();spDie build();spDie build();
}}}};;;;

#endif#endif#endif#endif

Now for a source file:

#include#include#include#include "Die.h""Die.h""Die.h""Die.h"
#include#include#include#include """"DieFactory.hDieFactory.hDieFactory.hDieFactory.h""""

spDie DieFactory::build() {spDie DieFactory::build() {spDie DieFactory::build() {spDie DieFactory::build() {
 returnreturnreturnreturn spDie(spDie(spDie(spDie(newnewnewnew Die);Die);Die);Die);
}}}}

That’s it. You can certainly add:

● A no-argument constructor
● A destructor
● A copy constructor
● An assignment operator

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 122 Author: Brett L. Schuchert (schuchert@yahoo.com)

This will give you a canonical form for the class.

3.33.3 Get to Green

Create this next to final test and the Die Factory class. Make sure your source is green
before moving on.

3.34 A Smoke Test

Can you build a real system? It’s time for a different kind of test. Here’s a simple test to
exercise a system as it is meant to be used:

#include#include#include#include "DiceGame.h""DiceGame.h""DiceGame.h""DiceGame.h"
#include#include#include#include "DieFactory.h""DieFactory.h""DieFactory.h""DieFactory.h"
#include#include#include#include <stdio.h><stdio.h><stdio.h><stdio.h>
#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

TEST_GROUP(DiceGameSmokeTest) {TEST_GROUP(DiceGameSmokeTest) {TEST_GROUP(DiceGameSmokeTest) {TEST_GROUP(DiceGameSmokeTest) {
};};};};

TEST(DiceGameSmokeTest, StandardUse) {TEST(DiceGameSmokeTest, StandardUse) {TEST(DiceGameSmokeTest, StandardUse) {TEST(DiceGameSmokeTest, StandardUse) {
 DieFactoryDieFactoryDieFactoryDieFactory factory;factory;factory;factory;
 DiDiDiDiceGameceGameceGameceGame game(factory);game(factory);game(factory);game(factory);

 forforforfor((((intintintint i = 0; i < 33; ++i)i = 0; i < 33; ++i)i = 0; i < 33; ++i)i = 0; i < 33; ++i)
 game.play();game.play();game.play();game.play();

 charcharcharchar balance[32];balance[32];balance[32];balance[32];
 snprintfsnprintfsnprintfsnprintf(balance, 64, (balance, 64, (balance, 64, (balance, 64, "Balance = %d""Balance = %d""Balance = %d""Balance = %d", game.getBalance());, game.getBalance());, game.getBalance());, game.getBalance());
 UT_PRINT(balance);UT_PRINT(balance);UT_PRINT(balance);UT_PRINT(balance);
}}}}

This test attempts to create a DiceGame using a Die Factory. Try to create this test,
you’ll find that it’s a good idea you did so, because this won’t compile.

3.34.1 Make the required updates

The signature of the constructor is incorrect; it needs to refer to IDie Factory:

#include#include#include#include <memory><memory><memory><memory>
classclassclassclass CupCupCupCup;;;;
classclassclassclass IDieFactoryIDieFactoryIDieFactoryIDieFactory;;;;

classclassclassclass DiceGameDiceGameDiceGameDiceGame {{{{
publipublipublipublicccc::::
 DiceGame(DiceGame(DiceGame(DiceGame(IDieFactoryIDieFactoryIDieFactoryIDieFactory &factory);&factory);&factory);&factory);

You’ll also need to update the definition:

#include#include#include#include "DiceGame.h""DiceGame.h""DiceGame.h""DiceGame.h"
#include#include#include#include "IDieFactory.h""IDieFactory.h""IDieFactory.h""IDieFactory.h"
#include#include#include#include "Cup.h""Cup.h""Cup.h""Cup.h"

DiceGame::DiceGame(DiceGame::DiceGame(DiceGame::DiceGame(DiceGame::DiceGame(IDieFactoryIDieFactoryIDieFactoryIDieFactory &factory) : &factory) : &factory) : &factory) : balancebalancebalancebalance(0) {(0) {(0) {(0) {

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 123 Author: Brett L. Schuchert (schuchert@yahoo.com)

3.34.2 Back to green

Make these changes and confirm that your system is back to green.

3.34.3 Where does this test belong?

This test is different in a few ways.

● It uses a new macro, UT_PRINT, to output some information.
● It uses only production classes, no test doubles

This is a fully-wired system. You will need to write tests like these to make sure anything
about the configuration of your system that might be broken is discovered automatically.

This particular test takes little time to run. Even so, it might be a good idea to organize
tests with different intentions into different projects. As a developer, I want to be able to
run all the various automatic tests on my personal machine. I want to be able to do that
and not have to worry about shared resources like databases or message queues. This
suggests certain kinds of design considerations that lead to good test isolation.

In any case, if you decided to include this test in an automated test suite meant to be run
by developers often throughout the day, remove the output. Why? In practice, output has
a few negative consequences:

● It slows test execution. Anything that unnecessarily slows tests leads to tests getting
run less frequently, which reduces their value considerably. You won’t find failures
fast.

● It encourages manual checking of something that can probably be automated.
● It leads to weaker testing. If there’s output, then people can check things just in case.

This does not suggest that a production system should not have logging. I’m just saying
that unit tests should produce no output in general.

In any case, you’ve finished this project. Congratulations

3.35 Wrap-up

This last section was primarily about experimenting with a design pattern and the down-
stream ramifications associated with that. It was also about refactoring in small steps,
keeping the code compiling and the tests passing while changing the structure of your
solution.

There were a few new things as a result:

Term Description

Abstract Factory Designate a class whose primary responsibility is to build one or a
family of objects. Create an abstract class that captures the
interface and then have multiple implementations for different
situations.

Pure Virtual A virtual method can be pure virtual. This has several effects
� The method is abstract
� The class is abstract
� The class cannot be instantiated
� Subclasses must implement the pure virtual method or

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 124 Author: Brett L. Schuchert (schuchert@yahoo.com)

Term Description

themselves be abstract
� If you have a pure virtual destructor, it can be defined in the

base class and subclasses will not have to implement it.

We made all methods in one class pure virtual, the intent of which
is to suggest that a class is not just abstract but is in fact an
interface.

typeid An operator used to determine the type of an object. You can only
use typeid on classes with at least one virtual method. We used this
to confirm that the kind of object retrieved from a Die Factory was
in fact an actual Die and not a subclass.

3.36 Final Recommendations

C++ is a huge language and if you’re just starting out or even if you’ve been using it for a
few years, consider it an ever expanding project to really learn the language. We have
skipped most of the language in this project, yet you know enough to get starting writing
decent Object Oriented solutions using the language. The rest of this section is a
collection of next steps and recommendations.

3.36.1 Books

There are many books you might consider reading over the next several months and
years. Here’s a short list of some you might want to consider:

● Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions
● More Exceptional C++: 40 New Engineering Puzzles, Programming Problems, and

Solutions
● Accelerated C++: Practical Programming by Example
● Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd

Edition)
● Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template

Library

Here are a few more books you might want to consider as you dig a bit deeper, or to give
you some context:

● Advanced C++ Programming Styles and Idioms
● Ruminations on C++: A Decade of Programming Insight and Experience
● C Traps and Pitfalls
● The Design and Evolution of C++

3.36.2 Katas

A common practice is to take a simple problem and practice it over and over. I’ve
collected a number of katas from other people and a few I’ve developed myself. Have a
look at: http://schuchert.wikispaces.com/Katas

3.36.3 Practice

That goes without saying; you need to practice with the language. Learning the language
only while on the job, while useful, might actually limit your learning. I started using the

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 125 Author: Brett L. Schuchert (schuchert@yahoo.com)

language August if 1989 and I used it nearly daily until around June of 1990. I then took
the summer off and did not do any programming for about 2 months. In that 2-month
interval, I was able to figure out many things I only knew by rote. Because I was buried
in the problem and worried about deadlines, it limited what I was learning about the
language.

A way to mitigate that is to practice with katas. An even better way is to pick one
substantial problem and practice it over and over, making slight variations on your
approach each time. The idea is to become familiar with the domain to the point where
you are able to take individual variables and change them. For example, there’s a design
recommendation called “tell don’t ask.” You might simply do a problem and universally
apply this one design idea. You’ll find doing this kind of active experimentation will give
you a deeper appreciation of the language. It will also translate to other languages as
well, so you’re not really just learning C++.

3.37 What’s coming up?

It’s time to start a new problem. The approach will be similar, but the design forces will
be a bit more important. In this next problem, you’ll won’t encounter much new C++,
instead you’ll be reapplying what you’ve already seen in the dice game to a problem with
richer design issues.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 126 Author: Brett L. Schuchert (schuchert@yahoo.com)

4 RPN Calculator
According to Wikipedia (http://en.wikipedia.org/wiki/Reverse_Polish_notation) Reverse
Polish Notation was created in 1954 by Burks, Warren, and Wright. In reverse polish
notation, also known as postfix notation, operands appear before an operator. Here are a
few examples of such notation:

Expression Result

30 4 + 34

30 4 - 26

At the beginning of the century I was taking an internal class on Test Driven
Development where the instructor used a “regular” calculator as the main example. For
some reason, I chose to implement an RPN calculator instead. While working in the
class, it occurred to me that my pairing partner and I were having an easier time at it than
the other students. In fact, this is because it easier to write an RPN calculator than a
“regular” calculator. An RPN calculator:

● Does not require as much “memory” – when the user selects an operator, you can
immediately perform a calculation. Contrast this with a regular calculator where upon
entering a number and an operator, the calculator has to remember both and wait for
the next number before doing any work.

● Does not require () – operators happen immediately

In fact, according to HP Museum (http://www.hpmuseum.org/hp9100.htm) this is what
made it possible for HP to build the first electronic RPN calculator in 1968. The first HP
calculator:

● Weighted about 40 pounds
● Cost around $5,000 USD
● And was considered a modern miracle

We are going to use a problem similar to an HP calculator as the basis for our second
problem. Whereas in the first problem we were looking primarily at C++, the purpose of
this problem is to look at:

● Object Oriented Design
● Design Principles
● Design Patterns

Also, unlike the first problem where we worked bottom up, in this problem we will work
top down, or out to in. We will start with a series of examples for a first iteration. We’ll
create automated checks for those examples and clean up the code as we work our way
through the problem.

Side Note: I’ve used the problem many times. I’ve worked it with “raw” TDD – no
design up front, see where students take the problem. I’ve also used it as a design
problem where, I have students work on up-front, detailed design. For this book I had to
choose one path through the problem and I somewhat arbitrarily decided on raw TDD.
We will go from examples to tests. As we develop tests, I’ll mention design decisions
you need to make or consider.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 127 Author: Brett L. Schuchert (schuchert@yahoo.com)

4.1 Project Description

For this problem you will create a programmable RPN calculator. Your calculator will
have:

● Several functions,
• Basic functions such as add, subtract, multiply, divide, less than, greater than
• Bigger functions such as sum, factorial, prime factors
• Stack operations such as duplicate, drop, rotate up, rotate down

● It should be easy to add new operations to the calculator
● The calculator should be “programmable”, meaning you can create a new operation

that is a combination of any existing operations
• Those new operations should execute in the same way as the built-in operations
• It should be possible to have one program refer to another program as well

The calculator will deviate from a standard HP calculator in at least the following ways:

● Our calculator will allow more than 4 numeric entries on its stack
● We will use integer math for simplicity

4.2 What’s Coming Up?

Given this preliminary problem description, it’s time to get started on the problem Here’s
what to expect:

● Story selection
● Example development
● Automated check writing

To do this well, we’ll also consider

● GRASP patterns to help with developing automated checks
● Actor-system interaction and its impact on top-level API design
● The lost-art of system events

4.3 Biting off just enough

This problem already has a number of potential stories including:

● Operators: Adding numbers, calculating factorials, division
● Stack Manipulation: dropping values, duplicating part of the stack
● Programming

This is too much to attempt all at once so we should pick a small set of stories for a first
demonstration. Story writing and selection is beyond the scope of this book. However,
here are thoughts on a first cut:

● Add, Subtract – these are easy to understand and a calculator without these features
would be too surprising. If we were to only pick one, I’d choose subtract. Why?
Because unlike add, the order of the numbers is important. However, these are close
enough that we’ll do both of them.

● Multiply, Divide – these two finish off the set of operations that even the most basic
calculators include.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 128 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Factorial, Drop – these may seem like odd choices, however, they have a fundamental
difference from the previous four operations; factorial only needs one operand, drop
needs one operand as well, but it produces no results.

Given this list of operations, the next thing to do is develop some concrete examples for
each of these stories.

4.4 Develop Examples

What is the difference between a story and an example? A story describes a use of the
system. An example fills in that story with specific values. Often, we write these
examples using a standard language, or set of keywords. Here are some examples for
each of our chosen stories:

Given the user enters When the user selects Then the result is

30 4 + 34

30 4 - 26

4 6 * 24

8 2 / 4

5 ! 120

5 3 1 drop 5 3

These are all “happy-path” examples. They are simple, complete and represent successful
scenarios. What are some examples that represent potential failures? One example might
be overflow, another underflow. In a more complete example we would not use integers
but some numeric library to provide better precision. So overflow and underflow, while
legitimate test cases, are out of consideration since we’re using integers to keep things
simple; what we’d write is an artifact of a simplifying decision.

What about the following situations:

● Using any of these with “too few” parameters
● Divide by zero with division
● Factorial of a value less than 1

An artifact of a real HP calculator is that there are always 4 numbers available. When you
turn on the calculator, you have 4 values. Those values could be all 0 or they might be
values from the last time you used the calculator. In either case, there’s no such thing as
“too few parameters”. This can be assumed knowledge, or we can capture a few
examples to demonstrate this idea:

Given the user enters When the user selects Then the result is

4 + 4

4 - -4

4 * 0

4 / 0

 + <or> - <or> * 0

 / <error: divide by 0>

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 129 Author: Brett L. Schuchert (schuchert@yahoo.com)

 drop

 ! 1

These examples are still incomplete (they always will be). There’s only one example that
shows what happens where there are more than the “perfect” number of values available.
What happens when you attempt to add values and there are extra values?

Given the user enters When the user selects Then the result is

3 2 6 7 2 + 3 2 6 9

3 2 6 7 2 - 3 2 6 5

Given these examples, it seems that a user can enter several values. Using add or subtract
works with the two most recent values. Also, when the order matters, the most recent
value is on the right side of the operator and the previous value is on the left.

This seems like a good start. We will probably end up with more examples, but we’ll
consider this first release done when all of these examples work in automated checks.

4.5 Project Setup

This is a new project so it’s time to create a new project setup from scratch. If you need
assistance, please refer to section 2.2.1 starting on page 10.

4.6 The first unit check

It’s time to start writing our first unit check. To start writing it, we need to make a few
decisions. Here are some questions and answers:

Question: What are we writing this first unit check against?

Answer: Since this is an RPN calculator problem, and we are working out to in, we will
target the RPN calculator class with our first unit check. This is an example of using the
Controller GRASP pattern (ref). The controller pattern is unfortunately named; it would
have better been called facilitator or coordinator. We have messages coming in from the
outside via some actor. The actor could be a human but since we are using TDD, the
actor is a test.

Question: What are the logical steps of this unit check?

Answer: Enter a number, enter a second number, perform some operation, and verify the
results.

Question: Does “enter a number” mean a full number, e.g. 30, or just one digit of a
number?

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 130 Author: Brett L. Schuchert (schuchert@yahoo.com)

By Digits By Numbers

Rpn

Calculator

Digit(3)

Digit(0)

Enter()

Digit(4)

Enter(30)

Enter(4)

Answer: This is a somewhat arbitrary decision. Rather, the answer is somewhat arbitrary,
making the decision is necessary. We could:

● Enter individual digits like pressing buttons on a calculator
● Enter full numbers, like collecting digits in a text box in the UI and only presenting

the final number to the calculator

I have done this problem both ways and for how far we are going to take the problem,
there won’t be much of a difference. From personal experience, collecting individual
digits leads to making it easier to maintain the state of the system in a single location.
This becomes important when you start using a numeric library as opposed to using built-
in (primitive) numbers. It makes more work for us if we take in individual digits but that
initial work isn’t really too much.

Notice, as with most questions, experience can be a good guide. When I use this problem
in a class setting, I let the students decide. Since I don’t have someone to make the
decision, I flipped a coin and it came up “numbers” so for this example, we’ll be taking
in full numbers.

Here’s another problem to consider. If we built a complete system with some kind of user
interface, the values coming into system would probably not be numbers but instead be
strings of digits. In fact, one of the things a controller does is translate requests from the
outside world into something the system can understand. It then decides where to send
the request and delegates the rest of the work to some kind of plain old C++ object (a
POCO). This is another decision I let the students make. This is another thing that comes
from writing many systems and having to design the system-level interaction. While this
is a necessary problem, the work actually required is dependent on something that is out
of the scope for this problem. So in addition to taking in numbers as opposed to digits,
the representation of those numbers will in fact be integers and not strings.

Question: How will we select add, versus subtract, etc.?

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 131 Author: Brett L. Schuchert (schuchert@yahoo.com)

Answer: What may seem obvious is to have one named method for each operation. This
approach has a few characteristics:

● It leads to an API that is open-ended. As you grow the system, the API will continue
to expand.

● Additionally, the client has to know which method to call. If the user types “+” or
clicks the “+” button, both of these actions must be mapped to the “Add()” method.
As the API grows, this mapping also grows.

● If the code compiles, you know you’ll be calling a particular method, which in a
sense is like static (compile-time) checking.

● It is easy to understand.
● This kind of interface will not work very well when we consider programming the

calculator.

While this is typical, familiar even, that doesn’t mean it’s a good idea.

Using the parameterized approach:

● The API is locked down – this is an example of protected variation and it also is an
example of applying the open-closed principle to the problem.

● The client can allow the user to type “+” or press a button with “+” as the label. The
mapping is now done deeper in the system.

● Even if the code compiles, you don’t know until you run it if a particular operation
will happen.

● This approach maps better to the requirement that programs run the same as other
operations.

We could choose either solution, but we must choose one. This is probably one of the
most important lessons: Picking a “wrong” solution is often better than waiting to pick
the “right” solution. To have a chance seeing how a design can move from one API
design to another, we’ll choose the named method approach.

Question: How do we know the most recent result?

Answer: An HP calculator has 4 registers: x, y, z, and t. The x register is the “top” or
most recent value. This register is also known as the accumulator. To keep things simple,
we could simply ask for either the x register or the accumulator. Both terms are

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 132 Author: Brett L. Schuchert (schuchert@yahoo.com)

mentioned in an HP calculator manual, so they come right from the domain. For
simplicity, we’ll use getX();it comes right from the domain.

4.6.1 Was all of this necessary?

The short answer is yes. If you agree, skip to the next section.

If you are still here, then ask yourself the question, “What is our goal?” We are trying to
write an executing piece of code that will show we can add two numbers. For this to
work, it will have to compile. That means we needed to make all of those decisions. We
could just write the first test and see what happens. In practice, you’ll be doing that.
However, as you get more experience, the first test will take more and more into
consideration. Even when we practice “raw” TDD, our previous experience feeds into the
overall approach. So when I’m working on problems, these kinds of things are going
through my head either consciously or subconsciously. So you really do need to make
these decisions. You can do so as you write a test. However, since I’ll be writing the test
for you, you’ll be missing out on some of this if I don’t take the time to walk through it.

4.6.2 Add: The First Test

Having setup your project, it’s finally time to create a first test. Here is one such test that
takes the previous section into consideration:

RpnCalculatorShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

TEST_GROUP(RpnCalculatorShould) {TEST_GROUP(RpnCalculatorShould) {TEST_GROUP(RpnCalculatorShould) {TEST_GROUP(RpnCalculatorShould) {
 RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator ****calculatorcalculatorcalculatorcalculator;;;;
 voidvoidvoidvoid setup() {setup() {setup() {setup() {
 calculatorcalculatorcalculatorcalculator = = = = newnewnewnew RpnCalculator;RpnCalculator;RpnCalculator;RpnCalculator;
 }}}}
 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deletedeletedeletedelete calculatorcalculatorcalculatorcalculator;;;;
 }}}}
};};};};

TEST(RpnCalculaTEST(RpnCalculaTEST(RpnCalculaTEST(RpnCalculatorShould, AddTwoNumbers) {torShould, AddTwoNumbers) {torShould, AddTwoNumbers) {torShould, AddTwoNumbers) {
 calculatorcalculatorcalculatorcalculator---->>>>enter(30);enter(30);enter(30);enter(30);
 calculatorcalculatorcalculatorcalculator---->>>>enter(4);enter(4);enter(4);enter(4);
 calculatorcalculatorcalculatorcalculator---->>>>add();add();add();add();
 LONGS_EQUAL(34, LONGS_EQUAL(34, LONGS_EQUAL(34, LONGS_EQUAL(34, calculatorcalculatorcalculatorcalculator.getX());.getX());.getX());.getX());
}}}}

A quick recap from the previous project may be in order:

● To use CppUTest you need a TEST_GROUP for a set of related tests and a TEST for
an individual test.

● The TEST_GROUP is more commonly known as a test fixture. We put things in the
test fixture that are common for all tests.

● In a language with refactoring tools, I’d normally start with just a test method and
refactor my way into a common test fixture.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 133 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Additionally, CppUTest does memory leak detection. However, if your class uses any
kind of dynamic memory allocation, you might get false positives on memory leaks.

● Given this, I typically start my test code with a TEST_GROUP that has an instance of
the thing it is testing stored as a pointer. Then I use setup and teardown to allocate
and release that object. This avoids most of the false positives that might be recorded
by CppUTest.

The body of the TEST is a direct interpretation of the previous few pages of discussion.
To make this work we’ll need to create the missing class, RpnCalculator. To do that,
we’ll probably want to follow some basic C++ guidelines. With that in mind, here’s a
header file for RpnCalculator:

RpnCalculator.h

01: 01: 01: 01: #pragma#pragma#pragma#pragma onceonceonceonce
02020202: : : : #ifndef#ifndef#ifndef#ifndef RPNCALCULATOR_H_RPNCALCULATOR_H_RPNCALCULATOR_H_RPNCALCULATOR_H_
03030303: : : : #define#define#define#define RPNCALCULATOR_H_RPNCALCULATOR_H_RPNCALCULATOR_H_RPNCALCULATOR_H_
04040404::::
05050505: : : : #include#include#include#include "RpnCalculator.h""RpnCalculator.h""RpnCalculator.h""RpnCalculator.h"
06060606::::
07070707: : : : classclassclassclass RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator {{{{
08080808: : : : publicpublicpublicpublic::::
09090909:::: RpnCalculator();RpnCalculator();RpnCalculator();RpnCalculator();
10101010:::: virtualvirtualvirtualvirtual ~RpnCalculator();~RpnCalculator();~RpnCalculator();~RpnCalculator();
11111111:::: voidvoidvoidvoid enter(enter(enter(enter(intintintint value);value);value);value);
12121212:::: voidvoidvoidvoid addaddaddadd();();();();
11113333:::: intintintint getX() getX() getX() getX() constconstconstconst;;;;
14141414::::
15151515: : : : privateprivateprivateprivate::::
16161616:::: RpnCalculator(RpnCalculator(RpnCalculator(RpnCalculator(constconstconstconst RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator&);&);&);&);
17171717:::: RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator &operator=(&operator=(&operator=(&operator=(constconstconstconst RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator&);&);&);&);
18181818: : : : };};};};
19191919::::
20202020: : : : #endif#endif#endif#endif

There is nothing new in this header file if you’ve read the rest of the book. There’s no
good reason to copy objects of this class so lines 16, and 17 make that unlikely. The
destructor, line10, is virtual because I used Eclipse to create the class and that’s its
default setting. It is unlikely we’ll create a subclass of this class, so the virtual on the
destructor is not necessary. I did it anyway.

The test required enter(), add() and getX(), lines11 – 13. This header file with no source
file will allow the test to compile (but not link).

To get the code to link – and the test to pass, here’s a first cut at an implementation:

RpnCalculator.cpp

#include#include#include#include "RpnCalculator.h""RpnCalculator.h""RpnCalculator.h""RpnCalculator.h"

RpnCalculator::RpnCalculator() {}RpnCalculator::RpnCalculator() {}RpnCalculator::RpnCalculator() {}RpnCalculator::RpnCalculator() {}
RpnCalculator::~RpnCalculator() {}RpnCalculator::~RpnCalculator() {}RpnCalculator::~RpnCalculator() {}RpnCalculator::~RpnCalculator() {}
voidvoidvoidvoid RpnCalculator::enter(RpnCalculator::enter(RpnCalculator::enter(RpnCalculator::enter(intintintint value) {}value) {}value) {}value) {}
voidvoidvoidvoid RpnCalculator::add() {}RpnCalculator::add() {}RpnCalculator::add() {}RpnCalculator::add() {}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 134 Author: Brett L. Schuchert (schuchert@yahoo.com)

intintintint RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() constconstconstconst {{{{
 retretretreturnurnurnurn 34;34;34;34;
}}}}

Sure enough, this gets passing results:

....

OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)OK (1 tests, 1 ran, 1 checks, 0 ignored, 0 filtered out, 0 ms)

Before moving on, we need to check if there are any places where we might refactor the
code. There’s not much right now. Sometimes we need to allow code to fester a bit before
there’s enough to know how to generalize it. So we’ll move on to the next example.

4.7 Subtract: The Second Test

The second example is subtraction. We can take the first automated check as a baseline
and create our second one:

TEST(RpnCalculatorShould, SubtractTwoNumbers) {TEST(RpnCalculatorShould, SubtractTwoNumbers) {TEST(RpnCalculatorShould, SubtractTwoNumbers) {TEST(RpnCalculatorShould, SubtractTwoNumbers) {
 calculatorcalculatorcalculatorcalculator---->enter(30);>enter(30);>enter(30);>enter(30);
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->subtract();>subtract();>subtract();>subtract();
 LONGS_EQUAL(26, LONGS_EQUAL(26, LONGS_EQUAL(26, LONGS_EQUAL(26, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

For this to compile, we need to update the header file. To get the code to link we’ll need
to update the source file:

Added to RpnCalculator.h

voidvoidvoidvoid subtract();subtract();subtract();subtract();

Added to RpnCalculator.cpp

voidvoidvoidvoid RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {
}}}}

This gets us to the new test failing while the original test passes. Now the challenge, we
must update the code to keep the original test passing and get the new test passing as
well.

One thing we can do is covert the hard-coded value returned by getX() into a variable. A
variable will allow us to generate different results. Those different results can be
performed by the add() and subtract() methods. Moving from a hard-coded value to either
a calculated value or introducing a variable is a good second step as you build solutions.
In fact, you might consider reviewing a recommendation by Robert Martin he called the
transform priority premise (http://cleancoder.posterous.com/the-transformation-priority-
premise).

In our case, we need to make four changes:

● Add a variable
● Set the result in add()
● Set the result in subtract()
● Return the result in getX()

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 135 Author: Brett L. Schuchert (schuchert@yahoo.com)

While not strictly necessary, we should also initialize the member data value in the
constructor because C++ won’t do it for us. Here are those updates:

Added to RpnCalculator.h

privateprivateprivateprivate::::
 intintintint xxxx;;;;

Updated Constructor

RpnCalculator::RpnCalculator() : RpnCalculator::RpnCalculator() : RpnCalculator::RpnCalculator() : RpnCalculator::RpnCalculator() : xxxx(0) {(0) {(0) {(0) {
}}}}

Updated add(), subtract(), getX()

voidvoidvoidvoid RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {
 xxxx = 34;= 34;= 34;= 34;
}}}}

voidvoidvoidvoid RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {
 xxxx = 26;= 26;= 26;= 26;
}}}}

intintintint RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() constconstconstconst {{{{
 returnreturnreturnreturn xxxx;;;;
}}}}

These changes will return you to compiling, linking and tests passing.

4.8 What about Actual Values?

Right now the implementation does not use the actual values provided when calling the
enter() method. When you are working on a problem, you will often come across these
challenges. A quick review of the examples shows that the first six each describe the use
of a different operation. Nothing in those examples will force use to actually store any
values. The first time that occurs is when we write a second automated check against an
operator that already has an implementation. This is an unsatisfying result to many
programmers. We could jump ahead in the list of examples, but the next example that
duplicates the use of an operation is add where there is only one item provided. This
would force us to tackle two problems at the same time: really writing add(), dealing with
the situation when there are less than two provided values.

A danger at this point is speculative design. We could just do something and see where it
goes. However, if we start that, we’ll probably end up writing code that has no automated
checks for it. Alternatively, we could write another test for add() or subtract() that uses
two different values. A problem with that is that the second test is a duplicate of the first
test. Duplication is not a good thing. Duplicated tests represent rework when things
change. Too much duplication might lead to enough inertia to make a change seem too
costly.

Referring back to the transform priority premise (http://cleancoder.posterous.com/the-
transformation-priority-premise), the recommendation is to pick automated checks that
will choose simple code changes over more complex code changes. Based on that, we
want to either consider one of the provided examples or create another example that will
help us. We currently have an empty implementation of enter(), so something that will

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 136 Author: Brett L. Schuchert (schuchert@yahoo.com)

force us to grow the implementation of enter() and that also make sense to for the other
operators seems to be warranted.

In an earlier discussion we noted that the most recently entered value was on the right
side of the operator while the previously entered value was on the left side. What if we
simply write that test? We will enter two values and make sure we can get back those two
values.

Here is one such test:

TEST(RpnCalculatorShould, ReturnValuesInReverseOrderOfEntry) {TEST(RpnCalculatorShould, ReturnValuesInReverseOrderOfEntry) {TEST(RpnCalculatorShould, ReturnValuesInReverseOrderOfEntry) {TEST(RpnCalculatorShould, ReturnValuesInReverseOrderOfEntry) {
 calculatorcalculatorcalculatorcalculator---->enter(30);>enter(30);>enter(30);>enter(30);
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
 calculatorcalculatorcalculatorcalculator---->drop();>drop();>drop();>drop();
 LONGS_EQLONGS_EQLONGS_EQLONGS_EQUAL(30, UAL(30, UAL(30, UAL(30, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

This is OK, but notice that it also forces us to introduce drop. That might be OK, let’s see
what we can do to make this work:

Add member function declaration to RpnCalculator.h

 voidvoidvoidvoid drop();drop();drop();drop();

Update enter() and drop()

voidvoidvoidvoid RRRRpnCalculator::enter(pnCalculator::enter(pnCalculator::enter(pnCalculator::enter(intintintint value) {value) {value) {value) {
 xxxx = value;= value;= value;= value;
}}}}

voidvoidvoidvoid RpnCalculator::drop() {RpnCalculator::drop() {RpnCalculator::drop() {RpnCalculator::drop() {
 xxxx = 30;= 30;= 30;= 30;
}}}}

Try this, you will see the following execution results:

............

OK (3 tests, 3 ran, 4 checks, 0 ignored, 0 filtered out, 1 ms)OK (3 tests, 3 ran, 4 checks, 0 ignored, 0 filtered out, 1 ms)OK (3 tests, 3 ran, 4 checks, 0 ignored, 0 filtered out, 1 ms)OK (3 tests, 3 ran, 4 checks, 0 ignored, 0 filtered out, 1 ms)

Not quite enough. However, what if we simply write the example for drop? Doing so will
force drop to become more complicated; maybe it will also force us to remember all the
values entered as well.

4.9 Drop

Here’s an automated example for drop:

TEST(RpnCalculatorShould, SupportDroppingValues) {TEST(RpnCalculatorShould, SupportDroppingValues) {TEST(RpnCalculatorShould, SupportDroppingValues) {TEST(RpnCalculatorShould, SupportDroppingValues) {
 calcucalcucalcucalculatorlatorlatorlator---->enter(5);>enter(5);>enter(5);>enter(5);
 calculatorcalculatorcalculatorcalculator---->enter(3);>enter(3);>enter(3);>enter(3);
 calculatorcalculatorcalculatorcalculator---->enter(1);>enter(1);>enter(1);>enter(1);
 calculatorcalculatorcalculatorcalculator---->drop();>drop();>drop();>drop();
 LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 137 Author: Brett L. Schuchert (schuchert@yahoo.com)

This automated check fails. Also, it will be hard to make this work without doing some
“real” work. In fact the work we’ve been doing is real. Once you’ve been practicing TDD
for some time, you’ll probably agree. Even so, this makes things more interesting.

Notice that we enter several values but we only store the last. That’s a clue for what we
could do next. Convert our single value, x, into many values, some kind of collection.
That seems like not too much of a leap. We need to do that in such a way as to keep
existing tests passing, get the failing test to pass and we don’t want to spend too much
time doing it.

Before we jump in and change it, what collection should we use? The values need to
come out in the reverse order entered. That suggests a stack. Conveniently, C++ has a
stack class, so we can use that.

Changing from a simple variable to a collection seems like refactoring. We have a failing
test. Refactoring with a failing test is frowned upon as we discuss elsewhere. So before
we start making that change, let’s first “remove” this test by replacing TEST with
IGNORE_TEST:

IGNORE_TEST(RpnCalculatorShould, SupportDroppingValues) {IGNORE_TEST(RpnCalculatorShould, SupportDroppingValues) {IGNORE_TEST(RpnCalculatorShould, SupportDroppingValues) {IGNORE_TEST(RpnCalculatorShould, SupportDroppingValues) {

Now we have all passing tests and we are ready to change our implementation.

4.9.1 First introduce the stack

Here’s an updated RpnCalculator.h introducing the stack. Notice that the x attribute is
still there. When we are done, we’ll remove it.

#include#include#include#include <stack><stack><stack><stack>

classclassclassclass RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator {{{{
publicpublicpublicpublic::::

privateprivateprivateprivate::::
 typedeftypedeftypedeftypedef std::stack<std::stack<std::stack<std::stack<intintintint> > > > RpnStackRpnStackRpnStackRpnStack;;;;
 RpnStackRpnStackRpnStackRpnStack valuesvaluesvaluesvalues;;;;
 intintintint xxxx;;;;
…………

Now we can update all of the existing methods to use both the stack and x:

voidvoidvoidvoid RpnCalculator::enter(RpnCalculator::enter(RpnCalculator::enter(RpnCalculator::enter(intintintint value) {value) {value) {value) {
 xxxx = value;= value;= value;= value;
 valuesvaluesvaluesvalues.push(v.push(v.push(v.push(value);alue);alue);alue);
}}}}

voidvoidvoidvoid RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {
 xxxx = 34;= 34;= 34;= 34;
 valuesvaluesvaluesvalues.push(34);.push(34);.push(34);.push(34);
}}}}

voidvoidvoidvoid RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {
 xxxx = 26;= 26;= 26;= 26;
 valuesvaluesvaluesvalues.push(26);.push(26);.push(26);.push(26);

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 138 Author: Brett L. Schuchert (schuchert@yahoo.com)

}}}}

voidvoidvoidvoid RpnCalculator::drop() {RpnCalculator::drop() {RpnCalculator::drop() {RpnCalculator::drop() {
 xxxx = 30;= 30;= 30;= 30;
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
}}}}

Run your automated checks, verify that everything is passing with one ignored test:

!...!...!...!...

OK (4 tests, 3 ran, 4 checks, 1 ignored, 0 filtered out, 1 ms)OK (4 tests, 3 ran, 4 checks, 1 ignored, 0 filtered out, 1 ms)OK (4 tests, 3 ran, 4 checks, 1 ignored, 0 filtered out, 1 ms)OK (4 tests, 3 ran, 4 checks, 1 ignored, 0 filtered out, 1 ms)

Now you can remove X from the header file and source file; you’ll also need to update
getX() to return the top of the stack:

RpnCalculator.cpp minus x member data

RpnCRpnCRpnCRpnCalculator::RpnCalculator() {alculator::RpnCalculator() {alculator::RpnCalculator() {alculator::RpnCalculator() {
}}}}

RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {
}}}}

voidvoidvoidvoid RpnCalculator::enter(RpnCalculator::enter(RpnCalculator::enter(RpnCalculator::enter(intintintint value) {value) {value) {value) {
 valuesvaluesvaluesvalues.push(value);.push(value);.push(value);.push(value);
}}}}

voidvoidvoidvoid RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {
 valuesvaluesvaluesvalues.push(34);.push(34);.push(34);.push(34);
}}}}

voidvoidvoidvoid RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {
 valuesvaluesvaluesvalues.push(26);.push(26);.push(26);.push(26);
}}}}

voidvoidvoidvoid RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator::drop() {::drop() {::drop() {::drop() {
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
}}}}

intintintint RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() constconstconstconst {{{{
 returnreturnreturnreturn valuesvaluesvaluesvalues.top();.top();.top();.top();
}}}}

Interestingly, if you simply update the INGORE_TEST to be a TEST again and execute
your tests:

................

OK (4 tests, 4 ran, 5 checks, 0 ignored, 0 filtered out, 0 ms)OK (4 tests, 4 ran, 5 checks, 0 ignored, 0 filtered out, 0 ms)OK (4 tests, 4 ran, 5 checks, 0 ignored, 0 filtered out, 0 ms)OK (4 tests, 4 ran, 5 checks, 0 ignored, 0 filtered out, 0 ms)

That worked out pretty well.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 139 Author: Brett L. Schuchert (schuchert@yahoo.com)

4.10 Getting Factorial Working

We only have one example for factorial: 5 -> 120. The factorial of 0 is 1. For anything
less than 1, we do not have any examples. For the purposes of this example, we’ll say that
anything less than 0, the result is simply consumed. Here’s a sequence of tests for those
examples:

TEST(RpnCalculatorShould, CalculateTheFactorialOf5As120) {TEST(RpnCalculatorShould, CalculateTheFactorialOf5As120) {TEST(RpnCalculatorShould, CalculateTheFactorialOf5As120) {TEST(RpnCalculatorShould, CalculateTheFactorialOf5As120) {
 calculatorcalculatorcalculatorcalculator---->enter(5);>enter(5);>enter(5);>enter(5);
 calculatorcalculatorcalculatorcalculator---->factorial();>factorial();>factorial();>factorial();
 LONGS_EQUAL(120, LONGS_EQUAL(120, LONGS_EQUAL(120, LONGS_EQUAL(120, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

To get this to pass we’ll update the header file:

 voidvoidvoidvoid factorial();factorial();factorial();factorial();

And add a member function definition to the source:

voidvoidvoidvoid RpnCalculator::factorial() {RpnCalculator::factorial() {RpnCalculator::factorial() {RpnCalculator::factorial() {
 valuesvaluesvaluesvalues.push(120);.push(120);.push(120);.push(120);
}}}}

Not to worry, the next text makes us do a little more work:

TEST(RpnCalculatorShould, CalculateTheFactorialOf0TEST(RpnCalculatorShould, CalculateTheFactorialOf0TEST(RpnCalculatorShould, CalculateTheFactorialOf0TEST(RpnCalculatorShould, CalculateTheFactorialOf0As1) {As1) {As1) {As1) {
 calculatorcalculatorcalculatorcalculator---->enter(0);>enter(0);>enter(0);>enter(0);
 calculatorcalculatorcalculatorcalculator---->factorial();>factorial();>factorial();>factorial();
 LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

At this point, we can simply write a simple factorial implementation:

voidvoidvoidvoid RpnCalculator::factorial() {RpnCalculator::factorial() {RpnCalculator::factorial() {RpnCalculator::factorial() {
 intintintint operand = operand = operand = operand = valuesvaluesvaluesvalues.top();.top();.top();.top();
 intintintint result = 1;result = 1;result = 1;result = 1;
 whilewhilewhilewhile(o(o(o(operand > 1)perand > 1)perand > 1)perand > 1)
 result *= operandresult *= operandresult *= operandresult *= operand--------;;;;
 valuesvaluesvaluesvalues.push(result);.push(result);.push(result);.push(result);
}}}}

And finally, what happens if the value is negative?

TEST(RpnCalculatorShould, ConsumeValueForFactorialOfNegative) {TEST(RpnCalculatorShould, ConsumeValueForFactorialOfNegative) {TEST(RpnCalculatorShould, ConsumeValueForFactorialOfNegative) {TEST(RpnCalculatorShould, ConsumeValueForFactorialOfNegative) {
 calculatorcalculatorcalculatorcalculator---->enter(>enter(>enter(>enter(----4);4);4);4);
 calculatorcalculatorcalculatorcalculator---->factorial();>factorial();>factorial();>factorial();
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, calculatocalculatocalculatocalculatorrrr---->getX());>getX());>getX());>getX());
}}}}

Before looking at the implementation, why 0? Remember that the calculator always has
values. The real calculator has 4 hardware registers, all initially 0 (or whatever value they
had when you last used the calculator). So there are always values. This calculator is
brand new and only had ever had a single value entered. Therefore, upon consuming that
value, there should be “no entered numbers”, which means the calculator will have only
0s available.

Here’s one way to do this:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 140 Author: Brett L. Schuchert (schuchert@yahoo.com)

voidvoidvoidvoid RpnCalculatoRpnCalculatoRpnCalculatoRpnCalculator::factorial() {r::factorial() {r::factorial() {r::factorial() {
 intintintint operand = operand = operand = operand = valuesvaluesvaluesvalues.top();.top();.top();.top();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 ifififif (operand >= 0) {(operand >= 0) {(operand >= 0) {(operand >= 0) {
 intintintint result = 1;result = 1;result = 1;result = 1;
 whilewhilewhilewhile (operand > 1)(operand > 1)(operand > 1)(operand > 1)
 result *= operandresult *= operandresult *= operandresult *= operand--------;;;;
 valuesvaluesvaluesvalues.push(result);.push(result);.push(result);.push(result);
 }}}}
}}}}

intintintint RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() constconstconstconst {{{{
 ifififif((((valuesvaluesvaluesvalues.size() > 0).size() > 0).size() > 0).size() > 0)
 returnreturnreturnreturn valuesvaluesvaluesvalues.top();.top();.top();.top();
 returnreturnreturnreturn 0;0;0;0;
}}}}

In the factorial() method, we actually consume the value entered by calling values.pop().
However, this leaves the stack empty for our most recent test. If you simply run the test,
it will fail in some way that may not be obvious. It turns out that if you call top() on an
empty stack, the method throws an exception.

4.11 Revisit Add

Now that we have finally written an actual implementation for factorial, let’s revisit the
other operators before adding new ones. First add. We have another example for add,
here’s a test for that example:

TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->add();>add();>add();>add();
 LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

This test fails because the underlying add() hard-codes the result to 34. It is time to fix
this. However, to fix this we’ll have to consider what factorial did: it called top() and
pop() for one operand, so we’ll need to do that for add as well:

voidvoidvoidvoid RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {
 intintintint v1 = v1 = v1 = v1 = valuesvaluesvaluesvalues.top();.top();.top();.top();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 intintintint v2 = v2 = v2 = v2 = valuesvaluesvaluesvalues.top();.top();.top();.top();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 valuesvaluesvaluesvalues.push(v1 + v2);.push(v1 + v2);.push(v1 + v2);.push(v1 + v2);
}}}}

Whoops, this fails. Problem is, top() and pop() really need to be guarded like in the
getX() method. Rather than calling top(), we can call getX() and then guard pop():

voidvoidvoidvoid RpnCalculator::adRpnCalculator::adRpnCalculator::adRpnCalculator::add() {d() {d() {d() {
 intintintint v1 = getX();v1 = getX();v1 = getX();v1 = getX();
 ifififif(!(!(!(!valuesvaluesvaluesvalues.empty()).empty()).empty()).empty())
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 intintintint v2 = getX();v2 = getX();v2 = getX();v2 = getX();

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 141 Author: Brett L. Schuchert (schuchert@yahoo.com)

 ifififif(!(!(!(!valuesvaluesvaluesvalues.empty()).empty()).empty()).empty())
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 valuesvaluesvaluesvalues.push(v1 + v2);.push(v1 + v2);.push(v1 + v2);.push(v1 + v2);
}}}}

This works, which is a qualified success.

4.11.1 Feature Envy

Looking at the add() method it makes 4 direct calls to values, which is a stack.
Furthermore, it makes two calls to getX(), which makes 2 calls to the stack as well. All
told, that’s 8 calls to a stack from add(). You can assume that we’ll have to do the same
thing in subtract(), factorial(), etc., all operations that use the stack.

When one method makes heavy use of data or methods in another object, this is called
feature envy (http://c2.com/cgi/wiki?FeatureEnvySmell). Martin Fowler describes feature
envy as “…a method that seems more interested in a class other than the one it is in.”
This seems to fit that description well. How can we fix it? Luckily, Martin Fowler has
something to say about that as well. His first recommendation is move method. That is,
move the method into the target class.

What does this mean for us? It means we want to move the check for size into the stack.
But the stack is not our class; we are using it from the standard library. Fine, we will
create our own stack class that is built upon the standard stack class. That’s the next
section.

4.12 Resolving Feature Envy: Writing Our Own Stack

This is not a surprising result to me. Collection classes are handy and they are also a
common source of duplicated code. Why? Collections such as the stack class can only
have general behavior. That behavior should be simple and complete. The stack is a good
example. You can push until it is full, which takes a lot of values. You can pop values off
it or look at its top only when in has values on it; its size is not zero. That’s a typical stack
data type behavior, but we are using a stack to implement something that does not behave
exactly like a stack. In our case, the values are last in, first out (LIFO) like a stack. Unlike
a stack, however, we always have values. The idea of empty() doesn’t really apply. When
a user has not entered any values onto a calculator, the calculator has 0s.

This discrepancy between our domain and what built-in classes have for default behavior
is actually the norm in my experience. I saw one project where an effort to remove
duplication just within individual source files across a 15,000,000 million line source
base of C++ resulted in a 30% reduction of code side. Just over half of that reduction
related to the use of collections. Does that mean collections are bad? No, it just means
that they serve as a starting point only.

In our case, we want something that behaves like a stack but one that is never empty. We
can do this in a number of ways:

● Roll our own implementation
● Use an existing one

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 142 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Inherit from an existing one

The first option is obvious, create the solution from scratch. The next two options are
more typical. The last option, inheritance, is normally the one I’d choose last. Inheritance
is the single highest form of coupling in C++. If there are methods in the base class you
do not want exposed, you have other options such as protected or private inheritance, but
I do not use these language features. If, for some reason, you want to change method
signatures, you might find it hard to do so (depending on the change). In this case, the
base class does not expose any virtual methods, so even if we do use inheritance, we
won’t want to pass around a reference or pointer to the base class when using the derived
class. Inheriting from concrete class such as this can cause problems such as calling the
wrong method.

The middle option, an RpnStack holds onto an instance of an std::stack, is an example of
using delegation instead of inheritance has mentioned in the book Design Patterns.
There’s no chance to confuse an RpnStack with an std::stack because the types would not
be compatible, whereas using inheritance, they would be. So with no other reason, and in
general, I’d pick the second option over the third option.

In this case, however, I’m going to demonstrate the third option to show how to inherit
from template classes and also how to invoke base-class methods.

4.12.1 First test: top works on an empty stack

Before jumping in, we’ll use tests to verify our implementation. Then we’ll go back and
update the RpnCalculator to use our custom RpnStack. Here’s a first test:

RpnStackShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

TEST_GROUP(RpnStackShould) {TEST_GROUP(RpnStackShould) {TEST_GROUP(RpnStackShould) {TEST_GROUP(RpnStackShould) {
 RpnStackRpnStackRpnStackRpnStack ****valuesvaluesvaluesvalues;;;;
 voidvoidvoidvoid setup() {setup() {setup() {setup() {
 valuesvaluesvaluesvalues = = = = newnewnewnew RpnStack;RpnStack;RpnStack;RpnStack;
 }}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 143 Author: Brett L. Schuchert (schuchert@yahoo.com)

 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deletedeletedeletedelete valuesvaluesvaluesvalues;;;;
 }}}}
};};};};

TEST(RpnStackShould, HaveATopAfterCreation) {TEST(RpnStackShould, HaveATopAfterCreation) {TEST(RpnStackShould, HaveATopAfterCreation) {TEST(RpnStackShould, HaveATopAfterCreation) {
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, valuesvaluesvaluesvalues---->top());>top());>top());>top());
}}}}

To get this to compile, link and pass:

RpnStack.h

#pragma#pragma#pragma#pragma onconconconceeee
#ifndef#ifndef#ifndef#ifndef RPNSTACK_H_RPNSTACK_H_RPNSTACK_H_RPNSTACK_H_
#define#define#define#define RPNSTACK_H_RPNSTACK_H_RPNSTACK_H_RPNSTACK_H_

#include#include#include#include <stack><stack><stack><stack>

classclassclassclass RpnStack : RpnStack : RpnStack : RpnStack : publicpublicpublicpublic std::stack<std::stack<std::stack<std::stack<intintintint> {> {> {> {
publicpublicpublicpublic::::
 RpnStack();RpnStack();RpnStack();RpnStack();
 virtualvirtualvirtualvirtual ~RpnStack();~RpnStack();~RpnStack();~RpnStack();
 intintintint top()top()top()top() constconstconstconst;;;;

privateprivateprivateprivate::::
 RpnStack(RpnStack(RpnStack(RpnStack(constconstconstconst RpnStack&);RpnStack&);RpnStack&);RpnStack&);
 RpnStack& operator=(RpnStack&);RpnStack& operator=(RpnStack&);RpnStack& operator=(RpnStack&);RpnStack& operator=(RpnStack&);
};};};};

#endif#endif#endif#endif

RpnStack.cpp

01: 01: 01: 01: #include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"
00002222::::
00003333: : : : RpnStack::RpnStack() {}RpnStack::RpnStack() {}RpnStack::RpnStack() {}RpnStack::RpnStack() {}
00004444: : : : RpnStack::~RpnStack() {}RpnStack::~RpnStack() {}RpnStack::~RpnStack() {}RpnStack::~RpnStack() {}
00005555::::
00006666: : : : intintintint RpnStack::top()RpnStack::top()RpnStack::top()RpnStack::top() constconstconstconst {{{{
00007777: : : : ifififif(!empty())(!empty())(!empty())(!empty())
00008888: : : : returnreturnreturnreturn std::std::std::std::stackstackstackstack<<<<intintintint>::top();>::top();>::top();>::top();
00009999: : : : returnreturnreturnreturn 0;0;0;0;
10101010: : : : }}}}

Line 8 demonstrates how to call a base-class method. Our version of top() returns 0 if the
stack is empty otherwise it returns whatever the base-class top() method would have
returned.

To get pop() well behaved is more of the same:

TEST(RpnStackShould, HaveASizeOf0AfterPopWhenEmpty) {TEST(RpnStackShould, HaveASizeOf0AfterPopWhenEmpty) {TEST(RpnStackShould, HaveASizeOf0AfterPopWhenEmpty) {TEST(RpnStackShould, HaveASizeOf0AfterPopWhenEmpty) {
 valuesvaluesvaluesvalues---->pop()>pop()>pop()>pop();;;;
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, valuesvaluesvaluesvalues---->size());>size());>size());>size());
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 144 Author: Brett L. Schuchert (schuchert@yahoo.com)

If you run this test without updating RpnStack it fails:

../RpnStackShould.cpp:21: error: Failure in TEST(RpnStackShould, ../RpnStackShould.cpp:21: error: Failure in TEST(RpnStackShould, ../RpnStackShould.cpp:21: error: Failure in TEST(RpnStackShould, ../RpnStackShould.cpp:21: error: Failure in TEST(RpnStackShould,
HaveASizeOf0AfterPopWhenEmpty)HaveASizeOf0AfterPopWhenEmpty)HaveASizeOf0AfterPopWhenEmpty)HaveASizeOf0AfterPopWhenEmpty)

 expected < 0 0x0000000000000000>expected < 0 0x0000000000000000>expected < 0 0x0000000000000000>expected < 0 0x0000000000000000>

 but was <but was <but was <but was <----1 0xfffffffffffff1 0xfffffffffffff1 0xfffffffffffff1 0xffffffffffffffff>fff>fff>fff>

Now update pop() as well, add a method declaration:

 voidvoidvoidvoid pop();pop();pop();pop();

And definition:

voidvoidvoidvoid RpnStack::pop() {RpnStack::pop() {RpnStack::pop() {RpnStack::pop() {
 ifififif(!empty())(!empty())(!empty())(!empty())
 std::stack<std::stack<std::stack<std::stack<intintintint>::pop();>::pop();>::pop();>::pop();
}}}}

4.12.2 Update RpnCalculator

Now simply update the RpnCalculator header file to use RpnStack:

#include#include#include#include "RpnSt"RpnSt"RpnSt"RpnStack.h"ack.h"ack.h"ack.h"

classclassclassclass RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator {{{{

privateprivateprivateprivate::::
 RpnStackRpnStackRpnStackRpnStack valuesvaluesvaluesvalues;;;;

Now it should not be necessary to check the size anywhere in the source file:

voidvoidvoidvoid RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {
 intintintint v1 = getX();v1 = getX();v1 = getX();v1 = getX();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 intintintint v2 = getX();v2 = getX();v2 = getX();v2 = getX();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 valuesvaluesvaluesvalues.push(v1.push(v1.push(v1.push(v1 + v2);+ v2);+ v2);+ v2);
}}}}

intintintint RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() constconstconstconst {{{{
 returnreturnreturnreturn valuesvaluesvaluesvalues.top();.top();.top();.top();
}}}}

And you may have noticed that factorial() called top() without checking the size. There
was a bug there, we just had not yet noticed it.

4.13 Finish subtract

Now we can write a test for subtract that starts with just one value instead of two on the
stack:

TEST(RpnCalculatorShould, SubtractWhenTheresASingleValue) {TEST(RpnCalculatorShould, SubtractWhenTheresASingleValue) {TEST(RpnCalculatorShould, SubtractWhenTheresASingleValue) {TEST(RpnCalculatorShould, SubtractWhenTheresASingleValue) {
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->subtract();>subtract();>subtract();>subtract();
 LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(----4, 4, 4, 4, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 145 Author: Brett L. Schuchert (schuchert@yahoo.com)

This test fails when you run it. Now you can update the subtract implementation. Try just
copying add() and replacing the + with -:

voidvoidvoidvoid RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {
 intintintint v1 = getX();v1 = getX();v1 = getX();v1 = getX();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 intintintint v2 = getX();v2 = getX();v2 = getX();v2 = getX();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 valuesvaluesvaluesvalues.push(v1 .push(v1 .push(v1 .push(v1 ---- v2);v2);v2);v2);
}}}}

Run the tests:

../RpnCalculatorShou../RpnCalculatorShou../RpnCalculatorShou../RpnCalculatorShould.cpp:72: error: Failure in ld.cpp:72: error: Failure in ld.cpp:72: error: Failure in ld.cpp:72: error: Failure in
TEST(RpnCalculatorShould, SubtractWhenTheresASingleValue)TEST(RpnCalculatorShould, SubtractWhenTheresASingleValue)TEST(RpnCalculatorShould, SubtractWhenTheresASingleValue)TEST(RpnCalculatorShould, SubtractWhenTheresASingleValue)

 expected <expected <expected <expected <----4 0xfffffffffffffffc>4 0xfffffffffffffffc>4 0xfffffffffffffffc>4 0xfffffffffffffffc>

 but was < 4 0x0000000000000004>but was < 4 0x0000000000000004>but was < 4 0x0000000000000004>but was < 4 0x0000000000000004>

../RpnCalculatorShould.cpp:26: error: Failure in ../RpnCalculatorShould.cpp:26: error: Failure in ../RpnCalculatorShould.cpp:26: error: Failure in ../RpnCalculatorShould.cpp:26: error: Failure in
TEST(RpnCalculatorShould, SubtractTwoNumbers)TEST(RpnCalculatorShould, SubtractTwoNumbers)TEST(RpnCalculatorShould, SubtractTwoNumbers)TEST(RpnCalculatorShould, SubtractTwoNumbers)

 eeeexpected < 26 0x000000000000001a>xpected < 26 0x000000000000001a>xpected < 26 0x000000000000001a>xpected < 26 0x000000000000001a>

 but was <but was <but was <but was <----26 0xffffffffffffffe6>26 0xffffffffffffffe6>26 0xffffffffffffffe6>26 0xffffffffffffffe6>

Not only did that not work, it caused another test to fail! In this case we need to reorder
the operands:

 values.push(v2 - v1);

That fixes it. This makes sense. Subtract cares about the order of operands whereas add
does not. But this gives us something ugly: two methods that are almost duplicates of
each other:

voidvoidvoidvoid RpnCalculator::add() { RpnCalculator::add() { RpnCalculator::add() { RpnCalculator::add() { voidvoidvoidvoid RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {
 intintintint v1 = getX(); v1 = getX(); v1 = getX(); v1 = getX(); intintintint v1 = getX();v1 = getX();v1 = getX();v1 = getX();
 valuesvaluesvaluesvalues.po.po.po.pop(); p(); p(); p(); valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 intintintint v2 = getX(); v2 = getX(); v2 = getX(); v2 = getX(); intintintint v2 = getX();v2 = getX();v2 = getX();v2 = getX();
 valuesvaluesvaluesvalues.pop(); .pop(); .pop(); .pop(); valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 valuesvaluesvaluesvalues.push(v1 + v2); .push(v1 + v2); .push(v1 + v2); .push(v1 + v2); valuesvaluesvaluesvalues.push(v2.push(v2.push(v2.push(v2 –––– v1v1v1v1););););
} }} }} }} }

If this were the only duplication, then it might be ok. We have multiply and divide as
well for our first release. They will be exactly the same as well. Four copies of the same
code is not a good idea. It leads to duplicated maintenance. It is also error prone. For
example, what happens if someone forgets to pop the second value? The operation will
appear to work but the next operation will be left with the wrong values on the stack. This
is a problem with attributes in general. Every attribute is a means of one method causing
another method to fail. In this case, the methods are not exact duplicates, which means
we might miss it as well as tools that look for duplicated code.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 146 Author: Brett L. Schuchert (schuchert@yahoo.com)

4.14 Dreaded Duplication or DRY

A fundamental principle of software development is Don’t Repeat Yourself – DRY. We
have duplication between add and subtract, but more generally we’ll have this problem
across all operations that consume two values and produce a single value.

There are several ways to fix this problem, here are a few ideas:

● Ignore it, we’re paid by the number of lines so duplication is a good thing
● Write a utility method that does everything but + or – and pass in a pointer to a

function which does just the + or –, e.g.:
 void binaryOp(RpnStack &values, int (*pf)(int, int)) {void binaryOp(RpnStack &values, int (*pf)(int, int)) {void binaryOp(RpnStack &values, int (*pf)(int, int)) {void binaryOp(RpnStack &values, int (*pf)(int, int)) {
 intintintint v1 = v1 = v1 = v1 = values.topvalues.topvalues.topvalues.top();();();();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 intintintint v2 = v2 = v2 = v2 = values.topvalues.topvalues.topvalues.top();();();();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 int result = pf(int result = pf(int result = pf(int result = pf(v2v2v2v2, v1), v1), v1), v1);;;;
 valuesvaluesvaluesvalues.push(result);.push(result);.push(result);.push(result);
 }}}}
 int addIt(int lhs, int rhs) {int addIt(int lhs, int rhs) {int addIt(int lhs, int rhs) {int addIt(int lhs, int rhs) {
 return lhs + rhs;return lhs + rhs;return lhs + rhs;return lhs + rhs;
 }}}}
 void RpnCalculator::add() {void RpnCalculator::add() {void RpnCalculator::add() {void RpnCalculator::add() {
 binaryOp(values, addIt);binaryOp(values, addIt);binaryOp(values, addIt);binaryOp(values, addIt);
 }}}}
● Create a class that does + or – instead of a pointer to a member function:
class BinaryOperator {class BinaryOperator {class BinaryOperator {class BinaryOperator {
 virtual int calculate(int lhs, int rhs) = 0;virtual int calculate(int lhs, int rhs) = 0;virtual int calculate(int lhs, int rhs) = 0;virtual int calculate(int lhs, int rhs) = 0;
};};};};
class Add : public BinaryOperator {class Add : public BinaryOperator {class Add : public BinaryOperator {class Add : public BinaryOperator {
 int calculate(int lhs, int rhs) { return lhs + rhs; }int calculate(int lhs, int rhs) { return lhs + rhs; }int calculate(int lhs, int rhs) { return lhs + rhs; }int calculate(int lhs, int rhs) { return lhs + rhs; }
};};};};
class Subtract : class Subtract : class Subtract : class Subtract : public BinaryOperator {public BinaryOperator {public BinaryOperator {public BinaryOperator {
 int calculate(int lhs, int rhs) { return lhs int calculate(int lhs, int rhs) { return lhs int calculate(int lhs, int rhs) { return lhs int calculate(int lhs, int rhs) { return lhs ---- rhs; }rhs; }rhs; }rhs; }
};};};};
void binaryOp(RpnStack &values, BinaryOperator &op) {void binaryOp(RpnStack &values, BinaryOperator &op) {void binaryOp(RpnStack &values, BinaryOperator &op) {void binaryOp(RpnStack &values, BinaryOperator &op) {
 intintintint v1 = v1 = v1 = v1 = values.topvalues.topvalues.topvalues.top();();();();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 intintintint v2 = v2 = v2 = v2 = values.topvalues.topvalues.topvalues.top();();();();
 valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
 int result = op.calculate(int result = op.calculate(int result = op.calculate(int result = op.calculate(v2, v1)v2, v1)v2, v1)v2, v1);;;;
 valuesvaluesvaluesvalues.push(result);.push(result);.push(result);.push(result);
}}}}

This last option has a name; it is called the Template Method Pattern. Its name is
unfortunate as it was named before template methods were added to C++. Even so, this
last option is moving in a good direction. However, notice that we’ll have to do
something special for each of the different kinds of operators. The method binaryOp
above does not belong to RpnCalculator. In fact, it demonstrates feature envy. In this
case, however, it does not make sense to move the method into RpnStack as in the last
case with top() and pop(), but we can still look at feature envy for ideas. There are three
suggestions to resolve feature envy:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 147 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Move method, which is what we did with RpnStack
● Extract method, which is what binaryOp is an example of
● Extract class, which is what we are going to do

The calculator has a number of operations. Each operation:

● Consumes a number of operands (0 or more)
● Optionally performs a calculation
● Produces a number of operands (0 or more)

We need to put the responsibility where it belongs and it best belongs with the operation.
Feature envy suggests extracting a class, and general assignment of responsibility
suggests what that class should do. We can also look to the GRASP patterns for
inspiration. One of the GRASP patterns is “information expert” – put the responsibility
with the thing that has the data. This does not exactly match because we are not talking
about who has the data so much as the thing that selects the variation – the operation.
Another GRASP pattern might match better: protected variation – put the responsibility
where it varies.

Notice that we can do this for each of our operations. If each of our operations becomes a
class and we treat them as variations on a general theme, then we are using a design
pattern known as the Strategy Pattern. This might look something like this:

This is a good intermediate step. This alone does not solve the duplication problem. If we
combine this with the example of the binary operator we get this:

Wow, that is a lot to do. How can we possibly do this while keeping our tests passing?

4.14.1 Extract Classes

We start by extract classes, one for each existing operation. Notice that we’ll be doing
this by refactoring. When we are done, we might consider moving automated checks
around.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 148 Author: Brett L. Schuchert (schuchert@yahoo.com)

Since we are taking an existing member function and we want to extract it to another
class, a good first start is to simply extract a local function and get it to compile:

voidvoidvoidvoid addIt(RpnStack &values)addIt(RpnStack &values)addIt(RpnStack &values)addIt(RpnStack &values) {{{{
 intintintint v1 = values.top();v1 = values.top();v1 = values.top();v1 = values.top();
 values.pop();values.pop();values.pop();values.pop();
 intintintint v2 = values.top();v2 = values.top();v2 = values.top();v2 = values.top();
 values.pop();values.pop();values.pop();values.pop();
 values.push(v1 + v2);values.push(v1 + v2);values.push(v1 + v2);values.push(v1 + v2);
}}}}

voidvoidvoidvoid RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {
 addIt(addIt(addIt(addIt(valuesvaluesvaluesvalues););););
}}}}

Now that we’ve made this method have no direct dependency on the RpnCalculator class,
we can easily extract a class called Add right from the add method:

Add.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef ADD_H_ADD_H_ADD_H_ADD_H_
#define#define#define#define ADD_H_ADD_H_ADD_H_ADD_H_

classclassclassclass RpnStack;RpnStack;RpnStack;RpnStack;

classclassclassclass Add {Add {Add {Add {
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);
};};};};

#endif#endif#endif#endif

Notice the name change from addIt to perform. The method name makes more sense for
all operations.

Add.cpp

#include#include#include#include "Add.h""Add.h""Add.h""Add.h"

#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

voidvoidvoidvoid Add::perform(Add::perform(Add::perform(Add::perform(RpnStackRpnStackRpnStackRpnStack &values) {&values) {&values) {&values) {
 intintintint v1 = values.top();v1 = values.top();v1 = values.top();v1 = values.top();
 values.pop();values.pop();values.pop();values.pop();
 intintintint v2 = values.top();v2 = values.top();v2 = values.top();v2 = values.top();
 values.pop();values.pop();values.pop();values.pop();
 values.push(v1 + v2);values.push(v1 + v2);values.push(v1 + v2);values.push(v1 + v2);
}}}}

And a final update to RpnCalculator:

#include#include#include#include "Add.h""Add.h""Add.h""Add.h"
voidvoidvoidvoid RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {RpnCalculator::add() {
 AddAddAddAdd op;op;op;op;
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 149 Author: Brett L. Schuchert (schuchert@yahoo.com)

}}}}

All tests should pass.

4.14.2 Keeping it the same

Now that we have one example of what all operations will look like in the Add class, we
can extract an interface and then use that as the bases for the other operations. Here is
such an interface extracted:

MathOperation.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef MATHOPERATION_H_MATHOPERATION_H_MATHOPERATION_H_MATHOPERATION_H_
#define#define#define#define MATHOPERATION_H_MATHOPERATION_H_MATHOPERATION_H_MATHOPERATION_H_

classclassclassclass RpnStack;RpnStack;RpnStack;RpnStack;

classclassclassclass MathOperation {MathOperation {MathOperation {MathOperation {
publicpublicpublicpublic::::
 virtualvirtualvirtualvirtual ~MathOperation() = 0;~MathOperation() = 0;~MathOperation() = 0;~MathOperation() = 0;
 virtualvirtualvirtualvirtual voidvoidvoidvoid pppperform(RpnStack &values) = 0;erform(RpnStack &values) = 0;erform(RpnStack &values) = 0;erform(RpnStack &values) = 0;
};};};};

#endif#endif#endif#endif

The destructor is a so-called special member function. We’ll need to define it:

MathOperation.cpp

#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"

MathOperation::~MathOperation() {MathOperation::~MathOperation() {MathOperation::~MathOperation() {MathOperation::~MathOperation() {
}}}}

Now that this interface exists, we can update add to use it:

#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"

classclassclassclass AddAddAddAdd : : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(perform(perform(perform(RpnStackRpnStackRpnStackRpnStack &values);&values);&values);&values);
};};};};

4.14.3 Updating Subtract

Making the change for Subtract is nearly a copy of Add:

Subtract.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef SUBTRACT_H_SUBTRACT_H_SUBTRACT_H_SUBTRACT_H_
#define#define#define#define SUBTRACT_H_SUBTRACT_H_SUBTRACT_H_SUBTRACT_H_

####includeincludeincludeinclude "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"

classclassclassclass Subtract : Subtract : Subtract : Subtract : publicpublicpublicpublic MathOperation {MathOperation {MathOperation {MathOperation {
publicpublicpublicpublic::::

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 150 Author: Brett L. Schuchert (schuchert@yahoo.com)

 voidvoidvoidvoid perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);
};};};};

#endif#endif#endif#endif

Subtract.cpp

#include#include#include#include "Subtract.h""Subtract.h""Subtract.h""Subtract.h"

#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

voidvoidvoidvoid Subtract::perform(Subtract::perform(Subtract::perform(Subtract::perform(RpnStackRpnStackRpnStackRpnStack &values) {&values) {&values) {&values) {
 intintintint v1 = values.top();v1 = values.top();v1 = values.top();v1 = values.top();
 values.values.values.values.pop();pop();pop();pop();
 intintintint v2 = values.top();v2 = values.top();v2 = values.top();v2 = values.top();
 values.pop();values.pop();values.pop();values.pop();
 values.push(v2 values.push(v2 values.push(v2 values.push(v2 ---- v1);v1);v1);v1);
}}}}

RpnCalculator::subtract

#include#include#include#include "Subtract.h""Subtract.h""Subtract.h""Subtract.h"
voidvoidvoidvoid RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {RpnCalculator::subtract() {
 SubtractSubtractSubtractSubtract op;op;op;op;
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););
}}}}

4.14.4 Drop

The changes for drop follow the same pattern:

Drop.h

#pragm#pragm#pragm#pragmaaaa onceonceonceonce
#ifndef#ifndef#ifndef#ifndef DROP_H_DROP_H_DROP_H_DROP_H_
#define#define#define#define DROP_H_DROP_H_DROP_H_DROP_H_

#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"

classclassclassclass Drop : Drop : Drop : Drop : publicpublicpublicpublic MathOperation {MathOperation {MathOperation {MathOperation {
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);
};};};};

#endif#endif#endif#endif

Drop.cpp

#include#include#include#include "Drop.h""Drop.h""Drop.h""Drop.h"

#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

voidvoidvoidvoid Drop::perform(RpnStack &values) {Drop::perform(RpnStack &values) {Drop::perform(RpnStack &values) {Drop::perform(RpnStack &values) {
 values.values.values.values.pop();pop();pop();pop();
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 151 Author: Brett L. Schuchert (schuchert@yahoo.com)

RpnCalculator::drop

#include#include#include#include "Drop.h""Drop.h""Drop.h""Drop.h"
voidvoidvoidvoid RpnCalculator::drop() {RpnCalculator::drop() {RpnCalculator::drop() {RpnCalculator::drop() {
 DropDropDropDrop op;op;op;op;
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););
}}}}

4.14.5 Factorial

And finally, the changes for factorial are also the same thing. Practicing class extraction
is a useful thing. You’ll often do it in new development. It tends to be even more useful
when working with legacy code. You want to get to a point where doing it is second
nature; practice, practice, practice.

Factorial.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef FACTORIAL_H_FACTORIAL_H_FACTORIAL_H_FACTORIAL_H_
#define#define#define#define FACTORIAL_H_FACTORIAL_H_FACTORIAL_H_FACTORIAL_H_

#include#include#include#include "MathOperat"MathOperat"MathOperat"MathOperation.h"ion.h"ion.h"ion.h"

classclassclassclass Factorial : Factorial : Factorial : Factorial : publicpublicpublicpublic MathOperation {MathOperation {MathOperation {MathOperation {
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);
};};};};

#endif#endif#endif#endif

Factorial.cpp

#include#include#include#include "Factorial.h""Factorial.h""Factorial.h""Factorial.h"

#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

voidvoidvoidvoid Factorial::perform(Factorial::perform(Factorial::perform(Factorial::perform(RpnStackRpnStackRpnStackRpnStack &values) {&values) {&values) {&values) {
 intintintint operand = values.top();operand = values.top();operand = values.top();operand = values.top();
 values.pop();values.pop();values.pop();values.pop();
 iiiiffff (operand >= 0) {(operand >= 0) {(operand >= 0) {(operand >= 0) {
 intintintint result = 1;result = 1;result = 1;result = 1;
 whilewhilewhilewhile (operand > 1)(operand > 1)(operand > 1)(operand > 1)
 result *= operandresult *= operandresult *= operandresult *= operand--------;;;;
 values.push(result);values.push(result);values.push(result);values.push(result);
 }}}}
}}}}

4.15 Removing Duplication

Now we have enough in place to remove the duplication between add and subtract. While
this is overkill for 2 copies, we’re going to have many more than 2, so this effort will be
time well spent.

We need a class that:

● Acquires two values from the stack

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 152 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Defers the actual calculation to a subclass
● Stores the result

There are at least a few paths we could take to getting this done:

● Refactor – Copy code from Add or Subtract and change the inheritance structure in
place. The existing tests will keep us on track.

● Check First – Develop a number of automated checks, one for each of the
requirements of this base class.

● Hybrid – Create the class using a copy of code and write all of the tests we’ll need
anyway.

Any of these ways will get us where we need to go. In class people generally prefer the
check first approach, so that’s what I’ll go with here.

4.15.1 It consumes two values

Here’s a quick recap of an earlier suggestion:

First, the BinaryOperator class:

class BinaryOperator {class BinaryOperator {class BinaryOperator {class BinaryOperator {
 virtual int calculate(int lhs, int rhs) = 0;virtual int calculate(int lhs, int rhs) = 0;virtual int calculate(int lhs, int rhs) = 0;virtual int calculate(int lhs, int rhs) = 0;
};};};};
class Add : public BinaryOperator {class Add : public BinaryOperator {class Add : public BinaryOperator {class Add : public BinaryOperator {
 int calculate(int lhs, int rhs) { return lhs + rhs; }int calculate(int lhs, int rhs) { return lhs + rhs; }int calculate(int lhs, int rhs) { return lhs + rhs; }int calculate(int lhs, int rhs) { return lhs + rhs; }
};};};};

Notice that in this simple hierarchy, the base class is abstract and the derived class has
one method. The one method, calculate, has two parameters. Here’s where we use it:

01: 01: 01: 01: void binaryOp(RpnStack &values, BinaryOperator &op) {void binaryOp(RpnStack &values, BinaryOperator &op) {void binaryOp(RpnStack &values, BinaryOperator &op) {void binaryOp(RpnStack &values, BinaryOperator &op) {
02020202: : : : intintintint v1 = values.top();v1 = values.top();v1 = values.top();v1 = values.top();
03030303: : : : vavavavalueslueslueslues.pop();.pop();.pop();.pop();
04040404: : : : intintintint v2 = values.top();v2 = values.top();v2 = values.top();v2 = values.top();
05050505: : : : valuesvaluesvaluesvalues.pop();.pop();.pop();.pop();
06060606: : : : int result = op.calculate(int result = op.calculate(int result = op.calculate(int result = op.calculate(v2, v1)v2, v1)v2, v1)v2, v1);;;;
07070707: : : : valuesvaluesvaluesvalues.push(result);.push(result);.push(result);.push(result);
08080808: : : : }}}}

The calculate() message is sent on line 6. Notice that the object receiving the calculate()
message does not have access to the RpnStack, just two int parameters.

Here are our challenges:

● We are going to create an abstract class, how can we check an abstract class?
● The real subclasses don’t yet exist – that is, the Add and Subtract do exist, but they do

not yet use the abstract base class.
● Even if these classes did exist, they do not in general have access to the RpnStack, but

we want to check its size. Unfortunately, the whole sequence both consumes and
produces values, if we check the size, the check is indirect.

This is a common problem. It is one of the costs of inheritance; testing extensions of
abstract classes can require more work. However, we can create a testing subclass to fix
the problem:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 153 Author: Brett L. Schuchert (schuchert@yahoo.com)

What does this offer?

● We can create the testing subclass before changing Add or Subtract; thereby isolating
the work until we have what we think is a finished product.

● We can give our testing subclass access to things that a normal production class
would be able to access, opening up possibilities not reasonably available to a
production subclass.

However, it does have some cost:

● It takes getting used to – this is resolved with time and experience.
● It might seem like we are testing test code as opposed to production code. If that’s

actually the case, then we’ve failed in our efforts, so we must be vigilant to this
possibility.

● We have to create a test-only class, this might seem like work. There are some tools
for doing this in C++; some free, some commercial. Rather that introduce more
moving parts, we’ll just create them by hand.

Even with these disadvantages, this is still a solid option. More importantly, this is
something you’ll use often in adding automated checks to legacy code, so it’s good to
practice this technique.

Here’s our first test for this new BinaryMathOperation class:

01: 01: 01: 01: #include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>
02020202::::
03030303:::: #include#include#include#include "BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h"
04040404:::: #include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"
05050505: : : :
06060606:::: TEST_GROUP(BinaryMathOperationShould) {TEST_GROUP(BinaryMathOperationShould) {TEST_GROUP(BinaryMathOperationShould) {TEST_GROUP(BinaryMathOperationShould) {
07070707:::: RpnStackRpnStackRpnStackRpnStack ****valuesvaluesvaluesvalues;;;;
08080808:::: voidvoidvoidvoid setup() {setup() {setup() {setup() {
09090909:::: valuesvaluesvaluesvalues = = = = newnewnewnew RpnSRpnSRpnSRpnStack;tack;tack;tack;
10101010:::: valuesvaluesvaluesvalues---->push(4);>push(4);>push(4);>push(4);
11111:1:1:1: valuesvaluesvaluesvalues---->push(2);>push(2);>push(2);>push(2);
12121212:::: }}}}
13131313:::: voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
14141414:::: deletedeletedeletedelete valuesvaluesvaluesvalues;;;;

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 154 Author: Brett L. Schuchert (schuchert@yahoo.com)

15151515:::: }}}}
16161616:::: };};};};
17171717: : : :
18181818:::: structstructstructstruct BinaryMathOperationSpyBinaryMathOperationSpyBinaryMathOperationSpyBinaryMathOperationSpy : : : : publicpublicpublicpublic BinaryMathOperationBinaryMathOperationBinaryMathOperationBinaryMathOperation {{{{
19191919:::: BinaryMathOperationSpy(BinaryMathOperationSpy(BinaryMathOperationSpy(BinaryMathOperationSpy(RpnStackRpnStackRpnStackRpnStack &values) &values) &values) &values)
20202020:::: : : : : vavavavalueslueslueslues(values), (values), (values), (values), sizesizesizesize((((----1) {}1) {}1) {}1) {}
22221:1:1:1: intintintint calculate(calculate(calculate(calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs) {rhs) {rhs) {rhs) {
22222222:::: sizesizesizesize = = = = valuesvaluesvaluesvalues.size();.size();.size();.size();
23232323:::: returnreturnreturnreturn 13;13;13;13;
24242424:::: }}}}
25252525:::: RpnStackRpnStackRpnStackRpnStack &&&&valuesvaluesvaluesvalues;;;;
26262626:::: intintintint sizesizesizesize;;;;
27272727:::: };};};};
28282828: : : :
29292929:::: TEST(BinaryMathOperationShould, ConsumeTwoValues) {TEST(BinaryMathOperationShould, ConsumeTwoValues) {TEST(BinaryMathOperationShould, ConsumeTwoValues) {TEST(BinaryMathOperationShould, ConsumeTwoValues) {
30303030:::: BinaryMathOperationBinaryMathOperationBinaryMathOperationBinaryMathOperationSpySpySpySpy spy(*spy(*spy(*spy(*valuesvaluesvaluesvalues););););
33331:1:1:1: spy.perform(*spy.perform(*spy.perform(*spy.perform(*valuesvaluesvaluesvalues););););
32323232:::: LONGS_EQUAL(0, spy.LONGS_EQUAL(0, spy.LONGS_EQUAL(0, spy.LONGS_EQUAL(0, spy.sizesizesizesize););););
33333333:::: }}}}
Line Description

01 -
16

Mostly boilerplate code. Create a test group. These tests will need an RpnStack
so store it as a pointer, allocate and release it in the TEST_GROUP.
Additionally, put two known values on it. These values will be used to check
that the right values are getting sent in the correct order to the eventual
subclasses.

18 Introduce a testing subclass. This is called a Spy because it will be watching
what happens and recording. The automated check will use this class to record
what happens and then verify that what was supposed to happen actually
happened. As a testing subclass it must inherit from BinaryMathOperation – the
class we are really trying to create. Rather than use a class use a struct so that
everything is public by default.

19 This is a constructor. Notice that this class requires an instance of an RpnStack?
This is the special sauce we add that a normal production subclass would not
have. Doing this allows this testing subclass to record things that normally
would not be accessible to a production subclass.

20 Use member-wise initialization to hold onto the stack and initialize a size
attribute to -1. Since -1 is never a valid stack size, it represents a good initial
value. We could have used #include <limits.h> and INT_MIN instead.

21 Subclasses have an extension point called calculate that takes two integer
parameters.

22 Our implementation will record the size of the stack just after the call to
calculate() from the abstract base class.

23 This method has a return value so I pick one of my favourite numbers 13.

29 Finally an automated check.

30 Create the spy and give it a reference to the RpnStack created just before this
code executes (remember, it is allocated in the setup() method and released in

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 155 Author: Brett L. Schuchert (schuchert@yahoo.com)

Line Description

the teardown() method). The setup method always puts two values on it, so we
know at this point the size is 2. The test as written guarantees/controls that.

31 Call perform on the base class. Note: we are trying to verify that the perform
method is well behaved. Even though we are sending a message to a testing
subclass, the method we invoke is in the base class. We are actually exercising
code in the base class, which is our ultimate goal.

32 The stack started with a size of 2. The spy records the size upon entry into the
calculate() method. Presumably, the lhs and rhs parameters will be the values
removed from the stack, but that is another automated check we have yet to
write. If the size is 0, then, apparently, two values were taken off the stack

Now that we have this complex test written, we have to write some code to get it to
compile:

BinaryMathOperation.h

01:01:01:01: #pragma#pragma#pragma#pragma onceonceonceonce
02020202:::: #ifndef#ifndef#ifndef#ifndef BINARYMATHOPERATION_H_BINARYMATHOPERATION_H_BINARYMATHOPERATION_H_BINARYMATHOPERATION_H_
03030303:::: #define#define#define#define BINARYMATHOPERABINARYMATHOPERABINARYMATHOPERABINARYMATHOPERATION_H_TION_H_TION_H_TION_H_
04040404: : : :
05050505:::: #include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"
06060606: : : :
07070707:::: classclassclassclass BinaryMathOperation: BinaryMathOperation: BinaryMathOperation: BinaryMathOperation: publicpublicpublicpublic MathOperation {MathOperation {MathOperation {MathOperation {
08080808:::: publicpublicpublicpublic::::
09090909:::: voidvoidvoidvoid perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);
10101010:::: virtualvirtualvirtualvirtual intintintint calculate(calculate(calculate(calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs) = 0;rhs) = 0;rhs) = 0;rhs) = 0;
11111:1:1:1: };};};};
12121212: : : :
13131313:::: #endif#endif#endif#endif

BinaryMathOperation is our intermediate, abstract base class. All operations that take
two parameters and produce a single result will inherit from this base class. Examples
might include: add, subtract, multiply, divide, less than, greater than, y to the x, etc. Line
9 is the method all MathOperation classes must write. That’s what we are checking now.
All subclasses will ultimately need to write a calculate method to do the actual work of
calculation. Notice that this is a pure virtual method. There is no reasonable default
behavior and we want subclasses to write this member function. That is exactly what pure
virtual methods do, along with making the class itself abstract.

To get it to link:

#include#include#include#include "BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h"

#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

voidvoidvoidvoid BinaryMathOperation::perform(BinaryMathOperation::perform(BinaryMathOperation::perform(BinaryMathOperation::perform(RRRRpnStackpnStackpnStackpnStack &values) {&values) {&values) {&values) {
}}}}

Now that the code compiles and links, you can check to see that the automated check is
failing. Next, to get it to pass:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 156 Author: Brett L. Schuchert (schuchert@yahoo.com)

voidvoidvoidvoid BinaryMathOperation::perform(RpnStack &values) {BinaryMathOperation::perform(RpnStack &values) {BinaryMathOperation::perform(RpnStack &values) {BinaryMathOperation::perform(RpnStack &values) {
 values.pop();values.pop();values.pop();values.pop();
 values.pop();values.pop();values.pop();values.pop();
 calculate(calculate(calculate(calculate(0, 0)0, 0)0, 0)0, 0);;;;
}}}}

This is enough code to get our first automated check passing. We could have copied code
from Add, I somewhat arbitrarily chose not to but doing so would have been fine. So long
as we verify all of this method’s responsibilities with automated checks, we have lots of
options on getting to the final version.

4.15.2 It calls an extension point with the correct parameters

One of the responsibilities of our method is to actually call an extension point,
calculate(). We have done this indirectly because our last check would fail if it were not
called. Even so, we need to verify that the parameters are correct.

The setup() method pushes two values, 4 and 2. The value pushed first should be treated
as the left hand side value while the value pushed second should be treated as the right
had side value. We can make a few changes to our existing test subclass to support this
idea or we can create an entirely new testing subclass.

If I use a language with better tool support or if I have some kind of library that supports
making these so-called test doubles (though the libraries are typically called mocking
libraries), then I make more fine-grained classes on a per-test basis. Since I am and
writing my test classes by hand I’ll tend towards more chunky testing classes. With that
in mind, here’s an updated version of our testing subclass:

structstructstructstruct BinaryMathOperationSpyBinaryMathOperationSpyBinaryMathOperationSpyBinaryMathOperationSpy : : : : publicpublicpublicpublic BinaryMathOperationBinaryMathOperationBinaryMathOperationBinaryMathOperation {{{{
 BinaryMathOperationSpy(BinaryMathOperationSpy(BinaryMathOperationSpy(BinaryMathOperationSpy(RpnStackRpnStackRpnStackRpnStack &values)&values)&values)&values)
 : : : : valuesvaluesvaluesvalues(values), (values), (values), (values), sizesizesizesize((((----1), 1), 1), 1), actualLhsactualLhsactualLhsactualLhs(0), (0), (0), (0), actualRhsactualRhsactualRhsactualRhs(0) {}(0) {}(0) {}(0) {}
 intintintint calculate(calculate(calculate(calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs)rhs)rhs)rhs) {{{{
 sizesizesizesize = = = = valuesvaluesvaluesvalues.size();.size();.size();.size();
 actualLhsactualLhsactualLhsactualLhs = lhs;= lhs;= lhs;= lhs;
 actualRhsactualRhsactualRhsactualRhs = rhs;= rhs;= rhs;= rhs;
 returnreturnreturnreturn 13;13;13;13;
 }}}}
 RpnStackRpnStackRpnStackRpnStack &&&&valuesvaluesvaluesvalues;;;;
 intintintint sizesizesizesize;;;;
 intintintint actualLhsactualLhsactualLhsactualLhs;;;;
 intintintint actualRhsactualRhsactualRhsactualRhs;;;;
};};};};

This update introduces three changes:

● Introduction of two attributes, actualLhs and actualRhs
● Both of those new attributes are initialized to 0
● Both of those attributes are updated in the calculate method with the actual

parameters passed in at runtime.

Notice that these changes leave the class working fine for the existing test. Now a test to
use this updated class:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 157 Author: Brett L. Schuchert (schuchert@yahoo.com)

TEST(BinaryMathOperationShould, SendTwoParametersInCorrectOrder) {TEST(BinaryMathOperationShould, SendTwoParametersInCorrectOrder) {TEST(BinaryMathOperationShould, SendTwoParametersInCorrectOrder) {TEST(BinaryMathOperationShould, SendTwoParametersInCorrectOrder) {
 BinaryMathOperationSpy spy(*BinaryMathOperationSpy spy(*BinaryMathOperationSpy spy(*BinaryMathOperationSpy spy(*valuesvaluesvaluesvalues););););
 spy.perform(*spy.perform(*spy.perform(*spy.perform(*valuesvaluesvaluesvalues););););
 LONGS_EQUAL(4, spy.LONGS_EQUAL(4, spy.LONGS_EQUAL(4, spy.LONGS_EQUAL(4, spy.actualLhsactualLhsactualLhsactualLhs););););
 LONGS_EQUAL(2, spy.LONGS_EQUAL(2, spy.LONGS_EQUAL(2, spy.LONGS_EQUAL(2, spy.actualRactualRactualRactualRhshshshs););););

}
Run this test, it fails. Now to update the production code to passing:

voidvoidvoidvoid BinaryMathOperation::perform(RpnStack &values) {BinaryMathOperation::perform(RpnStack &values) {BinaryMathOperation::perform(RpnStack &values) {BinaryMathOperation::perform(RpnStack &values) {
 intintintint rhs = values.top();rhs = values.top();rhs = values.top();rhs = values.top();
 values.pop();values.pop();values.pop();values.pop();
 intintintint lhs = values.top();lhs = values.top();lhs = values.top();lhs = values.top();
 values.pop();values.pop();values.pop();values.pop();
 calculate(lhs, rhs);calculate(lhs, rhs);calculate(lhs, rhs);calculate(lhs, rhs);
}}}}

Back to all checks passing.

4.15.3 It stores the result

Finally, the result returned from calculate must be stored. To get the original version of
the testing subclass to compile without warnings, the calculate method had to return a
value. I chose 13, so now we can check for that:

TEST(BinaryMathOperationShould, StoreCalculTEST(BinaryMathOperationShould, StoreCalculTEST(BinaryMathOperationShould, StoreCalculTEST(BinaryMathOperationShould, StoreCalculatedResult) {atedResult) {atedResult) {atedResult) {
 BinaryMathOperationSpy spy(*BinaryMathOperationSpy spy(*BinaryMathOperationSpy spy(*BinaryMathOperationSpy spy(*valuesvaluesvaluesvalues););););
 spy.perform(*spy.perform(*spy.perform(*spy.perform(*valuesvaluesvaluesvalues););););
 LONGS_EQUAL(13, LONGS_EQUAL(13, LONGS_EQUAL(13, LONGS_EQUAL(13, valuesvaluesvaluesvalues---->top());>top());>top());>top());
}}}}

This test initially fails, a quick update to perform() fixes it;

voidvoidvoidvoid BinaryMathOperation::perform(RpnStack &values) {BinaryMathOperation::perform(RpnStack &values) {BinaryMathOperation::perform(RpnStack &values) {BinaryMathOperation::perform(RpnStack &values) {
 intintintint rhs = values.top()rhs = values.top()rhs = values.top()rhs = values.top();;;;
 values.pop();values.pop();values.pop();values.pop();
 intintintint lhs = values.top();lhs = values.top();lhs = values.top();lhs = values.top();
 values.pop();values.pop();values.pop();values.pop();
 intintintint result = calculate(lhs, rhs);result = calculate(lhs, rhs);result = calculate(lhs, rhs);result = calculate(lhs, rhs);
 values.push(result);values.push(result);values.push(result);values.push(result);
}}}}

Success.

4.15.4 Updating Add and Subtract

Now we can update Add and Subtract, one at a time, while keeping the tests passing:

Add.h

#include#include#include#include """"BinaryMathOperation.h"BinaryMathOperation.h"BinaryMathOperation.h"BinaryMathOperation.h"

classclassclassclass Add : Add : Add : Add : publicpublicpublicpublic BinaryMathOperation {BinaryMathOperation {BinaryMathOperation {BinaryMathOperation {
publicpublicpublicpublic::::
 intintintint calculate(calculate(calculate(calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs);rhs);rhs);rhs);
};};};};

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 158 Author: Brett L. Schuchert (schuchert@yahoo.com)

Add.cpp

#include#include#include#include "Add.h""Add.h""Add.h""Add.h"

intintintint Add::calculate(Add::calculate(Add::calculate(Add::calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs) {rhs) {rhs) {rhs) {
 returnreturnreturnreturn lhs + rhs;lhs + rhs;lhs + rhs;lhs + rhs;
}}}}

Check that your checks are still passing.

Subtract.h

#incl#incl#incl#includeudeudeude "BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h"

classclassclassclass SubtractSubtractSubtractSubtract : : : : publicpublicpublicpublic BinaryMathOperationBinaryMathOperationBinaryMathOperationBinaryMathOperation {{{{
publicpublicpublicpublic::::
 intintintint calculate(calculate(calculate(calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs);rhs);rhs);rhs);
};};};};

Subtract.cpp

#include#include#include#include "Subtract.h""Subtract.h""Subtract.h""Subtract.h"

intintintint Subtract::calculate(Subtract::calculate(Subtract::calculate(Subtract::calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs) {rhs) {rhs) {rhs) {
 returnreturnreturnreturn lhs lhs lhs lhs ---- rhs;rhs;rhs;rhs;
}}}}

Check your checks are still passing.

4.15.5 Not updating drop

Notice that drop is not included in this update. It does not behave the same as Add or
Subtract. Also, there is no need for an intermediate base class for it. The hierarchy is
asymmetrical – this is a sign of a healthy hierarchy. Few problems collapse into a fully-
balance tree. If we find duplication later than warrants another intermediate base class
we’ll add it then.

4.16 All those methods

The next thing might seem like adding multiply and divide. However, notice how the API
of this class continues to grow? It is an open-ended class that has too much responsibility.
Now is a good time to lock down the API. We know we are going to continue to add new
operations. The API and underlying class keeps changing. It is time to close this class to
changes but open up the system to adding new operations easier. We already have much
of the required infrastructure in place. We need to come up with how we want the new
class to look, using an automated check, and then migrate tests over to that new approach
– preferably one at a time.

4.16.1 An example based migration

We’ll begin by copying an existing test and making it look like we want it to look. Notice
we are not getting rid of the old test. We want to the new and old to coexist until we have
the new in place.

TEST(RpnCalculatorShould, AddTwoNumbers_v2) {TEST(RpnCalculatorShould, AddTwoNumbers_v2) {TEST(RpnCalculatorShould, AddTwoNumbers_v2) {TEST(RpnCalculatorShould, AddTwoNumbers_v2) {
 calculatorcalculatorcalculatorcalculator---->enter(30);>enter(30);>enter(30);>enter(30);
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 159 Author: Brett L. Schuchert (schuchert@yahoo.com)

 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("+""+""+""+"););););
 LONGS_EQUAL(34, LONGS_EQUAL(34, LONGS_EQUAL(34, LONGS_EQUAL(34, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

This won’t compile yet because the method does not exist. Notice the name. It needs to
be unique. Once this test works, I will remove the original test. In general, refactoring
starts with a “copy” operation and not a “move” operation.

To get this to compile, link and pass:

Declare new member function

#include#include#include#include <string><string><string><string>

classclassclassclass RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator {{{{
publicpublicpublicpublic::::

 voidvoidvoidvoid execute(execute(execute(execute(constconstconstconst std::std::std::std::stringstringstringstring &operatorName);&operatorName);&operatorName);&operatorName);

And a “complete” implementation – complete for all the tests requiring it that is:

voidvoidvoidvoid RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(constconstconstconst std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {
 add();add();add();add();
}}}}

Verify that this gets the test passing and then:

● Delete the original test
● Rename the new test by removing the _v2

Now update the test “AddWhenTheresASingleValue” to use the new approach:

TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("+""+""+""+"););););
 LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

Now that we have migrated all uses of add() we can remove it but caution. If we were in
a legacy setting where the class we are changing is used by other applications in a library,
you cannot so easily remove public methods. In our case, we know all the uses of our
class, so we have the freedom (luxury?) of being able to change its public API. In a
legacy environment, it’s more of a migration – or you do it all yourself. In any case, let’s
make that transition after we’ve completed writing the execute() method.

4.16.2 Migrating the subtract() method

This is more of the same. However, we could change an existing test rather than copy.
The method we want to call is already there, we just want to use it. So updating the test in
place seems OK to me:

TEST(RpnCalculatorShould, SubtractTwoNumbers) {TEST(RpnCalculatorShould, SubtractTwoNumbers) {TEST(RpnCalculatorShould, SubtractTwoNumbers) {TEST(RpnCalculatorShould, SubtractTwoNumbers) {
 calculatorcalculatorcalculatorcalculator---->enter(30);>enter(30);>enter(30);>enter(30);
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute(""""----""""););););
 LONGS_EQUAL(26, LONGS_EQUAL(26, LONGS_EQUAL(26, LONGS_EQUAL(26, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 160 Author: Brett L. Schuchert (schuchert@yahoo.com)

Now you have a failing test, time to fix it:

voidvoidvoidvoid RpnCalculator::exeRpnCalculator::exeRpnCalculator::exeRpnCalculator::execute(cute(cute(cute(constconstconstconst std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {
 ifififif(operatorName == (operatorName == (operatorName == (operatorName == "+""+""+""+"))))
 add();add();add();add();
 elseelseelseelse ifififif(operatorName == (operatorName == (operatorName == (operatorName == """"----""""))))
 subtract();subtract();subtract();subtract();
}}}}

And like that, we are back to passing. While I did change a test in place, notice I only
changed one. This is a simple enough example we could change everything in one fell
swoop. However, you tend to continue as you start, so no better time than the present to
do things carefully. In your real projects the code will be more complex and probably less
familiar, so learning how to do things carefully from the beginning is the way to go.

There is only one more test using subtract(), SubtractWhenTheresASingleValue. Update
it and get back to passing.

4.16.3 Finish the transformation

Continue this until you’ve also updated the tests using drop() and factorial(). You’ll end
up with something like the following:

voidvoidvoidvoid RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(constconstconstconst std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {
 ifififif(operatorName == (operatorName == (operatorName == (operatorName == "+""+""+""+"))))
 add();add();add();add();
 elseelseelseelse ifififif(operatorName == (operatorName == (operatorName == (operatorName == """"----""""))))
 subtract();subtract();subtract();subtract();
 elseelseelseelse ifififif(operatorName == (operatorName == (operatorName == (operatorName == "!""!""!""!"))))
 factorialfactorialfactorialfactorial();();();();
 elseelseelseelse ifififif(operatorName == (operatorName == (operatorName == (operatorName == "drop""drop""drop""drop"))))
 drop();drop();drop();drop();
}}}}

Now you can safely make the methods add(), subtract(), factorial(), drop() private. But do
those methods even need to be there in the first case? How about we “inline” those
methods – simply copy their contents into the execute() method and remove them
altogether:

#include#include#include#include "Add.h""Add.h""Add.h""Add.h"
#include#include#include#include "Subtract.h""Subtract.h""Subtract.h""Subtract.h"
#include#include#include#include "Drop.h""Drop.h""Drop.h""Drop.h"
#include#include#include#include "Factorial.h""Factorial.h""Factorial.h""Factorial.h"
voidvoidvoidvoid RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(constconstconstconst std::std::std::std::stringstringstringstring &operatorName) {&operatorName) {&operatorName) {&operatorName) {
 ifififif (operatorName == (operatorName == (operatorName == (operatorName == "+""+""+""+") {) {) {) {
 AddAddAddAdd op;op;op;op;
 op.perfop.perfop.perfop.perform(orm(orm(orm(valuesvaluesvaluesvalues););););
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == """"----"""") {) {) {) {
 SubtractSubtractSubtractSubtract op;op;op;op;
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == "!""!""!""!") {) {) {) {
 FactorialFactorialFactorialFactorial op;op;op;op;
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == "drop""drop""drop""drop") {) {) {) {

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 161 Author: Brett L. Schuchert (schuchert@yahoo.com)

 DropDropDropDrop op;op;op;op;
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););
 }}}}
}}}}

Notice that we have much of the work necessary to accommodate polymorphism across a
hierarchy of math operations but we are not actually using it? What is more important?
Getting an ever-growing API locked down or improving the internal design? I’m not sure
there’s a clear winner. My preference is locking down the API first.

4.17 Type un-safe

A nice thing about the perform method is that it simplifies the API, so problem solved,
right? The first rule of solving problems according to Weinberg is “Every solution
introduces problems.” What happens when you attempt to execute an unknown
operation? In our case, the code silently does nothing. I prefer “fail-fast”, so let’s add a
check that expects such a situation to generate an “UnknownMathOperationException”:

The Test

#in#in#in#includecludecludeclude "UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h"
TEST(RpnCalculatorShould, ThrowAnExceptionForUnknownOperation) {TEST(RpnCalculatorShould, ThrowAnExceptionForUnknownOperation) {TEST(RpnCalculatorShould, ThrowAnExceptionForUnknownOperation) {TEST(RpnCalculatorShould, ThrowAnExceptionForUnknownOperation) {
 trytrytrytry {{{{
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute(""""--------unknownunknownunknownunknown--------""""););););
 FAIL(FAIL(FAIL(FAIL("Should have thrown UnknownMathOperationException""Should have thrown UnknownMathOperationException""Should have thrown UnknownMathOperationException""Should have thrown UnknownMathOperationException"););););
 } } } } catchcatchcatchcatch((((UnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationException &&&&e) {e) {e) {e) {
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
 }}}}
}}}}

And to get it to compile:

UnknownMathOperationException.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef UNKNOWNMATHOPERATIONEXCEPTION_H_UNKNOWNMATHOPERATIONEXCEPTION_H_UNKNOWNMATHOPERATIONEXCEPTION_H_UNKNOWNMATHOPERATIONEXCEPTION_H_
#define#define#define#define UNKNOWNMATHOPERATIONEXCEPTION_H_UNKNOWNMATHOPERATIONEXCEPTION_H_UNKNOWNMATHOPERATIONEXCEPTION_H_UNKNOWNMATHOPERATIONEXCEPTION_H_

#include#include#include#include <exception><exception><exception><exception>

classclassclassclass UnknownMathOperationException: UnknownMathOperationException: UnknownMathOperationException: UnknownMathOperationException: publicpublicpublicpublic std::exceptstd::exceptstd::exceptstd::exception {ion {ion {ion {
publicpublicpublicpublic::::
 UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();
 virtualvirtualvirtualvirtual ~UnknownMathOperationException() ~UnknownMathOperationException() ~UnknownMathOperationException() ~UnknownMathOperationException() throwthrowthrowthrow();();();();
};};};};

#endif#endif#endif#endif

UnknownMathOperationException.cpp

#include#include#include#include "UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h"

UnknownMathOperationException::UnknownMathOperationException() {UnknownMathOperationException::UnknownMathOperationException() {UnknownMathOperationException::UnknownMathOperationException() {UnknownMathOperationException::UnknownMathOperationException() {
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 162 Author: Brett L. Schuchert (schuchert@yahoo.com)

UnknownMathOperationException::~UnknownMathOperationException() UnknownMathOperationException::~UnknownMathOperationException() UnknownMathOperationException::~UnknownMathOperationException() UnknownMathOperationException::~UnknownMathOperationException() throwthrowthrowthrow
(){(){(){(){
}}}}

To get this test to pass, we need to update the execute method:

#include#include#include#include "UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h"
voidvoidvoidvoid RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(constconstconstconst std::std::std::std::stringstringstringstring &operatorName) {&operatorName) {&operatorName) {&operatorName) {
 ifififif (op(op(op(operatorName == eratorName == eratorName == eratorName == "+""+""+""+") {) {) {) {

 } } } } elseelseelseelse {{{{
 throwthrowthrowthrow UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();
 }}}}
}}}}

This is an example of closing down an API to changes at the expense of runtime
checking. This is often a hard sell. Try it and see if it fits. It is often overkill. If you have
a small number of named methods, 5, 10, maybe having a larger API makes sense.
Eventually, the changing API becomes a burden. In our case we only have 4, but we
know two things:

● There are more on the way – even in this first “release”
● We are going to want macros as well; this API supports the execution of macros in

the same way as the built-in operations, which was a stated requirement.

4.18 Long Method

A long method might be one that has a large number of lines. While the execute() method
is not long in terms of number of lines yet, it will be. Another interpretation of Long
Method is one that exists at different levels of abstraction. Finally, a method that does
three different things is long even if it doesn’t have a lot of lines:

● Mapping – a string to a MathOperation
● Construction – instantiates a MathOperation to perform the work
● Delegation – sends a message to a MathOperation to actually do the work

Independent of that, however, is this notion of mapping from a string to an object. This is
a common problem that arises at the boundary of a system. The RpnCalculator class is a
controller object; it waits for systems events or messages from actors. There is yet
another design pattern to solve this exact problem: Abstract Factory
(http://en.wikipedia.org/wiki/Abstract_factory_pattern). The abstract factory pattern
typically serves to build a suite of objects for a given environment. In our case we want to
select from one of many objects for a string. We can move towards such a solution by
first extracting the part of the method that does the selection from the part that does the
execution. Once we’ve done that, we can extract a class to do that work.

Here is a stab at such a refactoring:

Copy the entire method and make it a function:

voidvoidvoidvoid findOperationNamed(findOperationNamed(findOperationNamed(findOperationNamed(constconstconstconst std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {
 ifififif (operatorName == (operatorName == (operatorName == (operatorName == "+""+""+""+") {) {) {) {
 Add op;Add op;Add op;Add op;
 op.perform(values);op.perform(values);op.perform(values);op.perform(values);

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 163 Author: Brett L. Schuchert (schuchert@yahoo.com)

 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == """"----"""") {) {) {) {
 Subtract op;Subtract op;Subtract op;Subtract op;
 op.perform(values);op.perform(values);op.perform(values);op.perform(values);
 } } } } elelelelsesesese ifififif (operatorName == (operatorName == (operatorName == (operatorName == "!""!""!""!") {) {) {) {
 Factorial op;Factorial op;Factorial op;Factorial op;
 op.perform(values);op.perform(values);op.perform(values);op.perform(values);
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == "drop""drop""drop""drop") {) {) {) {
 Drop op;Drop op;Drop op;Drop op;
 op.perform(values);op.perform(values);op.perform(values);op.perform(values);
 } } } } elseelseelseelse {{{{
 throwthrowthrowthrow UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();
 }}}}
}}}}

This won’t compile as it refers to values, which is member data. However don’t want to
both select and perform, so remove all references to that member data:

MathOperation& findOperationNamed(MathOperation& findOperationNamed(MathOperation& findOperationNamed(MathOperation& findOperationNamed(constconstconstconst std::string &operatorName){std::string &operatorName){std::string &operatorName){std::string &operatorName){
 ifififif (operatorName == (operatorName == (operatorName == (operatorName == "+""+""+""+") {) {) {) {
 Add op;Add op;Add op;Add op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse ifififif (operatorN(operatorN(operatorN(operatorName == ame == ame == ame == """"----"""") {) {) {) {
 Subtract op;Subtract op;Subtract op;Subtract op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == "!""!""!""!") {) {) {) {
 Factorial op;Factorial op;Factorial op;Factorial op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == "drop""drop""drop""drop") {) {) {) {
 Drop op;Drop op;Drop op;Drop op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse {{{{
 throwthrowthrowthrow UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();
 }}}}
}}}}

This function compiles with warnings (or maybe errors – somewhat compiler dependent).
The code returns reference to temporary objects. In the first project we saw a quick way
to get this working using the static keyword. Let’s do that here:

MathOperation& findOperationNMathOperation& findOperationNMathOperation& findOperationNMathOperation& findOperationNamed(amed(amed(amed(constconstconstconst std::string &operatorName){std::string &operatorName){std::string &operatorName){std::string &operatorName){
 ifififif (operatorName == (operatorName == (operatorName == (operatorName == "+""+""+""+") {) {) {) {
 staticstaticstaticstatic Add op;Add op;Add op;Add op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == """"----"""") {) {) {) {
 staticstaticstaticstatic Subtract op;Subtract op;Subtract op;Subtract op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == "!""!""!""!") {) {) {) {
 staticstaticstaticstatic Factorial op;Factorial op;Factorial op;Factorial op;
 returnreturnreturnreturn op;op;op;op;
 }}}} elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == "drop""drop""drop""drop") {) {) {) {
 staticstaticstaticstatic Drop op;Drop op;Drop op;Drop op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse {{{{

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 164 Author: Brett L. Schuchert (schuchert@yahoo.com)

 throwthrowthrowthrow UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();
 }}}}
}}}}

Now we can update the execute() method to use it:

voidvoidvoidvoid RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(constconstconstconst std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {
 MathOperatMathOperatMathOperatMathOperation &op = findOperationNamed(operatorName);ion &op = findOperationNamed(operatorName);ion &op = findOperationNamed(operatorName);ion &op = findOperationNamed(operatorName);
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););
}}}}

All checks should be passing. This method is now closed to new operations. Meaning, as
new math operations are added, this code does not need to change. The code in the
extracted function does, but we’ll fix that as well. Before we do, however, it is time to
move that code into its own class.

4.19 A Concrete Factory

As written, the findOperationNamed() function can become a member function simply by
copying it as is. You might be tempted to make it a static method, but do not. Generally,
static methods make writing automated checks more difficult. Why? If you need to swap
one out at runtime for a particular check, it’s not possible in the language to do so. You
can link in a different version of the static method and there are other things you can do
as well. Even so, what might seem convenient is really asking for trouble as the road to
hell (supporting legacy code) is paved with conveniences.

Here’s a simple extract class refactoring applied to that code:

MathOperationFactory.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef MATHOPERATIONFACTORY_H_MATHOPERATIONFACTORY_H_MATHOPERATIONFACTORY_H_MATHOPERATIONFACTORY_H_
#define#define#define#define MATHOPERATIONFACTORY_H_MATHOPERATIONFACTORY_H_MATHOPERATIONFACTORY_H_MATHOPERATIONFACTORY_H_

#include#include#include#include <string><string><string><string>
classclassclassclass MathOperation;MathOperation;MathOperation;MathOperation;

classclassclassclass MathOperationFactory {MathOperationFactory {MathOperationFactory {MathOperationFactory {
publicpublicpublicpublic::::
 MathOperationFactory();MathOperationFactory();MathOperationFactory();MathOperationFactory();
 virtualvirtualvirtualvirtual ~MathOperationFactory();~MathOperationFactory();~MathOperationFactory();~MathOperationFactory();
 virtvirtvirtvirtualualualual MathOperation&MathOperation&MathOperation&MathOperation&
 findOperationNamed(findOperationNamed(findOperationNamed(findOperationNamed(constconstconstconst std::string &name);std::string &name);std::string &name);std::string &name);
};};};};

#endif#endif#endif#endif

MathOperationFactory.cpp

#include#include#include#include "MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h"

#include#include#include#include "UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h"
#include#include#include#include "Add.h""Add.h""Add.h""Add.h"
#include#include#include#include "Subtract.h""Subtract.h""Subtract.h""Subtract.h"
#include#include#include#include "Drop.h"Drop.h"Drop.h"Drop.h""""

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 165 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include "Factorial.h""Factorial.h""Factorial.h""Factorial.h"

MathOperationFactory::MathOperationFactory() { }MathOperationFactory::MathOperationFactory() { }MathOperationFactory::MathOperationFactory() { }MathOperationFactory::MathOperationFactory() { }
MathOperationFactory::~MathOperationFactory() { }MathOperationFactory::~MathOperationFactory() { }MathOperationFactory::~MathOperationFactory() { }MathOperationFactory::~MathOperationFactory() { }

MathOperationMathOperationMathOperationMathOperation& MathOperationFactory::findOperationNamed(& MathOperationFactory::findOperationNamed(& MathOperationFactory::findOperationNamed(& MathOperationFactory::findOperationNamed(
 constconstconstconst std::std::std::std::stringstringstringstring &operatorName) {&operatorName) {&operatorName) {&operatorName) {
 ifififif (operatorName == (operatorName == (operatorName == (operatorName == "+""+""+""+") {) {) {) {
 staticstaticstaticstatic AddAddAddAdd op;op;op;op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == """"----"""") {) {) {) {
 staticstaticstaticstatic SubtractSubtractSubtractSubtract op;op;op;op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == "!""!""!""!") {) {) {) {
 staticstaticstaticstatic FactorialFactorialFactorialFactorial op;op;op;op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == "drop""drop""drop""drop") {) {) {) {
 statstatstatstaticicicic DropDropDropDrop op;op;op;op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse {{{{
 throwthrowthrowthrow UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();
 }}}}
}}}}

4.19.1 Actually using the factory

The class is easily extracted – we copied some code, but it while it compiles and links, it
is not getting used. This factory class should be a dependent object in the RpnCalculator
class. Traditionally, the abstract factory pattern, which we are yet to fully follow since we
do not have an abstract class, has variations. We don’t have a need for variations yet, but
it might come up. To follow that pattern, we should hook the factory back into the
calculator in a way that allows for overriding.

We do not have to do this, however all the patterns in the Design Patterns book were
found in real applications so to not follow something that has worked seems a bit “not
build here” ish. An intermediate compromise is to store a pointer and use new and delete
for now. Later, if we find a need for variations on the factory, we can introduce an
interface and change the pointer type.

With this in mind, here is an updated version of RpnCalculator:

RpnCalculator.h

classclassclassclass MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory;;;;

classclassclassclass RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator {{{{

privateprivateprivateprivate::::
 RpnStackRpnStackRpnStackRpnStack valuesvaluesvaluesvalues;;;;
 MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory ****factoryfactoryfactoryfactory;;;;

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 166 Author: Brett L. Schuchert (schuchert@yahoo.com)

RpnCalculator.cpp (the whole thing as it has shrunk)

#include#include#include#include "RpnCalculator.h""RpnCalculator.h""RpnCalculator.h""RpnCalculator.h"
#in#in#in#includecludecludeclude "MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h"
#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"
RpnCalculator::RpnCalculator() RpnCalculator::RpnCalculator() RpnCalculator::RpnCalculator() RpnCalculator::RpnCalculator()
 : : : : factoryfactoryfactoryfactory((((newnewnewnew MathOperationFactory) {MathOperationFactory) {MathOperationFactory) {MathOperationFactory) {
}}}}

RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {
 deletedeletedeletedelete factoryfactoryfactoryfactory;;;;
}}}}

voidvoidvoidvoid RpnCalculator::enter(RpnCalculator::enter(RpnCalculator::enter(RpnCalculator::enter(intintintint value) {value) {value) {value) {
 valuesvaluesvaluesvalues.push(value);.push(value);.push(value);.push(value);
}}}}

intintintint RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() RpnCalculator::getX() constconstconstconst {{{{
 returnreturnreturnreturn valuesvaluesvaluesvalues.top();.top();.top();.top();
}}}}

voidvoidvoidvoid RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(constconstconstconst std::std::std::std::stringstringstringstring &operatorName) {&operatorName) {&operatorName) {&operatorName) {
 MathOperationMathOperationMathOperationMathOperation &op = &op = &op = &op = factoryfactoryfactoryfactory---->findOperationNamed(operatorName);>findOperationNamed(operatorName);>findOperationNamed(operatorName);>findOperationNamed(operatorName);
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););
}}}}

Notice that because we chose a pointer, the header file only mentions the type in a
forward declare rather than including the header file. That’s a good thing. Minimizing
header file inclusion in other header files leads to more maintainable systems.

4.20 Retargeting Automated Checks

Something that should happen as you refactor code with existing automated checks is
checking to see if they are still against the right class. How do you know?

In general, the “closer” an automated check is to the thing it is checking, the simpler and
more focused it can be. For example, consider the following automated check:

TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {TEST(RpnCalculatorShould, AddWhenTheresASingleValue) {
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("+""+""+""+"););););
 LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

What is this checking exactly? It appears to be checking that there will be values
available to the “+” Math Operation even when values have not been entered. Remember
that we introduce the RpnStack class to handle that. In fact, we have the following test to
make sure that is the case:

TEST(RpnStackShould, HaveAToTEST(RpnStackShould, HaveAToTEST(RpnStackShould, HaveAToTEST(RpnStackShould, HaveATopAfterCreation) {pAfterCreation) {pAfterCreation) {pAfterCreation) {
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, valuesvaluesvaluesvalues---->top());>top());>top());>top());
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 167 Author: Brett L. Schuchert (schuchert@yahoo.com)

Since we know that an RpnStack will always have values and we know that the
RpnCalcualtor in face uses RpnStack, are we safe in assuming that the above check is no
longer necessary?

The answer is, “it depends.” If you view what you are doing as strictly black-box, than
you need both checks. This is a tricky question with no clear answer. If we treat what we
are doing as a way to:

● Drive development
● Reduce the risk of releasing a defect into the wild

Then it might be OK.

If you think we should have the check, then it seems we should have that check for every
operation, which is currently: add, subtract, drop and factorial. In fact we should have it
for every future operation as well. Maybe a reasonable middle ground is one or two
smoke-like tests that verify the basic feature is in fact there but not do it for all
operations.

What about moving the checks for each operation into an a specific source folder for each
Operation? E.g., AddShould, SubtractShould, FactorialShould, DropShould?

This seems like the right place to put it, however what about making sure the actual
operations are in the factory? Should that be in the factory, the calculator or with the
checks on the math operation itself? Is the calculator responsible for knowing which
operations it supports? Does it even know its supported operations?

There are no clear answers to these questions. If we check in the first place, that’s a great
thing. If we have duplicated checks, that is probably better than no checks. Duplicated
checks, however, represent waste or inertia against refactoring. Checking the same thing
multiple times really doesn’t add to a sense of security about the system.

Even though there is no clear answer, I want to put a stake in the ground for this project.
Here are a few recommendations:

● Examples created at the beginning of the overall effort (sprint) will have direct
corollaries in automated checks. Essentially we will treat these as Rejection Checks
(acceptance tests in older terminology).

● We will create automated checks for each production class. We are currently missing
several.

● One case where we may deviate is not writing direct checks against exception classes.
If those classes have logic, sure. Right now we simply instantiate and throw them.
That’s not worth checking directly; it’s built into the langugae.

This will lead to duplication of some checks but in many cases we might be able to more
directly check the inner classes differently, so they won’t be direct copies.

Given this set of rules, it is now time to remediate checks. In the current solution, we are
missing direct checks against the following classes: Add, Drop, Factorial,
MathOperation, MathOperationFactory, and Subtract. That’s quite a list, no better time
than now to plant a tree.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 168 Author: Brett L. Schuchert (schuchert@yahoo.com)

4.20.1 Add

Before we write an automated check for add, we need to ask a question: Should we check
against the API published in MathOperation or BinaryMathOperation? The only thing
that is essential is the calculate() method, so that seems more direct. It happens to be
public, so we can do that. Is that a reasonable thing to have done? Personally, I like
public extension points precisely because I can check closer to the thing I care about.
That being said, this is a point of contention for many people. In C++ I could have made
the method public, private or protected; virtual-ness is orthogonal to access. If the method
were protected, would I consider making it public to make checking easier? In C++ I
would make the methods public. In Java I would not have to because access rules are
different. So I am going to check Add through its calculate method because I can:

AddShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Add.h""Add.h""Add.h""Add.h"
TEST_GROUP(AddShould) {TEST_GROUP(AddShould) {TEST_GROUP(AddShould) {TEST_GROUP(AddShould) {
 AddAddAddAdd opopopop;;;;
};};};};

TEST(AddShould, AddTwoNumbers) {TEST(AddShould, AddTwoNumbers) {TEST(AddShould, AddTwoNumbers) {TEST(AddShould, AddTwoNumbers) {
 LONGS_EQUAL(12, LONGS_EQUAL(12, LONGS_EQUAL(12, LONGS_EQUAL(12, opopopop.calculate(5, 7));.calculate(5, 7));.calculate(5, 7));.calculate(5, 7));
}}}}

This is simple and direct. What about verifying that Add is registered in the Factory? This
is again something for which there is no definitive answer. This is something worth
checking. If we put the check here, we have all of the checks associated with the work on
Add in one place. We could put the check in another place, say:
RegisteredOperationsAre.cpp. That opens that file up to continual changes and, more
importantly, it becomes a bottleneck. We could create a second check source file such as
AddRegistered.cpp. This keeps it small and focused and it really is a separate concern.
This increased the number of files but once written, that file won’t need to be recompiled
say if we decide to add another check for Add. That seems like the way to go:

AddShouldBeRegistered.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Add.h""Add.h""Add.h""Add.h"
#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"
#include#include#include#include "MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h"

#include#include#include#include <typeinfo><typeinfo><typeinfo><typeinfo>
TEST_GROUP(AddShouldBeRegistered){};TEST_GROUP(AddShouldBeRegistered){};TEST_GROUP(AddShouldBeRegistered){};TEST_GROUP(AddShouldBeRegistered){};

TEST(AddShouldBeRegistereTEST(AddShouldBeRegistereTEST(AddShouldBeRegistereTEST(AddShouldBeRegistered, IsIt) {d, IsIt) {d, IsIt) {d, IsIt) {
 MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory factory;factory;factory;factory;
 MathOperationMathOperationMathOperationMathOperation &op = factory.findOperationNamed(&op = factory.findOperationNamed(&op = factory.findOperationNamed(&op = factory.findOperationNamed("+""+""+""+"););););
 CHECK(CHECK(CHECK(CHECK(typeidtypeidtypeidtypeid(op) == (op) == (op) == (op) == typeidtypeidtypeidtypeid((((AddAddAddAdd));));));));
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 169 Author: Brett L. Schuchert (schuchert@yahoo.com)

This check verifies that Add is registered as “+” and that the actual type is correct. This
may seem like a bit of duplication; however we can either use a base class, utility class or
macro to remove all of the duplication. We will do that after in just a bit.

4.20.2 Drop

Unlike Add, Drop directly inherits from MathOperation. To check it, we will need to use
an RpnStack.

DropShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Drop.h""Drop.h""Drop.h""Drop.h"
#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

TEST_GROUP(DropShould) {TEST_GROUP(DropShould) {TEST_GROUP(DropShould) {TEST_GROUP(DropShould) {
};};};};

TEST(DropShould, DecreaseStackSizeByOne) {TEST(DropShould, DecreaseStackSizeByOne) {TEST(DropShould, DecreaseStackSizeByOne) {TEST(DropShould, DecreaseStackSizeByOne) {
 RpnStackRpnStackRpnStackRpnStack values;values;values;values;
 values.push(4);values.push(4);values.push(4);values.push(4);
 values.push(2);values.push(2);values.push(2);values.push(2);
 DropDropDropDrop op;op;op;op;
 op.perform(values);op.perform(values);op.perform(values);op.perform(values);
 LONGS_EQUALLONGS_EQUALLONGS_EQUALLONGS_EQUAL(1, values.size());(1, values.size());(1, values.size());(1, values.size());
}}}}

ShouldBeRegistered.h

This is a bit unwieldy. Even so, it removes duplication so I’m going with it.

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef SHOULDBEREGISTERED_H_SHOULDBEREGISTERED_H_SHOULDBEREGISTERED_H_SHOULDBEREGISTERED_H_
#define#define#define#define SHOULDBEREGISTERED_H_SHOULDBEREGISTERED_H_SHOULDBEREGISTERED_H_SHOULDBEREGISTERED_H_

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>
#include#include#include#include <typeinfo><typeinfo><typeinfo><typeinfo>
#includ#includ#includ#includeeee "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"
#include#include#include#include "MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h"
#include#include#include#include "UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h"

#define#define#define#define CHECK_REGISTRATION(ClassName, OperationName) CHECK_REGISTRATION(ClassName, OperationName) CHECK_REGISTRATION(ClassName, OperationName) CHECK_REGISTRATION(ClassName, OperationName) \\\\
TEST_GROUP(ClassNameTEST_GROUP(ClassNameTEST_GROUP(ClassNameTEST_GROUP(ClassName########ShouldBeRegistered){}; ShouldBeRegistered){}; ShouldBeRegistered){}; ShouldBeRegistered){}; \\\\
\\\\
TEST(ClassNameTEST(ClassNameTEST(ClassNameTEST(ClassName########ShouldBeRegistered, IsIt) { ShouldBeRegistered, IsIt) { ShouldBeRegistered, IsIt) { ShouldBeRegistered, IsIt) { \\\\
 trytrytrytry { { { { \\\\
 MathOperationFactory factory; MathOperationFactory factory; MathOperationFactory factory; MathOperationFactory factory; \\\\
 MathOperation &op = factory.findOperationNamed(OperationName);MathOperation &op = factory.findOperationNamed(OperationName);MathOperation &op = factory.findOperationNamed(OperationName);MathOperation &op = factory.findOperationNamed(OperationName);\\\\
 CHECK(CHECK(CHECK(CHECK(typeidtypeidtypeidtypeid(op) == (op) == (op) == (op) == typeidtypeidtypeidtypeid(ClassName)); (ClassName)); (ClassName)); (ClassName)); \\\\
 } } } } catchcatchcatchcatch(UnknownMathOperationException &e) { (UnknownMathOperationException &e) { (UnknownMathOperationException &e) { (UnknownMathOperationException &e) { \\\\
 FAIL(#ClassName FAIL(#ClassName FAIL(#ClassName FAIL(#ClassName " not registered as "" not registered as "" not registered as "" not registered as " OperationName); OperationName); OperationName); OperationName); \\\\
 } } } } \\\\
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 170 Author: Brett L. Schuchert (schuchert@yahoo.com)

#endif#endif#endif#endif

DropShouldBeRegistered.cpp

The result of using the macro seems good:

#include#include#include#include "Drop.h""Drop.h""Drop.h""Drop.h"
#include#include#include#include "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"

CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(DropDropDropDrop, , , , "drop""drop""drop""drop"))))

You can also update AddShouldBeRegistered to use this macro as well:

#include#include#include#include "Add.h""Add.h""Add.h""Add.h"
#in#in#in#includecludecludeclude "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"

CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(AddAddAddAdd, , , , "+""+""+""+"))))

4.20.3 Factorial

Like Drop, Factorial requires an RpnStack to check it:

FactorialShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Factorial.h""Factorial.h""Factorial.h""Factorial.h"
#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

TEST_GROUP(FactorialShould) {TEST_GROUP(FactorialShould) {TEST_GROUP(FactorialShould) {TEST_GROUP(FactorialShould) {
}}}};;;;

TEST(FactorialShould, Calculate120For5) {TEST(FactorialShould, Calculate120For5) {TEST(FactorialShould, Calculate120For5) {TEST(FactorialShould, Calculate120For5) {
 RpnStackRpnStackRpnStackRpnStack values;values;values;values;
 values.push(5);values.push(5);values.push(5);values.push(5);
 Factorial().perform(values);Factorial().perform(values);Factorial().perform(values);Factorial().perform(values);
 LONGS_EQUAL(120, values.top());LONGS_EQUAL(120, values.top());LONGS_EQUAL(120, values.top());LONGS_EQUAL(120, values.top());
}}}}

TEST(FactorialShould, ConsumeValueWhenValueLessThan0) {TEST(FactorialShould, ConsumeValueWhenValueLessThan0) {TEST(FactorialShould, ConsumeValueWhenValueLessThan0) {TEST(FactorialShould, ConsumeValueWhenValueLessThan0) {
 RpnStackRpnStackRpnStackRpnStack values;values;values;values;
 values.push(values.push(values.push(values.push(----1);1);1);1);
 Factorial(Factorial(Factorial(Factorial().perform(values);).perform(values);).perform(values);).perform(values);
 LONGS_EQUAL(0, values.size());LONGS_EQUAL(0, values.size());LONGS_EQUAL(0, values.size());LONGS_EQUAL(0, values.size());
}}}}

TEST(FactorialShould, Calculate1For0) {TEST(FactorialShould, Calculate1For0) {TEST(FactorialShould, Calculate1For0) {TEST(FactorialShould, Calculate1For0) {
 RpnStackRpnStackRpnStackRpnStack values;values;values;values;
 Factorial().perform(values);Factorial().perform(values);Factorial().perform(values);Factorial().perform(values);
 LONGS_EQUAL(1, values.top());LONGS_EQUAL(1, values.top());LONGS_EQUAL(1, values.top());LONGS_EQUAL(1, values.top());
}}}}

FactorialSholdBeRegistered.cpp

#include#include#include#include "Factorial.h""Factorial.h""Factorial.h""Factorial.h"
#include#include#include#include "ShouldBeRegis"ShouldBeRegis"ShouldBeRegis"ShouldBeRegistered.h"tered.h"tered.h"tered.h"

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 171 Author: Brett L. Schuchert (schuchert@yahoo.com)

CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(FactorialFactorialFactorialFactorial, , , , "!""!""!""!"););););

4.20.4 MathOperation

MathOperation has no implementation. It is the closest thing C++ has to an interface.
This is another exception to our simple set of rules.

4.20.5 MathOperationFactory

Given that we’ve decided to check registration of operations in other places, what is left
for this class? Right now it throws an exception when an operation is not found, so that
will do for now. As we grow our system, there will be opportunities to add features. As a
result, we will add additional automated checks.

MathOperatorFactoryShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h"
#include#include#include#include "UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h"

TEST_GROUP(MathOperationFactoryShould) {TEST_GROUP(MathOperationFactoryShould) {TEST_GROUP(MathOperationFactoryShould) {TEST_GROUP(MathOperationFactoryShould) {
};};};};

TEST(MathOperationFactoryShould,TEST(MathOperationFactoryShould,TEST(MathOperationFactoryShould,TEST(MathOperationFactoryShould,
 ThrowExcpeptionForUnknownOperation) {ThrowExcpeptionForUnknownOperation) {ThrowExcpeptionForUnknownOperation) {ThrowExcpeptionForUnknownOperation) {
 MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory factory;factory;factory;factory;

 trytrytrytry {{{{
 factory.findOperationNamed(factory.findOperationNamed(factory.findOperationNamed(factory.findOperationNamed(""""--------bad_unknownbad_unknownbad_unknownbad_unknown--------""""););););
 FAIL(FAIL(FAIL(FAIL("Should have thrown exception""Should have thrown exception""Should have thrown exception""Should have thrown exception"););););
 } } } } catchcatchcatchcatch((((UnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationException &) {&) {&) {&) {
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
 }}}}
}}}}

4.20.6 Subtract

There is nothing new for Subtract:

SubtractShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Subtract.h""Subtract.h""Subtract.h""Subtract.h"
TEST_GROUP(SubtractShould) {TEST_GROUP(SubtractShould) {TEST_GROUP(SubtractShould) {TEST_GROUP(SubtractShould) {
};};};};

TEST(SubtractShould, SubtractTwoNumbers) {TEST(SubtractShould, SubtractTwoNumbers) {TEST(SubtractShould, SubtractTwoNumbers) {TEST(SubtractShould, SubtractTwoNumbers) {
 LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(----2, Subtract().calculate(5, 7));2, Subtract().calculate(5, 7));2, Subtract().calculate(5, 7));2, Subtract().calculate(5, 7));
}}}}

SubtractShouldBeRegistered.cpp

#include#include#include#include "Subtract.h""Subtract.h""Subtract.h""Subtract.h"
#include#include#include#include "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 172 Author: Brett L. Schuchert (schuchert@yahoo.com)

CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(SubtractSubtractSubtractSubtract, , , , """"----""""))))

4.21 Adding Multiplication

We have finished remediation for now. Should we have considered doing this as we
refactored the code? Yes. This is going to happen. On the plus side, all of the refactoring
was supported by existing tests.

The automated check for Multiplication looks much like Add:

MultiplicationShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Multiplication.h""Multiplication.h""Multiplication.h""Multiplication.h"
TEST_GROUP(MultiplicatiTEST_GROUP(MultiplicatiTEST_GROUP(MultiplicatiTEST_GROUP(MultiplicationShould) { };onShould) { };onShould) { };onShould) { };

TEST(MultiplicationShould, MultiplicationTwoNumbers) {TEST(MultiplicationShould, MultiplicationTwoNumbers) {TEST(MultiplicationShould, MultiplicationTwoNumbers) {TEST(MultiplicationShould, MultiplicationTwoNumbers) {
 LONGS_EQUAL(35, Multiplication().calculate(5, 7));LONGS_EQUAL(35, Multiplication().calculate(5, 7));LONGS_EQUAL(35, Multiplication().calculate(5, 7));LONGS_EQUAL(35, Multiplication().calculate(5, 7));
}}}}

We need to write the Multiplication class. It looks like Add or Subtract:

Multiplication.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef MULTIPLICATION_H_MULTIPLICATION_H_MULTIPLICATION_H_MULTIPLICATION_H_
#define#define#define#define MULTIPLICATION_H_MULTIPLICATION_H_MULTIPLICATION_H_MULTIPLICATION_H_

#include#include#include#include "BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h"

classclassclassclass MultiplicationMultiplicationMultiplicationMultiplication : : : : publicpublicpublicpublic BinaryMathOperationBinaryMathOperationBinaryMathOperationBinaryMathOperation {{{{
publicpublicpublicpublic::::
 intintintint calculate(calculate(calculate(calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs);rhs);rhs);rhs);
};};};};

#endif#endif#endif#endif

Multiplication.cpp

#include#include#include#include "Multiplication.h""Multiplication.h""Multiplication.h""Multiplication.h"

intintintint Multiplication::calculate(Multiplication::calculate(Multiplication::calculate(Multiplication::calculate(intintintint lhs, lhs, lhs, lhs, inininintttt rhs) {rhs) {rhs) {rhs) {
 returnreturnreturnreturn lhs * rhs;lhs * rhs;lhs * rhs;lhs * rhs;
}}}}

For this to be usable by the calculator, it must be registered:

MultiplicationShouldBeRegistered.cpp

#include#include#include#include "Multiplication.h""Multiplication.h""Multiplication.h""Multiplication.h"
#include#include#include#include "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"

CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(MultiplicationMultiplicationMultiplicationMultiplication, , , , "*""*""*""*"))))

For this to pass, you will need to update MathOperationFactory.cpp:

#include#include#include#include "Multiplication.h""Multiplication.h""Multiplication.h""Multiplication.h"
............

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 173 Author: Brett L. Schuchert (schuchert@yahoo.com)

MathOperationMathOperationMathOperationMathOperation& MathOperationFactory::findOperationNamed(& MathOperationFactory::findOperationNamed(& MathOperationFactory::findOperationNamed(& MathOperationFactory::findOperationNamed(
 constconstconstconst std::std::std::std::stringstringstringstring &operatorName) {&operatorName) {&operatorName) {&operatorName) {
 ifififif (operatorName == (operatorName == (operatorName == (operatorName == "+""+""+""+") {) {) {) {

 } } } } elseelseelseelse ifififif (opera(opera(opera(operatorName == torName == torName == torName == "*""*""*""*") {) {) {) {
 staticstaticstaticstatic MultiplicationMultiplicationMultiplicationMultiplication op;op;op;op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse {{{{
 throwthrowthrowthrow UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();
 }}}}

To finish Multiplication, we need to add the missing checks from the preliminary
rejection checks. We wrote this bottom-up and checked both the functionality of
Multiplication as well as its registration, so these acceptance checks should pass:

Added to RpnCalculatorShould.cpp

TEST(RpnCalculatorShould, BeAbleToMultiplyTwoNumbes) {TEST(RpnCalculatorShould, BeAbleToMultiplyTwoNumbes) {TEST(RpnCalculatorShould, BeAbleToMultiplyTwoNumbes) {TEST(RpnCalculatorShould, BeAbleToMultiplyTwoNumbes) {
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatcalculatcalculatcalculatorororor---->execute(>execute(>execute(>execute("*""*""*""*"););););
 LONGS_EQUAL(16, LONGS_EQUAL(16, LONGS_EQUAL(16, LONGS_EQUAL(16, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

TEST(RpnCalculatorShould, MultiplyWhenTheresASingleValue) {TEST(RpnCalculatorShould, MultiplyWhenTheresASingleValue) {TEST(RpnCalculatorShould, MultiplyWhenTheresASingleValue) {TEST(RpnCalculatorShould, MultiplyWhenTheresASingleValue) {
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("*""*""*""*"););););
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

4.22 Adding Division

Division is similar to the other BinaryOperators, though there is one additional test,
divide by Zero. We’ll start with the happy path first and add the divide by zero check
second:

DivisionShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Division.h""Division.h""Division.h""Division.h"
TEST_GROUP(DivisionShould)TEST_GROUP(DivisionShould)TEST_GROUP(DivisionShould)TEST_GROUP(DivisionShould) {{{{
 DivisionDivisionDivisionDivision opopopop;;;;
};};};};

TEST(DivisionShould, DivideTwoNumbers) {TEST(DivisionShould, DivideTwoNumbers) {TEST(DivisionShould, DivideTwoNumbers) {TEST(DivisionShould, DivideTwoNumbers) {
 LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, opopopop.calculate(15, 3));.calculate(15, 3));.calculate(15, 3));.calculate(15, 3));
}}}}

We need to create the Division class for this to pass:

Division.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef DIVISION_H_DIVISION_H_DIVISION_H_DIVISION_H_

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 174 Author: Brett L. Schuchert (schuchert@yahoo.com)

#define#define#define#define DIVISION_H_DIVISION_H_DIVISION_H_DIVISION_H_

#include#include#include#include "BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h"

classclassclassclass Division : Division : Division : Division : publicpublicpublicpublic BinaryMathOperation {BinaryMathOperation {BinaryMathOperation {BinaryMathOperation {
publicpublicpublicpublic::::
 intintintint calculate(calculate(calculate(calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs);rhs);rhs);rhs);
};};};};

#endif#endif#endif#endif

Division.cpp

#include#include#include#include "Division.h""Division.h""Division.h""Division.h"

intintintint Division::calculate(Division::calculate(Division::calculate(Division::calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs) {rhs) {rhs) {rhs) {
 returnreturnreturnreturn lhs / rhs;lhs / rhs;lhs / rhs;lhs / rhs;
}}}}

Once this test passes, it’s time to add a check for dividing by zero:

DivisionShould.cpp

#include#include#include#include "DivideByZeroException.h""DivideByZeroException.h""DivideByZeroException.h""DivideByZeroException.h"
TEST(DivisionShould, ThrowExceptionForDivideByZero) {TEST(DivisionShould, ThrowExceptionForDivideByZero) {TEST(DivisionShould, ThrowExceptionForDivideByZero) {TEST(DivisionShould, ThrowExceptionForDivideByZero) {
 trytrytrytry {{{{
 opopopop.calculate(1, 0);.calculate(1, 0);.calculate(1, 0);.calculate(1, 0);
 FAIL(FAIL(FAIL(FAIL("Should have thrown DivideByZeroException""Should have thrown DivideByZeroException""Should have thrown DivideByZeroException""Should have thrown DivideByZeroException"););););
 } } } } catchcatchcatchcatch ((((DivideByZeroExceptionDivideByZeroExceptionDivideByZeroExceptionDivideByZeroException &) {&) {&) {&) {
 CHCHCHCHECK(1);ECK(1);ECK(1);ECK(1);
 }}}}
}}}}

DivideByZeroExceptoin.h (note, no .cpp)

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef DIVIDEBYZEROEXCEPTION_H_DIVIDEBYZEROEXCEPTION_H_DIVIDEBYZEROEXCEPTION_H_DIVIDEBYZEROEXCEPTION_H_
#define#define#define#define DIVIDEBYZEROEXCEPTION_H_DIVIDEBYZEROEXCEPTION_H_DIVIDEBYZEROEXCEPTION_H_DIVIDEBYZEROEXCEPTION_H_

#include#include#include#include <exception><exception><exception><exception>

classclassclassclass DivideByZeroExceptionDivideByZeroExceptionDivideByZeroExceptionDivideByZeroException : : : : publicpublicpublicpublic std::std::std::std::exceptionexceptionexceptionexception {{{{
};};};};

#endif#endif#endif#endif

The automated check will fail. Note that how it fails is somewhat platform dependent. On
my platform, the entire test suite simply stops running. You will need to update
Divide.cpp:

Updated Division.cpp

#include#include#include#include "Division.h""Division.h""Division.h""Division.h"

#include#include#include#include "DivideByZeroException.h""DivideByZeroException.h""DivideByZeroException.h""DivideByZeroException.h"
intintintint Division::calculate(Division::calculate(Division::calculate(Division::calculate(intintintint lhlhlhlhs, s, s, s, intintintint rhs) {rhs) {rhs) {rhs) {

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 175 Author: Brett L. Schuchert (schuchert@yahoo.com)

 ifififif(rhs == 0)(rhs == 0)(rhs == 0)(rhs == 0)
 throwthrowthrowthrow DivideByZeroException();DivideByZeroException();DivideByZeroException();DivideByZeroException();

 returnreturnreturnreturn lhs / rhs;lhs / rhs;lhs / rhs;lhs / rhs;
}}}}

Finally, we need to make sure that Divide is registered in the factory:

DivisionShouldBeRegistered.cpp

#include#include#include#include "Division.h""Division.h""Division.h""Division.h"
#include#include#include#include "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"

CHECK_REGISCHECK_REGISCHECK_REGISCHECK_REGISTRATION(TRATION(TRATION(TRATION(DivisionDivisionDivisionDivision, , , , "/""/""/""/"))))

Update the factory to make to get your check to pass:

#include#include#include#include "Division.h""Division.h""Division.h""Division.h"
............

MathOperationMathOperationMathOperationMathOperation& MathOperationFactory::findOperationNamed(& MathOperationFactory::findOperationNamed(& MathOperationFactory::findOperationNamed(& MathOperationFactory::findOperationNamed(
 constconstconstconst std::std::std::std::stringstringstringstring &operatorName) {&operatorName) {&operatorName) {&operatorName) {
 ifififif (operatorName == (operatorName == (operatorName == (operatorName == "+""+""+""+")))) {{{{

 } } } } elseelseelseelse ifififif (operatorName == (operatorName == (operatorName == (operatorName == "/""/""/""/") {) {) {) {
 staticstaticstaticstatic DivisionDivisionDivisionDivision op;op;op;op;
 returnreturnreturnreturn op;op;op;op;
 } } } } elseelseelseelse {{{{
 throwthrowthrowthrow UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();
 }}}}
}}}}

To complete work on Division, we need to add the missing rejection checks. As with
Multiplication, we’ve worked bottom up so everything should be in place for these
checks to immediately pass:

Added to RpnCalculatorShould.cpp

TEST(RpnCalculatorShould, BeAbleToDivideTwoNumbes) {TEST(RpnCalculatorShould, BeAbleToDivideTwoNumbes) {TEST(RpnCalculatorShould, BeAbleToDivideTwoNumbes) {TEST(RpnCalculatorShould, BeAbleToDivideTwoNumbes) {
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("/""/""/""/"););););
 LONGS_EQUALONGS_EQUALONGS_EQUALONGS_EQUAL(1, L(1, L(1, L(1, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

TEST(RpnCalculatorShould, DivideWhenTheresASingleValue) {TEST(RpnCalculatorShould, DivideWhenTheresASingleValue) {TEST(RpnCalculatorShould, DivideWhenTheresASingleValue) {TEST(RpnCalculatorShould, DivideWhenTheresASingleValue) {
 calculatorcalculatorcalculatorcalculator---->enter(4);>enter(4);>enter(4);>enter(4);
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("/""/""/""/"););););
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

4.23 MathOperationFactory refactoring: Storing Math Oper ations

Notice how you need to keep adding to a long if-then-else structure for every new math
operation? That is somewhat error prone, repetitive, and it won’t support adding new
math operations while the system is running (programmable calculator). There is a simple

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 176 Author: Brett L. Schuchert (schuchert@yahoo.com)

class in the standard library that can do this better, a map. In this section you will migrate
the current solution to use a map. The number of steps may be more than you expect to
keep the code compiling and test passing more often than otherwise:

Updated MathOperationFactory.h: introduce map

#include#include#include#include <map><map><map><map>
classclassclassclass MathOperationMathOperationMathOperationMathOperation;;;;

classclassclassclass MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory {{{{

privateprivateprivateprivate::::
 typedeftypedeftypedeftypedef std::map<std::std::map<std::std::map<std::std::map<std::stringstringstringstring, , , , MathOperationMathOperationMathOperationMathOperation*> *> *> *> OperationMapOperationMapOperationMapOperationMap;;;;
 OperationMapOperationMapOperationMapOperationMap operationsByNameoperationsByNameoperationsByNameoperationsByName;;;;
};};};};

Update MathOperationFactory constructor

MathOperaMathOperaMathOperaMathOperationFactory::MathOperationFactory() {tionFactory::MathOperationFactory() {tionFactory::MathOperationFactory() {tionFactory::MathOperationFactory() {
 operationsByNameoperationsByNameoperationsByNameoperationsByName[[[["+""+""+""+"] =] =] =] = newnewnewnew Add;Add;Add;Add;
 operationsByNameoperationsByNameoperationsByNameoperationsByName[[[[""""----""""] =] =] =] = newnewnewnew Subtract;Subtract;Subtract;Subtract;
 operationsByNameoperationsByNameoperationsByNameoperationsByName[[[["drop""drop""drop""drop"] =] =] =] = newnewnewnew Drop;Drop;Drop;Drop;
 operationsByNameoperationsByNameoperationsByNameoperationsByName[[[["!""!""!""!"] =] =] =] = newnewnewnew Factorial;Factorial;Factorial;Factorial;
 operationsByNameoperationsByNameoperationsByNameoperationsByName[[[["*""*""*""*"] =] =] =] = newnewnewnew Multiplication;Multiplication;Multiplication;Multiplication;
 operationsByNamoperationsByNamoperationsByNamoperationsByNameeee[[[["/""/""/""/"] =] =] =] = newnewnewnew Division;Division;Division;Division;
}}}}

Run your automated check suite. There are many failures; memory leaks are causing
those failures. Update the header file by adding another nested typedef:

classclassclassclass MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory {{{{

privateprivateprivateprivate::::
 typedeftypedeftypedeftypedef std::std::std::std::mapmapmapmap<std::<std::<std::<std::stringstringstringstring, , , , MathOperationMathOperationMathOperationMathOperation*> *> *> *> OperationMapOperationMapOperationMapOperationMap;;;;
 typedeftypedeftypedeftypedef OperationMapOperationMapOperationMapOperationMap::::::::iteratoriteratoriteratoriterator iteratoriteratoriteratoriterator;;;;
 OperationMapOperationMapOperationMapOperationMap operationsByNameoperationsByNameoperationsByNameoperationsByName;;;;
};};};};

Update the destructor to use this new typedef:

MathOperationFactory::~MathOperationFactory() {MathOperationFactory::~MathOperationFactory() {MathOperationFactory::~MathOperationFactory() {MathOperationFactory::~MathOperationFactory() {
 forforforfor(iterator i = (iterator i = (iterator i = (iterator i = operationsByNameoperationsByNameoperationsByNameoperationsByName.begin(); .begin(); .begin(); .begin();
 i != i != i != i != operationsByNameoperationsByNameoperationsByNameoperationsByName.end(); .end(); .end(); .end();
 ++i)++i)++i)++i)
 deletedeletedeletedelete (*i).(*i).(*i).(*i).secondsecondsecondsecond;;;;
}}}}

Now we can update the findOperationNamed method to use the map:

MathOperation& MathOperationFactory::findOperationNamed(MathOperation& MathOperationFactory::findOperationNamed(MathOperation& MathOperationFactory::findOperationNamed(MathOperation& MathOperationFactory::findOperationNamed(
 constconstconstconst std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {
 iterator candidate = iterator candidate = iterator candidate = iterator candidate = operationsByNameoperationsByNameoperationsByNameoperationsByName.find(operatorName);.find(operatorName);.find(operatorName);.find(operatorName);

 ifififif(candidate == (candidate == (candidate == (candidate == operationsByNameoperationsByNameoperationsByNameoperationsByName.end()).end()).end()).end())
 throwthrowthrowthrow UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();UnknownMathOperationException();

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 177 Author: Brett L. Schuchert (schuchert@yahoo.com)

 returnreturnreturnreturn *(*candidate).*(*candidate).*(*candidate).*(*candidate).secondsecondsecondsecond;;;;
}}}}

Now this member function is closed to adding new Math Operations. The constructor is
still an issue, but that’s the subject of the next section.

4.24 MathOperationFactory refactoring: Automatic Math Op eration Registration

Adding a new Math Operation requires several things:

● Create automated check(s) for the behaviour of the math operation
● Create the math operation header and source file
● Create an automated check to verify that the math operation is registered in the

factory
● Update the constructor to add the registration
● Write a rejection check to cover any examples provided at the start of the sprint

We can make registration a bit more automatic, but more importantly, we can make it so
the factory is closed to change when adding new math operations by using a touch of
static magic.

4.24.1 An object for registration

What if we could write a new operation and not have to update the factory? Automatic
registration is possible with a few tricks. One of the standard parts of this trick is to have
a static variable in the body of a method. We have seen this a few times now. However,
now we want to do this for something that is both complex and meant to remain in the
code. We will use a series of automated checks to get to an end product:

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Add.h""Add.h""Add.h""Add.h"
#include#include#include#include "MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h"

TEST_GROUP(MathOperationReTEST_GROUP(MathOperationReTEST_GROUP(MathOperationReTEST_GROUP(MathOperationRegistrantShould) {gistrantShould) {gistrantShould) {gistrantShould) {
};};};};

TEST(MathOperationRegistrantShould, RecordObjectUponCreation) {TEST(MathOperationRegistrantShould, RecordObjectUponCreation) {TEST(MathOperationRegistrantShould, RecordObjectUponCreation) {TEST(MathOperationRegistrantShould, RecordObjectUponCreation) {
 std::std::std::std::stringstringstringstring name(name(name(name("+""+""+""+"););););
 AddAddAddAdd *op = *op = *op = *op = newnewnewnew Add;Add;Add;Add;
 MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant register_add(name, op);register_add(name, op);register_add(name, op);register_add(name, op);

 MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant::::::::iteratoriteratoriteratoriterator candidate =candidate =candidate =candidate =
 register_add.begin()register_add.begin()register_add.begin()register_add.begin();;;;

 CHECK((*candidate).CHECK((*candidate).CHECK((*candidate).CHECK((*candidate).firstfirstfirstfirst == name);== name);== name);== name);
 CHECK((*candidate).CHECK((*candidate).CHECK((*candidate).CHECK((*candidate).secondsecondsecondsecond == op);== op);== op);== op);
}}}}

To get this to pass:

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef MATHOPERATIONREGISTRANT_H_MATHOPERATIONREGISTRANT_H_MATHOPERATIONREGISTRANT_H_MATHOPERATIONREGISTRANT_H_
#define#define#define#define MATHOPERATIONREGISTRANT_H_MATHOPERATIONREGISTRANT_H_MATHOPERATIONREGISTRANT_H_MATHOPERATIONREGISTRANT_H_

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 178 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include <map><map><map><map>
#include#include#include#include <string><string><string><string>
#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"

structstructstructstruct MathOMathOMathOMathOperationRegistrantperationRegistrantperationRegistrantperationRegistrant {{{{
 typedeftypedeftypedeftypedef std::std::std::std::mapmapmapmap<std::<std::<std::<std::stringstringstringstring, , , , MathOperationMathOperationMathOperationMathOperation*> *> *> *> RegistrationMapRegistrationMapRegistrationMapRegistrationMap;;;;
 typedeftypedeftypedeftypedef RegistrationMapRegistrationMapRegistrationMapRegistrationMap::::::::iteratoriteratoriteratoriterator iteratoriteratoriteratoriterator;;;;

 constconstconstconst std::std::std::std::stringstringstringstring namenamenamename;;;;
 MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant
 ((((constconstconstconst std::std::std::std::stringstringstringstring name, name, name, name, MathOperationMathOperationMathOperationMathOperation *op) : *op) : *op) : *op) : namenamenamename(name) {(name) {(name) {(name) {
 registeredregisteredregisteredregistered()[name] = op;()[name] = op;()[name] = op;()[name] = op;
 }}}}

 ~MathOperationRegistrant() {~MathOperationRegistrant() {~MathOperationRegistrant() {~MathOperationRegistrant() {
 deletedeletedeletedelete registeredregisteredregisteredregistered()[()[()[()[namenamenamename];];];];
 registeredregisteredregisteredregistered().erase(().erase(().erase(().erase(namenamenamename););););
 }}}}

 iteratoriteratoriteratoriterator begin() { begin() { begin() { begin() { returnreturnreturnreturn registeredregisteredregisteredregistered().begin(); }().begin(); }().begin(); }().begin(); }

privateprivateprivateprivate::::
 staticstaticstaticstatic RegistrationMapRegistrationMapRegistrationMapRegistrationMap ®istered() {®istered() {®istered() {®istered() {
 staticstaticstaticstatic RegistrationMapRegistrationMapRegistrationMapRegistrationMap registeredOperations;registeredOperations;registeredOperations;registeredOperations;
 returnreturnreturnreturn registeredOperations;registeredOperations;registeredOperations;registeredOperations;
 }}}}
};};};};

#endif#endif#endif#endif

static considered harmful

Static code makes writing reliable automated checks hard. In this case we need a static
map somewhere, so the registered() method is fine. We just have too many direct
dependencies upon it. This is quickly fixed using a default argument:

 RegistrationMapRegistrationMapRegistrationMapRegistrationMap &&&&mapmapmapmap;;;;
 constconstconstconst std::std::std::std::stringstringstringstring namenamenamename;;;;
 MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(constconstconstconst std::std::std::std::stringstringstringstring name, name, name, name,
 MathOperationMathOperationMathOperationMathOperation *op, *op, *op, *op, RegistrationMapRegistrationMapRegistrationMapRegistrationMap &map = &map = &map = &map = registeredregisteredregisteredregistered()) ()) ()) ())
 : : : : mapmapmapmap(m(m(m(map), ap), ap), ap), namenamenamename(name) {(name) {(name) {(name) {
 map[name] = op;map[name] = op;map[name] = op;map[name] = op;
 }}}}

 ~MathOperationRegistrant() {~MathOperationRegistrant() {~MathOperationRegistrant() {~MathOperationRegistrant() {
 deletedeletedeletedelete mapmapmapmap[[[[namenamenamename];];];];
 mapmapmapmap.erase(.erase(.erase(.erase(namenamenamename););););
 }}}}

 iteratoriteratoriteratoriterator begin() { begin() { begin() { begin() { returnreturnreturnreturn mapmapmapmap.begin(); }.begin(); }.begin(); }.begin(); }

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 179 Author: Brett L. Schuchert (schuchert@yahoo.com)

Now this code can be overridden if necessary. It turns out it may be necessary, but there’s
nothing obvious about this. Consider the purpose of this class: operations will be
registered here automatically, when we create the math operation factory, it will get its
operations from here rather than building them itself. There’s no guarantee that the static
map stored in registered() will in fact be empty when this test executes. We’ll eventually
come across this problem. Given that we know there’s a potential problem, let’s fix it
now. Note, the only reason I notice this now is from previous experience using this kind
of automatic registration feature in other applications in C++.

 MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant::::::::RegistrationMapRegistrationMapRegistrationMapRegistrationMap testMap;testMap;testMap;testMap;
 MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant register_add(name, op, testMap);register_add(name, op, testMap);register_add(name, op, testMap);register_add(name, op, testMap);

That’s it. The change before made it so that none of the methods directly refer to the
static reference and allow for dependency injection. This injects a dependent object so
that this automated check has no direct connection to the underlying static map. The
production code has a single path of execution; it is unaware of the particular map with
which it works, just that it works with the same map throughout its life.

We have a few more things to check:

Do not allow the same name to be used twice

Since people can now create math operations independently, there’s a possibility that two
operations will attempt to use the same name. Rather than silently ignore this, let’s
disallow that:

#include#include#include#include "NameInUseException.h""NameInUseException.h""NameInUseException.h""NameInUseException.h"
TEST(MathOperationRegistrantShould, DisallowDuplicatedNames) {TEST(MathOperationRegistrantShould, DisallowDuplicatedNames) {TEST(MathOperationRegistrantShould, DisallowDuplicatedNames) {TEST(MathOperationRegistrantShould, DisallowDuplicatedNames) {
 std::std::std::std::stringstringstringstring name(name(name(name("+""+""+""+"););););
 AddAddAddAdd *op = *op = *op = *op = nenenenewwww Add;Add;Add;Add;
 MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant::::::::RegistrationMapRegistrationMapRegistrationMapRegistrationMap testMap;testMap;testMap;testMap;
 MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant register_add(name, op, testMap);register_add(name, op, testMap);register_add(name, op, testMap);register_add(name, op, testMap);
 trytrytrytry {{{{
 MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant r2(name, op, testMap);r2(name, op, testMap);r2(name, op, testMap);r2(name, op, testMap);
 FAIL(FAIL(FAIL(FAIL("Should have thrown an exception""Should have thrown an exception""Should have thrown an exception""Should have thrown an exception"););););
 } } } } catchcatchcatchcatch((((NameInUseExceptionNameInUseExceptionNameInUseExceptionNameInUseException &) {&) {&) {&) {
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
 }}}}
}}}}

For this to compile, we’ll need a new exception class:

NameInUseException.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_
#define#define#define#define NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_

#include#include#include#include <exception><exception><exception><exception>

classclassclassclass NameInUseExceptionNameInUseExceptionNameInUseExceptionNameInUseException : : : : publicpublicpublicpublic std::std::std::std::exceptionexceptionexceptionexception {};{};{};{};

#endif#endif#endif#endif

This test initially fails. We need to update the constructor:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 180 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include "NameInUseException.h""NameInUseException.h""NameInUseException.h""NameInUseException.h"
structstructstructstruct MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant {{{{

 MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(constconstconstconst std::std::std::std::stringstringstringstring name,name,name,name,
 MathOperationMathOperationMathOperationMathOperation *op, *op, *op, *op, RegistrationMapRegistrationMapRegistrationMapRegistrationMap &map = &map = &map = &map = registeredregisteredregisteredregistered()) ()) ()) ())
 : : : : mapmapmapmap(map),(map),(map),(map), namenamenamename(name) {(name) {(name) {(name) {
 ifififif(map.find(name) == map.end())(map.find(name) == map.end())(map.find(name) == map.end())(map.find(name) == map.end())
 map[name] = op;map[name] = op;map[name] = op;map[name] = op;
 elseelseelseelse
 throwthrowthrowthrow NameInUseException();NameInUseException();NameInUseException();NameInUseException();
 }}}}

Do not allow for 0 (null) math operations

Next, let’s make sure that the arguments are OK. First, the passed-in math operation:

#include#include#include#include "InvalidArgumentException.h""InvalidArgumentException.h""InvalidArgumentException.h""InvalidArgumentException.h"
TEST(MathOperationRegistrantShould, DisallowANullMathOperation) {TEST(MathOperationRegistrantShould, DisallowANullMathOperation) {TEST(MathOperationRegistrantShould, DisallowANullMathOperation) {TEST(MathOperationRegistrantShould, DisallowANullMathOperation) {
 trytrytrytry {{{{
 MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant register_add(register_add(register_add(register_add("name""name""name""name", 0);, 0);, 0);, 0);
 FAIL(FAIL(FAIL(FAIL("Should have thrown exception""Should have thrown exception""Should have thrown exception""Should have thrown exception"););););
 } } } } catchcatchcatchcatch((((InvalidArgumentExceptionInvalidArgumentExceptionInvalidArgumentExceptionInvalidArgumentException &e) {&e) {&e) {&e) {
 CHECK(e.CHECK(e.CHECK(e.CHECK(e.namenamenamename == == == == "mathOperation""mathOperation""mathOperation""mathOperation"););););
 }}}}
}}}}

This needs another exception class:

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef INVALIDARGUMENTEXCEPTION_H_INVALIDARGUMENTEXCEPTION_H_INVALIDARGUMENTEXCEPTION_H_INVALIDARGUMENTEXCEPTION_H_
#define#define#define#define INVALIDARGUMENTEXCEPTION_H_INVALIDARGUMENTEXCEPTION_H_INVALIDARGUMENTEXCEPTION_H_INVALIDARGUMENTEXCEPTION_H_

#include#include#include#include <string><string><string><string>
#include#include#include#include <exception><exception><exception><exception>

structstructstructstruct InvalidArgumentExceptionInvalidArgumentExceptionInvalidArgumentExceptionInvalidArgumentException : : : : publicpublicpublicpublic std::std::std::std::exceptionexceptionexceptionexception {{{{
 InvalidInvalidInvalidInvalidArgumentException(ArgumentException(ArgumentException(ArgumentException(constconstconstconst std::std::std::std::stringstringstringstring name) : name) : name) : name) : namenamenamename(name) {}(name) {}(name) {}(name) {}
 ~InvalidArgumentException() ~InvalidArgumentException() ~InvalidArgumentException() ~InvalidArgumentException() throwthrowthrowthrow() {}() {}() {}() {}
 constconstconstconst std::std::std::std::stringstringstringstring namenamenamename;;;;
};};};};

#endif#endif#endif#endif
Getting this to pass requiresGetting this to pass requiresGetting this to pass requiresGetting this to pass requires another change to the registrant:another change to the registrant:another change to the registrant:another change to the registrant:
#include#include#include#include "InvalidArgumentException.h""InvalidArgumentException.h""InvalidArgumentException.h""InvalidArgumentException.h"
structstructstructstruct MathOperatiMathOperatiMathOperatiMathOperationRegistrantonRegistrantonRegistrantonRegistrant {{{{

 MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(constconstconstconst std::std::std::std::stringstringstringstring name, name, name, name,
 MathOperationMathOperationMathOperationMathOperation *op, *op, *op, *op, RegistrationMapRegistrationMapRegistrationMapRegistrationMap &map = &map = &map = &map = registeredregisteredregisteredregistered()) ()) ()) ())
 : : : : mapmapmapmap(map), (map), (map), (map), namenamenamename(name) {(name) {(name) {(name) {
 ifififif(op == 0)(op == 0)(op == 0)(op == 0)
 throwthrowthrowthrow InvalidArgumentException(InvalidArgumentException(InvalidArgumentException(InvalidArgumentException("mathOperation""mathOperation""mathOperation""mathOperation"););););

Operations must have a non-zero length

TEST(MathOperationRegistrantShould, DisallowAZeroLengthName) {TEST(MathOperationRegistrantShould, DisallowAZeroLengthName) {TEST(MathOperationRegistrantShould, DisallowAZeroLengthName) {TEST(MathOperationRegistrantShould, DisallowAZeroLengthName) {

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 181 Author: Brett L. Schuchert (schuchert@yahoo.com)

 Add a;Add a;Add a;Add a;
 trytrytrytry {{{{
 MathOperationRegistrant register_add(MathOperationRegistrant register_add(MathOperationRegistrant register_add(MathOperationRegistrant register_add("""""""", &a);, &a);, &a);, &a);
 FAIL(FAIL(FAIL(FAIL("Should have thrown exception""Should have thrown exception""Should have thrown exception""Should have thrown exception"););););
 } } } } catchcatchcatchcatch(InvalidArgumentException &e) {(InvalidArgumentException &e) {(InvalidArgumentException &e) {(InvalidArgumentException &e) {
 CHECK(e.CHECK(e.CHECK(e.CHECK(e.namenamenamename == == == == "name""name""name""name"))));;;;
 }}}}
}}}}

And a final update to get this automated check passing:

 MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(constconstconstconst std::string name, std::string name, std::string name, std::string name,
 MathOperation *op, RegistrationMap &map = MathOperation *op, RegistrationMap &map = MathOperation *op, RegistrationMap &map = MathOperation *op, RegistrationMap &map = registeredregisteredregisteredregistered()) ()) ()) ())
 : : : : mapmapmapmap(map), (map), (map), (map), namenamenamename(name) {(name) {(name) {(name) {
 ifififif(op == 0)(op == 0)(op == 0)(op == 0)
 throwthrowthrowthrow InvalidArgumentExceptioInvalidArgumentExceptioInvalidArgumentExceptioInvalidArgumentException(n(n(n("mathOperation""mathOperation""mathOperation""mathOperation"););););
 ifififif(name.size() == 0)(name.size() == 0)(name.size() == 0)(name.size() == 0)
 throwthrowthrowthrow InvalidArgumentException(InvalidArgumentException(InvalidArgumentException(InvalidArgumentException("name""name""name""name"););););

This code has some room for cleaning it up, that is left as an exercise to the reader.

4.24.2 Automatically Register Multiplication

Now we need to try this with an existing math operation. To make this happen, remove
the following lines from MathOperationFactory.cpp:

#include#include#include#include "Multiplication.h""Multiplication.h""Multiplication.h""Multiplication.h"

 operationsByNameoperationsByNameoperationsByNameoperationsByName[[[["*""*""*""*"] =] =] =] = newnewnewnew Multiplication;Multiplication;Multiplication;Multiplication;

This will case the automated check suite to fail with an exception. Update Multiplication:

#include#include#include#include "Multiplication.h""Multiplication.h""Multiplication.h""Multiplication.h"

intintintint Multiplication::calculate(Multiplication::calculate(Multiplication::calculate(Multiplication::calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs) {rhs) {rhs) {rhs) {
 returnreturnreturnreturn lhs * rhs;lhs * rhs;lhs * rhs;lhs * rhs;
}}}}

#include#include#include#include "MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h"
MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant register_multiply(register_multiply(register_multiply(register_multiply("*""*""*""*", , , , newnewnewnew Multiplication);Multiplication);Multiplication);Multiplication);

Running your automated checks at this point will produce an interesting result. The
problem is the destructor of the MathOperationFactory assumes it is OK to delete
everything but it did not allocate everything. So on more change:

MathOperationFactory::~MathOperationFactory() {MathOperationFactory::~MathOperationFactory() {MathOperationFactory::~MathOperationFactory() {MathOperationFactory::~MathOperationFactory() {
 MathOperationRegisMathOperationRegisMathOperationRegisMathOperationRegistranttranttranttrant r;r;r;r;
 forforforfor((((MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant::::::::iteratoriteratoriteratoriterator i = r.begin(); i = r.begin(); i = r.begin(); i = r.begin();
 i != r.end(); ++i)i != r.end(); ++i)i != r.end(); ++i)i != r.end(); ++i)
 operationsByNameoperationsByNameoperationsByNameoperationsByName.erase((*i)..erase((*i)..erase((*i)..erase((*i).firstfirstfirstfirst););););

This removes any operations registered from the registrant; those objects will be removed
automatically when the system shuts down.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 182 Author: Brett L. Schuchert (schuchert@yahoo.com)

Now all of your checks should be passing. It is time to apply this change to all of your
math operations so that they are all registered in their source files rather that in the
factory.

Once you’ve made these updates, the factory simplifies:

#include#include#include#include "MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h"
MathOperationFactory::MathOperationFactory() {MathOperationFactory::MathOperationFactory() {MathOperationFactory::MathOperationFactory() {MathOperationFactory::MathOperationFactory() {
 MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant r;r;r;r;
 forforforfor((((MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant::::::::iteratoriteratoriteratoriterator i = r.begin(); i = r.begin(); i = r.begin(); i = r.begin();
 i != r.end(); ++i)i != r.end(); ++i)i != r.end(); ++i)i != r.end(); ++i)
 operationsByNameoperationsByNameoperationsByNameoperationsByName[(*i).[(*i).[(*i).[(*i).firstfirstfirstfirst] = (*i).] = (*i).] = (*i).] = (*i).secondsecondsecondsecond;;;;
}}}}

4.24.3 Split registrant

One final change is in order. Rather than have everything for the registrant in its header
file, let’s split the header into a header and source.

MathOperationRegistrant.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef MATHOPERATIONREGISTRANT_H_MATHOPERATIONREGISTRANT_H_MATHOPERATIONREGISTRANT_H_MATHOPERATIONREGISTRANT_H_
#define#define#define#define MATHOPERATIONREGISTRANTMATHOPERATIONREGISTRANTMATHOPERATIONREGISTRANTMATHOPERATIONREGISTRANT_H__H__H__H_

#include#include#include#include <map><map><map><map>
#include#include#include#include <string><string><string><string>
classclassclassclass MathOperationMathOperationMathOperationMathOperation;;;;

structstructstructstruct MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant {{{{
 typedeftypedeftypedeftypedef std::std::std::std::mapmapmapmap<std::<std::<std::<std::stringstringstringstring, , , , MathOperationMathOperationMathOperationMathOperation*> *> *> *> RegistrationMapRegistrationMapRegistrationMapRegistrationMap;;;;
 typedeftypedeftypedeftypedef RegistrationMapRegistrationMapRegistrationMapRegistrationMap::::::::iteratoriteratoriteratoriterator iteratoriteratoriteratoriterator;;;;

 RegistrationMapRegistrationMapRegistrationMapRegistrationMap &&&&mapmapmapmap;;;;
 constconstconstconst std::std::std::std::stringstringstringstring namenamenamename;;;;
 MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(RegistrationMapRegistrationMapRegistrationMapRegistrationMap &map = registered());&map = registered());&map = registered());&map = registered());

 MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(MathOperationRegistrant(
 constconstconstconst std::std::std::std::stringstringstringstring name, name, name, name,
 MathOperationMathOperationMathOperationMathOperation *op, *op, *op, *op, RegistrationMapRegistrationMapRegistrationMapRegistrationMap &map = registered());&map = registered());&map = registered());&map = registered());

 ~MathOperationRegistrant();~MathOperationRegistrant();~MathOperationRegistrant();~MathOperationRegistrant();
 iteratoriteratoriteratoriterator begin();begin();begin();begin();
 iteratoriteratoriteratoriterator end();end();end();end();

pppprivaterivaterivaterivate::::
 staticstaticstaticstatic RegistrationMapRegistrationMapRegistrationMapRegistrationMap ®istered();®istered();®istered();®istered();
};};};};

#endif#endif#endif#endif

MathOperationRegistrant.cpp

#include#include#include#include "MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h"

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 183 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"
#include#include#include#include "NameInUseException.h""NameInUseException.h""NameInUseException.h""NameInUseException.h"
#include#include#include#include "InvalidArgumentException.h""InvalidArgumentException.h""InvalidArgumentException.h""InvalidArgumentException.h"

MathOperationRegistrant::MathOperMathOperationRegistrant::MathOperMathOperationRegistrant::MathOperMathOperationRegistrant::MathOperationRegistrant(ationRegistrant(ationRegistrant(ationRegistrant(
 RegistrationMapRegistrationMapRegistrationMapRegistrationMap &map) : map(map) {&map) : map(map) {&map) : map(map) {&map) : map(map) {
}}}}

MathOperationRegistrant::MathOperationRegistrant(MathOperationRegistrant::MathOperationRegistrant(MathOperationRegistrant::MathOperationRegistrant(MathOperationRegistrant::MathOperationRegistrant(
 constconstconstconst std::std::std::std::stringstringstringstring name, name, name, name, MathOperationMathOperationMathOperationMathOperation *op, *op, *op, *op, RegistrationMapRegistrationMapRegistrationMapRegistrationMap &map)&map)&map)&map)
 : map(map), name(name) {: map(map), name(name) {: map(map), name(name) {: map(map), name(name) {
 ifififif (op == 0)(op == 0)(op == 0)(op == 0)
 throwthrowthrowthrow InvalidArgumentException(InvalidArgumentException(InvalidArgumentException(InvalidArgumentException("math"math"math"mathOperation"Operation"Operation"Operation"););););
 ifififif (name.size() == 0)(name.size() == 0)(name.size() == 0)(name.size() == 0)
 throwthrowthrowthrow InvalidArgumentException(InvalidArgumentException(InvalidArgumentException(InvalidArgumentException("name""name""name""name"););););

 ifififif (map.find(name) == map.end())(map.find(name) == map.end())(map.find(name) == map.end())(map.find(name) == map.end())
 map[name] = op;map[name] = op;map[name] = op;map[name] = op;
 elseelseelseelse
 throwthrowthrowthrow NameInUseException();NameInUseException();NameInUseException();NameInUseException();
}}}}

MathOperationRegistrant::~MathOperationRegistrant() {MathOperationRegistrant::~MathOperationRegistrant() {MathOperationRegistrant::~MathOperationRegistrant() {MathOperationRegistrant::~MathOperationRegistrant() {
 deletedeletedeletedelete map[map[map[map[namenamenamename];];];];
 mmmmap.erase(ap.erase(ap.erase(ap.erase(namenamenamename););););
}}}}

MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant::::::::iteratoriteratoriteratoriterator MathOperationRegistrant::begin() {MathOperationRegistrant::begin() {MathOperationRegistrant::begin() {MathOperationRegistrant::begin() {
 returnreturnreturnreturn map.begin();map.begin();map.begin();map.begin();
}}}}
MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant::::::::iteratoriteratoriteratoriterator MathOperationRegistrant::end() {MathOperationRegistrant::end() {MathOperationRegistrant::end() {MathOperationRegistrant::end() {
 returnreturnreturnreturn map.end();map.end();map.end();map.end();
}}}}

MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant::::::::RegistrationMapRegistrationMapRegistrationMapRegistrationMap
&MathOperatio&MathOperatio&MathOperatio&MathOperationRegistrant::registered() {nRegistrant::registered() {nRegistrant::registered() {nRegistrant::registered() {
 staticstaticstaticstatic RegistrationMapRegistrationMapRegistrationMapRegistrationMap registeredOperations;registeredOperations;registeredOperations;registeredOperations;
 returnreturnreturnreturn registeredOperations;registeredOperations;registeredOperations;registeredOperations;
}}}}

4.25 Add Missing Examples

There are a few missing examples from the original list:

TEST(RpnCalculatorShould, AddWithNoValuesProvided) {TEST(RpnCalculatorShould, AddWithNoValuesProvided) {TEST(RpnCalculatorShould, AddWithNoValuesProvided) {TEST(RpnCalculatorShould, AddWithNoValuesProvided) {
 calculatorcalculatorcalculatorcalculator---->exe>exe>exe>execute(cute(cute(cute("+""+""+""+"););););
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

TEST(RpnCalculatorShould, SubtractWithNoValuesProvided) {TEST(RpnCalculatorShould, SubtractWithNoValuesProvided) {TEST(RpnCalculatorShould, SubtractWithNoValuesProvided) {TEST(RpnCalculatorShould, SubtractWithNoValuesProvided) {
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute(""""----""""););););
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 184 Author: Brett L. Schuchert (schuchert@yahoo.com)

TEST(RpnCalculatorShould, MultiplyWithNoValuesProvided) {TEST(RpnCalculatorShould, MultiplyWithNoValuesProvided) {TEST(RpnCalculatorShould, MultiplyWithNoValuesProvided) {TEST(RpnCalculatorShould, MultiplyWithNoValuesProvided) {
 calculatorcalculatorcalculatorcalculator---->execu>execu>execu>execute(te(te(te("*""*""*""*"););););
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

#include#include#include#include "DivideByZeroException.h""DivideByZeroException.h""DivideByZeroException.h""DivideByZeroException.h"
TEST(RpnCalculatorShould, GenerateDivideByZeroWhenNoValuesProvided) {TEST(RpnCalculatorShould, GenerateDivideByZeroWhenNoValuesProvided) {TEST(RpnCalculatorShould, GenerateDivideByZeroWhenNoValuesProvided) {TEST(RpnCalculatorShould, GenerateDivideByZeroWhenNoValuesProvided) {
 trytrytrytry {{{{
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("/""/""/""/"););););
 } } } } catchcatchcatchcatch (DivideByZeroException &) {(DivideByZeroException &) {(DivideByZeroException &) {(DivideByZeroException &) {
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
 }}}}
}}}}

TESTTESTTESTTEST(RpnCalculatorShould, OnlyAddTwoMostRecentValues) {(RpnCalculatorShould, OnlyAddTwoMostRecentValues) {(RpnCalculatorShould, OnlyAddTwoMostRecentValues) {(RpnCalculatorShould, OnlyAddTwoMostRecentValues) {
 calculatorcalculatorcalculatorcalculator---->enter(3);>enter(3);>enter(3);>enter(3);
 calculatorcalculatorcalculatorcalculator---->enter(2);>enter(2);>enter(2);>enter(2);
 calculatorcalculatorcalculatorcalculator---->enter(6);>enter(6);>enter(6);>enter(6);
 calculatorcalculatorcalculatorcalculator---->enter(7);>enter(7);>enter(7);>enter(7);
 calculatorcalculatorcalculatorcalculator---->enter(2);>enter(2);>enter(2);>enter(2);
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("+""+""+""+"););););
 LONGS_EQUAL(9, LONGS_EQUAL(9, LONGS_EQUAL(9, LONGS_EQUAL(9, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
 calculatorcalculatorcalculatorcalculator---->exec>exec>exec>execute(ute(ute(ute("drop""drop""drop""drop"););););
 LONGS_EQUAL(6, LONGS_EQUAL(6, LONGS_EQUAL(6, LONGS_EQUAL(6, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

TEST(RpnCalculatorShould, OnlySubtractTwoMostRecentValues) {TEST(RpnCalculatorShould, OnlySubtractTwoMostRecentValues) {TEST(RpnCalculatorShould, OnlySubtractTwoMostRecentValues) {TEST(RpnCalculatorShould, OnlySubtractTwoMostRecentValues) {
 calculatorcalculatorcalculatorcalculator---->enter(3);>enter(3);>enter(3);>enter(3);
 calculatorcalculatorcalculatorcalculator---->enter(2);>enter(2);>enter(2);>enter(2);
 calculatorcalculatorcalculatorcalculator---->enter(6);>enter(6);>enter(6);>enter(6);
 calculatorcalculatorcalculatorcalculator---->enter(7);>enter(7);>enter(7);>enter(7);
 calculatorcalculatorcalculatorcalculator---->enter(2);>enter(2);>enter(2);>enter(2);
 calculatorcalculatorcalculatorcalculator---->execute>execute>execute>execute((((""""----""""););););
 LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("drop""drop""drop""drop"););););
 LONGS_EQUAL(6, LONGS_EQUAL(6, LONGS_EQUAL(6, LONGS_EQUAL(6, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
}}}}

4.26 Sprint Summary

The sprint is complete, all examples pass and there are a number of unit checks to back
up the rejection checks. We covered a lot of ground:

● Initial project creation
● Adding a few operations
● Removing duplication
● Several examples of extracting class
● Strategy Design Pattern
● Template Method Design Pattern
● Factory Design Pattern
● Automatic registration of new Operations

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 185 Author: Brett L. Schuchert (schuchert@yahoo.com)

● Single Responsibility Principle
● Open/Closed Principle
● Calling base-class member functions from a derived-class method of the same name
● Checking for exceptions in automated checks
● Writing basic exception classes and code to throw them
● std::exception class
● std::map
● std::pair
● Delegation versus inheritance

The next sprint is not as feature rich; instead we will add a few new operations and look
at another style of writing automated unit checks.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 186 Author: Brett L. Schuchert (schuchert@yahoo.com)

5 Rpn Calculator – Sprint 2 – Growing Features
The description of this sprint will be strictly in the form of examples. There are several
new operations:

Given the user enters When the user selects Then the result is

3 2 6 7 2 sum 20

4 1 < 0

3 4 < 1

4 4 < 1

3 2 == 0

3 3 == 1

3 1 > 1

4 4 > 0

4 7 > 0

3 5 1 swap_xy 3 1 5

3 4 1 dup 3 4 1 1

4 3 2 1 5 2 n_dup 4 3 2 1 5 2 1 5

any value < 2 pf

2 pf 2

3 pf 3

4 pf 2 2

5 pf 5

6 pf 2 3

7 pf 7

8 pf 2 2 2

9 pf 3 3

5.1 Adding Sum

Sum consumes all values on the stack and produces a single result. This operation maps
many values to one; it consumes all values on the stack, adds them up and puts a single
value back. We saw something like this using std::accumulate back on page 103, section
3.23. What are things we want to check:

● It consumes all and produces 1
● It adds correctly
● Overflow would be reasonable but there’s a general decision to ignore overflow
● That this operation is registered – this applies to all operations

With that in mind, we can check each of these things against the same sequence. A
question to ask is should we put all of the checks in one place or many. In other places we
tend to keep to one or a maybe a few checks together. This will be no different:

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 187 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include "Sum.h""Sum.h""Sum.h""Sum.h"
#includ#includ#includ#includeeee "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

TEST_GROUP(SumShould) {TEST_GROUP(SumShould) {TEST_GROUP(SumShould) {TEST_GROUP(SumShould) {
 RpnStackRpnStackRpnStackRpnStack ****valuesvaluesvaluesvalues;;;;
 voidvoidvoidvoid setup() {setup() {setup() {setup() {
 valuesvaluesvaluesvalues = = = = newnewnewnew RpnStack;RpnStack;RpnStack;RpnStack;
 valuesvaluesvaluesvalues---->push(5);>push(5);>push(5);>push(5);
 valuesvaluesvaluesvalues---->push(3);>push(3);>push(3);>push(3);
 valuesvaluesvaluesvalues---->push(2);>push(2);>push(2);>push(2);
 valuesvaluesvaluesvalues---->push(9);>push(9);>push(9);>push(9);
 SumSumSumSum op;op;op;op;
 op.perform(*op.perform(*op.perform(*op.perform(*valuesvaluesvaluesvalues););););
 }}}}
 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deldeldeldeleteeteeteete valuesvaluesvaluesvalues;;;;
 }}}}
};};};};

TEST(SumShould, AddAllValues) {TEST(SumShould, AddAllValues) {TEST(SumShould, AddAllValues) {TEST(SumShould, AddAllValues) {
 LONGS_EQUAL(19, LONGS_EQUAL(19, LONGS_EQUAL(19, LONGS_EQUAL(19, valuesvaluesvaluesvalues---->top());>top());>top());>top());
}}}}

TEST(SumShould, ProduceASingleValue) {TEST(SumShould, ProduceASingleValue) {TEST(SumShould, ProduceASingleValue) {TEST(SumShould, ProduceASingleValue) {
 LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, valuesvaluesvaluesvalues---->size());>size());>size());>size());
}}}}

Notice how all of the work happens in setup() and the two methods simply check
different results. It is possible that both of these could fail, either one or could fail or,
eventually, none of them fail. The granularity makes for better targeting of problems
when the occur.

For this to work:

Sum.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef SUM_H_SUM_H_SUM_H_SUM_H_
#define#define#define#define SUM_H_SUM_H_SUM_H_SUM_H_

#incl#incl#incl#includeudeudeude "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"

classclassclassclass Sum: Sum: Sum: Sum: publicpublicpublicpublic MathOperation {MathOperation {MathOperation {MathOperation {
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);
};};};};

#endif#endif#endif#endif

Sum.cpp

#include#include#include#include "Sum.h""Sum.h""Sum.h""Sum.h"

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 188 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"
voidvoidvoidvoid Sum::perform(Sum::perform(Sum::perform(Sum::perform(RpnStackRpnStackRpnStackRpnStack &values) {&values) {&values) {&values) {
 intintintint result = 0;result = 0;result = 0;result = 0;
 whilewhilewhilewhile(values.size() > 0) {(values.size() > 0) {(values.size() > 0) {(values.size() > 0) {
 result +=result +=result +=result += values.top();values.top();values.top();values.top();
 values.pop();values.pop();values.pop();values.pop();
 }}}}
 values.push(result);values.push(result);values.push(result);values.push(result);
}}}}

Sum Registration

Sum needs to be registered; that work is done in Sum.cpp. Rather than creating a separate
source file for that automated check, let’s experiment with putting it in the
SumShould.cpp:

Added to bottom of SumShould.cpp:

#include#include#include#include "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"
CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(SumSumSumSum, , , , "sum""sum""sum""sum"););););

Added to bottom of Sum.cpp:

#include#include#include#include "MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h"
MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant register_sum(register_sum(register_sum(register_sum("sum""sum""sum""sum", , , , newnewnewnew Sum);Sum);Sum);Sum);

5.2 Less Than

What are the cases for Less Than:

● One value less than another
● One value greater than the other
● Two equal values
● Less than is actually registered

Less than consumes two values and produces a single value, so it behaves like a binary
math operation and will therefore inherit from that class instead of MathOpeation:

LessThanShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "LessThan.h""LessThan.h""LessThan.h""LessThan.h"

TEST_GROUP(LessThanShould) {TEST_GROUP(LessThanShould) {TEST_GROUP(LessThanShould) {TEST_GROUP(LessThanShould) {
 LessThanLessThanLessThanLessThan opopopop;;;;
};};};};

TEST(LessThanShould, Be1For2Versus4) {TEST(LessThanShould, Be1For2Versus4) {TEST(LessThanShould, Be1For2Versus4) {TEST(LessThanShould, Be1For2Versus4) {
 LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, opopopop.calculate(2, 4));.calculate(2, 4));.calculate(2, 4));.calculate(2, 4));
}}}}

LessThan.h

#prag#prag#prag#pragmamamama onceonceonceonce
#ifndef#ifndef#ifndef#ifndef LESSTHAN_H_LESSTHAN_H_LESSTHAN_H_LESSTHAN_H_
#define#define#define#define LESSTHAN_H_LESSTHAN_H_LESSTHAN_H_LESSTHAN_H_

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 189 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include "BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h"

classclassclassclass LessThanLessThanLessThanLessThan: : : : publicpublicpublicpublic BinaryMathOperationBinaryMathOperationBinaryMathOperationBinaryMathOperation {{{{
publicpublicpublicpublic::::
 intintintint calculate(calculate(calculate(calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs);rhs);rhs);rhs);
};};};};

#endif#endif#endif#endif

LessThan.cpp

#include#include#include#include "LessThan.h""LessThan.h""LessThan.h""LessThan.h"

intintintint LessThan::calculate(LessThan::calculate(LessThan::calculate(LessThan::calculate(intintintint lhs, lhs, lhs, lhs, intintintint rrrrhs) {hs) {hs) {hs) {
 returnreturnreturnreturn lhs < rhs ? 1 : 0;lhs < rhs ? 1 : 0;lhs < rhs ? 1 : 0;lhs < rhs ? 1 : 0;
}}}}

A few more checks:

Added to LessThanShould.cpp

TEST(LessThanShould, Be0For4Versus4) {TEST(LessThanShould, Be0For4Versus4) {TEST(LessThanShould, Be0For4Versus4) {TEST(LessThanShould, Be0For4Versus4) {
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, opopopop.calculate(4, 4));.calculate(4, 4));.calculate(4, 4));.calculate(4, 4));
}}}}

TEST(LessThanShould, Be0For4Versus2) {TEST(LessThanShould, Be0For4Versus2) {TEST(LessThanShould, Be0For4Versus2) {TEST(LessThanShould, Be0For4Versus2) {
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, opopopop.calculate(4, 2));.calculate(4, 2));.calculate(4, 2));.calculate(4, 2));
}}}}

It should be registered:

Added to LessThanShould.cpp

#include#include#include#include "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"
CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(LessThanLessThanLessThanLessThan, , , , "<""<""<""<"););););

Add the required registration to LessThan.cpp:

#include#include#include#include "MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h"
MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant register_lessThan(register_lessThan(register_lessThan(register_lessThan("<""<""<""<", , , , newnewnewnew LessThan);LessThan);LessThan);LessThan);

5.3 Equal To and Greater than

Equal to and greater than have the same set of checks as less than, the actual results are
different. Both of these consume two values and produce a single result, as with Less
Than. Given that information, create the required checks for these classes and make sure
they are registered.

5.4 Swap XY

Swap XY consumes two values and produces two values, so it does not fit under the
Binary Math Operation class. Here is another example of an automated check where all
of the setup and execution happens in the setup() method, followed by a number of
checks, each in their own method:

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "SwapXy.h""SwapXy.h""SwapXy.h""SwapXy.h"

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 190 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

TEST_GROUP(SwapXyShould) {TEST_GROUP(SwapXyShould) {TEST_GROUP(SwapXyShould) {TEST_GROUP(SwapXyShould) {
 RpnStackRpnStackRpnStackRpnStack ****valuesvaluesvaluesvalues;;;;
 voidvoidvoidvoid setup() {setup() {setup() {setup() {
 valuesvaluesvaluesvalues = = = = newnewnewnew RpnStack;RpnStack;RpnStack;RpnStack;
 valuesvaluesvaluesvalues---->push(>push(>push(>push(----3);3);3);3);
 valuesvaluesvaluesvalues---->push(5);>push(5);>push(5);>push(5);
 valuesvaluesvaluesvalues---->push(1);>push(1);>push(1);>push(1);
 SwapXy().perform(*SwapXy().perform(*SwapXy().perform(*SwapXy().perform(*valuesvaluesvaluesvalues););););
 }}}}
 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deletedeletedeletedelete valuesvaluesvaluesvalues;;;;
 }}}}
};};};};

TEST(SwapXyShould, ResultInSameStackSize) {TEST(SwapXyShould, ResultInSameStackSize) {TEST(SwapXyShould, ResultInSameStackSize) {TEST(SwapXyShould, ResultInSameStackSize) {
 LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, valuesvaluesvaluesvalues---->size());>size());>size());>size());
}}}}

TEST(SwapXyShould, MakeXEquaTEST(SwapXyShould, MakeXEquaTEST(SwapXyShould, MakeXEquaTEST(SwapXyShould, MakeXEqualTo5) {lTo5) {lTo5) {lTo5) {
 LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, valuesvaluesvaluesvalues---->top());>top());>top());>top());
}}}}

TEST(SwapXyShould, MakeYEqualTo1) {TEST(SwapXyShould, MakeYEqualTo1) {TEST(SwapXyShould, MakeYEqualTo1) {TEST(SwapXyShould, MakeYEqualTo1) {
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, valuesvaluesvaluesvalues---->top());>top());>top());>top());
}}}}

TEST(SwapXyShould, LeaveNegative3WhereItWas) {TEST(SwapXyShould, LeaveNegative3WhereItWas) {TEST(SwapXyShould, LeaveNegative3WhereItWas) {TEST(SwapXyShould, LeaveNegative3WhereItWas) {
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(LONGS_EQUAL(----3, 3, 3, 3, valuesvaluesvaluesvalues---->top());>top());>top());>top());
}}}}

#incl#incl#incl#includeudeudeude "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"
CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(SwapXySwapXySwapXySwapXy, , , , "swap_xy""swap_xy""swap_xy""swap_xy"););););

The implementation is straightforward:

SwapXy.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef SWAPXY_H_SWAPXY_H_SWAPXY_H_SWAPXY_H_
#define#define#define#define SWAPXY_H_SWAPXY_H_SWAPXY_H_SWAPXY_H_

#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"

classclassclassclass SwapXy: SwapXy: SwapXy: SwapXy: publicpublicpublicpublic MathOperation {MathOperation {MathOperation {MathOperation {
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(RpnSperform(RpnSperform(RpnSperform(RpnStack &values);tack &values);tack &values);tack &values);
};};};};

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 191 Author: Brett L. Schuchert (schuchert@yahoo.com)

#endif#endif#endif#endif

SwapXy.cpp

#include#include#include#include "SwapXy.h""SwapXy.h""SwapXy.h""SwapXy.h"
#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

voidvoidvoidvoid SwapXy::perform(SwapXy::perform(SwapXy::perform(SwapXy::perform(RpnStackRpnStackRpnStackRpnStack &values) {&values) {&values) {&values) {
 intintintint x = values.top();x = values.top();x = values.top();x = values.top();
 values.pop();values.pop();values.pop();values.pop();
 intintintint y = values.top();y = values.top();y = values.top();y = values.top();
 values.pop();values.pop();values.pop();values.pop();
 values.push(x);values.push(x);values.push(x);values.push(x);
 values.push(y);values.push(y);values.push(y);values.push(y);
}}}}

#include#include#include#include "MathOp"MathOp"MathOp"MathOperationRegistrant.h"erationRegistrant.h"erationRegistrant.h"erationRegistrant.h"
MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant register_swapXy(register_swapXy(register_swapXy(register_swapXy("swap_xy""swap_xy""swap_xy""swap_xy", , , , newnewnewnew SwapXy);SwapXy);SwapXy);SwapXy);

5.5 Dup

Dup is left as an exercise.

5.6 N Dup

This operation uses the top of the stack as a count and the duplicates that many items
from the remainder of the stack back on top of the stack:

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "NDup.h""NDup.h""NDup.h""NDup.h"
#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

TEST_GROUP(NDupShould) {TEST_GROUP(NDupShould) {TEST_GROUP(NDupShould) {TEST_GROUP(NDupShould) {
 RpnStackRpnStackRpnStackRpnStack ****valuesvaluesvaluesvalues;;;;
 voidvoidvoidvoid setup() {setup() {setup() {setup() {
 valuesvaluesvaluesvalues = = = = newnewnewnew RpnStack;RpnStack;RpnStack;RpnStack;
 valuesvaluesvaluesvalues---->push(4);>push(4);>push(4);>push(4);
 valuesvaluesvaluesvalues---->push(3);>push(3);>push(3);>push(3);
 valuesvaluesvaluesvalues---->push(2);>push(2);>push(2);>push(2);
 valuesvaluesvaluesvalues---->pus>pus>pus>push(1);h(1);h(1);h(1);
 valuesvaluesvaluesvalues---->push(5);>push(5);>push(5);>push(5);
 valuesvaluesvaluesvalues---->push(2);>push(2);>push(2);>push(2);
 NDup().perform(*NDup().perform(*NDup().perform(*NDup().perform(*valuesvaluesvaluesvalues););););
 }}}}
 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deletedeletedeletedelete valuesvaluesvaluesvalues;;;;
 }}}}
};};};};

TEST(NDupShould, HaveSameTwoValuesAtTop) {TEST(NDupShould, HaveSameTwoValuesAtTop) {TEST(NDupShould, HaveSameTwoValuesAtTop) {TEST(NDupShould, HaveSameTwoValuesAtTop) {
 LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, valuesvaluesvaluesvalues---->top());>top());>top());>top());
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, valuesvaluesvaluesvalues---->top());>top());>top());>top());
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 192 Author: Brett L. Schuchert (schuchert@yahoo.com)

TEST(NDupShould, StillHaveOriginalTwoValues) {TEST(NDupShould, StillHaveOriginalTwoValues) {TEST(NDupShould, StillHaveOriginalTwoValues) {TEST(NDupShould, StillHaveOriginalTwoValues) {
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, valuesvaluesvaluesvalues---->top());>top());>top());>top());
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, LONGS_EQUAL(1, valuesvaluesvaluesvalues---->top());>top());>top());>top());
}}}}

TEST(NDupShould, LeaveRemainderOfStackAlone) {TEST(NDupShould, LeaveRemainderOfStackAlone) {TEST(NDupShould, LeaveRemainderOfStackAlone) {TEST(NDupShould, LeaveRemainderOfStackAlone) {
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 valuevaluevaluevaluessss---->pop();>pop();>pop();>pop();
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 LONGS_EQUAL(2, LONGS_EQUAL(2, LONGS_EQUAL(2, LONGS_EQUAL(2, valuesvaluesvaluesvalues---->top());>top());>top());>top());
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, valuesvaluesvaluesvalues---->top());>top());>top());>top());
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, valuesvaluesvaluesvalues---->top());>top());>top());>top());
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
}}}}
TEST(NDupShould, IncreaseStackSizeCorrectly) {TEST(NDupShould, IncreaseStackSizeCorrectly) {TEST(NDupShould, IncreaseStackSizeCorrectly) {TEST(NDupShould, IncreaseStackSizeCorrectly) {
 LONGS_EQUAL(7, LONGS_EQUAL(7, LONGS_EQUAL(7, LONGS_EQUAL(7, valuesvaluesvaluesvalues---->size(>size(>size(>size());));));));
}}}}

#include#include#include#include "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"
CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(NDupNDupNDupNDup, , , , "n_dup""n_dup""n_dup""n_dup"););););

NDup.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef NDUP_H_NDUP_H_NDUP_H_NDUP_H_
#define#define#define#define NDUP_H_NDUP_H_NDUP_H_NDUP_H_

#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"

classclassclassclass NDupNDupNDupNDup: : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(perform(perform(perform(RpnStackRpnStackRpnStackRpnStack &values);&values);&values);&values);
};};};};

#endif#endif#endif#endif

NDup.cpp

#inc#inc#inc#includeludeludelude "NDup.h""NDup.h""NDup.h""NDup.h"
#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

#include#include#include#include <vector><vector><vector><vector>
voidvoidvoidvoid NDup::perform(NDup::perform(NDup::perform(NDup::perform(RpnStackRpnStackRpnStackRpnStack &values) {&values) {&values) {&values) {
 intintintint count = values.top();count = values.top();count = values.top();count = values.top();
 values.pop();values.pop();values.pop();values.pop();
 std::std::std::std::vectorvectorvectorvector<<<<intintintint> toCopy;> toCopy;> toCopy;> toCopy;
 forforforfor ((((intintintint i = 0; i < count; ++i) {i = 0; i < count; ++i) {i = 0; i < count; ++i) {i = 0; i < count; ++i) {

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 193 Author: Brett L. Schuchert (schuchert@yahoo.com)

 toCopy.push_back(values.top());toCopy.push_back(values.top());toCopy.push_back(values.top());toCopy.push_back(values.top());
 values.pop();values.pop();values.pop();values.pop();
 }}}}

 forforforfor ((((intintintint i = 0; i < 2; ++i)i = 0; i < 2; ++i)i = 0; i < 2; ++i)i = 0; i < 2; ++i)
 forforforfor (std::(std::(std::(std::vectorvectorvectorvector<<<<intintintint>::>::>::>::reverse_iteratorreverse_iteratorreverse_iteratorreverse_iterator i = toCopy.rbegin();i = toCopy.rbegin();i = toCopy.rbegin();i = toCopy.rbegin();
 i != toCopy.rend(); ++i)i != toCopy.rend(); ++i)i != toCopy.rend(); ++i)i != toCopy.rend(); ++i)
 values.push(*i);values.push(*i);values.push(*i);values.push(*i);
}}}}

#include#include#include#include "MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h"
MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant register_nDup(register_nDup(register_nDup(register_nDup("n_dup""n_dup""n_dup""n_dup", , , , newnewnewnew NDup);NDup);NDup);NDup);

5.7 Prime Factors

For this operation, we will take a slower approach and attempt to get back to check
driven development. We’ll start with a single check and try to minimally modify the code
to get the next check working. This will also demonstrate yet another way to express
automated checks:

PrimeFactorsShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "PrimeFactors.h""PrimeFactors.h""PrimeFactors.h""PrimeFactors.h"
#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

TEST_GROUP(PrimeFactorsOf) {TEST_GROUP(PrimeFactorsOf) {TEST_GROUP(PrimeFactorsOf) {TEST_GROUP(PrimeFactorsOf) {
 RpnStackRpnStackRpnStackRpnStack ****valuesvaluesvaluesvalues;;;;
 voidvoidvoidvoid setup() {setup() {setup() {setup() {
 valuesvaluesvaluesvalues = = = = newnewnewnew RpnStack;RpnStack;RpnStack;RpnStack;
 }}}}
 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deletedeletedeletedelete valuesvaluesvaluesvalues;;;;
 }}}}
 voidvoidvoidvoid givenTheValue(givenTheValue(givenTheValue(givenTheValue(intintintint value) {value) {value) {value) {
 valuesvaluesvaluesvalues---->push(value);>push(value);>push(value);>push(value);
 }}}}
 voidvoidvoidvoid whenCalculatingItsPrimeFactors() {whenCalculatingItsPrimeFactors() {whenCalculatingItsPrimeFactors() {whenCalculatingItsPrimeFactors() {
 PrimeFactors().perform(*PrimeFactors().perform(*PrimeFactors().perform(*PrimeFactors().perform(*valuesvaluesvaluesvalues););););
 }}}}
 voidvoidvoidvoid expectNoResults() {expectNoResults() {expectNoResults() {expectNoResults() {
 LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, LONGS_EQUAL(0, valuesvaluesvaluesvalues---->size());>size());>size());>size());
 }}}}
};};};};

TEST(PrimeFactorsTEST(PrimeFactorsTEST(PrimeFactorsTEST(PrimeFactorsOf, 1AreEmpty) {Of, 1AreEmpty) {Of, 1AreEmpty) {Of, 1AreEmpty) {
 givenTheValue(1);givenTheValue(1);givenTheValue(1);givenTheValue(1);
 whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();
 expectNoResults();expectNoResults();expectNoResults();expectNoResults();
}}}}

To get this passing:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 194 Author: Brett L. Schuchert (schuchert@yahoo.com)

PrimeFactors.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef PRIMEFACTORS_H_PRIMEFACTORS_H_PRIMEFACTORS_H_PRIMEFACTORS_H_
#define#define#define#define PRIMEFACTORS_H_PRIMEFACTORS_H_PRIMEFACTORS_H_PRIMEFACTORS_H_

#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"

classclassclassclass PrimeFactorsPrimeFactorsPrimeFactorsPrimeFactors: : : : publicpublicpublicpublic MathOpeMathOpeMathOpeMathOperationrationrationration {{{{
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(perform(perform(perform(RpnStackRpnStackRpnStackRpnStack &values);&values);&values);&values);
};};};};

#endif#endif#endif#endif

PrimeFactors.cpp

#include#include#include#include "PrimeFactors.h""PrimeFactors.h""PrimeFactors.h""PrimeFactors.h"
#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

voidvoidvoidvoid PrimeFactors::perform(PrimeFactors::perform(PrimeFactors::perform(PrimeFactors::perform(RpnStackRpnStackRpnStackRpnStack &values) {&values) {&values) {&values) {
 values.pop();values.pop();values.pop();values.pop();
}}}}

5.7.1 Of 2 …

TEST_GROUP(PrimeFactorsOf) {TEST_GROUP(PrimeFactorsOf) {TEST_GROUP(PrimeFactorsOf) {TEST_GROUP(PrimeFactorsOf) {

 voidvoidvoidvoid expect(expect(expect(expect(intintintint valvalvalvalue) {ue) {ue) {ue) {
 LONGS_EQUAL(value, LONGS_EQUAL(value, LONGS_EQUAL(value, LONGS_EQUAL(value, valuesvaluesvaluesvalues---->top());>top());>top());>top());
 }}}}
 voidvoidvoidvoid andThen() {andThen() {andThen() {andThen() {
 valuesvaluesvaluesvalues---->pop();>pop();>pop();>pop();
 }}}}

};};};};
TEST(PrimeFactorsOf, 2Are2) {TEST(PrimeFactorsOf, 2Are2) {TEST(PrimeFactorsOf, 2Are2) {TEST(PrimeFactorsOf, 2Are2) {
 givenTheValue(2);givenTheValue(2);givenTheValue(2);givenTheValue(2);
 whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();
 expect(2);expect(2);expect(2);expect(2);
 andThen();andThen();andThen();andThen();
 expectNoResults();expectNoResults();expectNoResults();expectNoResults();
}}}}

Updated PrimeFactors.cpp

voidvoidvoidvoid PrimeFactors::perform(RpnStack &values) {PrimeFactors::perform(RpnStack &values) {PrimeFactors::perform(RpnStack &values) {PrimeFactors::perform(RpnStack &values) {
 intintintint value = values.top();value = values.top();value = values.top();value = values.top();
 values.pop();values.pop();values.pop();values.pop();

 ifififif(value == 2)(value == 2)(value == 2)(value == 2)
 values.push(2);values.push(2);values.push(2);values.push(2);
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 195 Author: Brett L. Schuchert (schuchert@yahoo.com)

5.7.2 Of 3…

TEST(PrimeFactorsOf, 3Are3) {TEST(PrimeFactorsOf, 3Are3) {TEST(PrimeFactorsOf, 3Are3) {TEST(PrimeFactorsOf, 3Are3) {
 givenTheValue(3);givenTheValue(3);givenTheValue(3);givenTheValue(3);
 whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();
 expect(3);expect(3);expect(3);expect(3);
 andThen();andThen();andThen();andThen();
 eeeexpectNoResults();xpectNoResults();xpectNoResults();xpectNoResults();
}}}}

Updated PrimeFactors.cpp

 ifififif(value >= 2)(value >= 2)(value >= 2)(value >= 2)
 values.push(value);values.push(value);values.push(value);values.push(value);

5.7.3 Of 4 … multiple values

TEST(PrimeFactorsOf, 4Are2And2) {TEST(PrimeFactorsOf, 4Are2And2) {TEST(PrimeFactorsOf, 4Are2And2) {TEST(PrimeFactorsOf, 4Are2And2) {
 givenTheValue(4);givenTheValue(4);givenTheValue(4);givenTheValue(4);
 whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();
 expect(2);expect(2);expect(2);expect(2);
 andThen();andThen();andThen();andThen();
 expect(2);expect(2);expect(2);expect(2);
 andThen();andThen();andThen();andThen();
 expexpexpexpectNoResults();ectNoResults();ectNoResults();ectNoResults();
}}}}

Updated PrimeFactors.cpp – starting to get ugly

 ifififif (value >= 2) {(value >= 2) {(value >= 2) {(value >= 2) {
 ifififif (value % 2 == 0) {(value % 2 == 0) {(value % 2 == 0) {(value % 2 == 0) {
 values.push(2);values.push(2);values.push(2);values.push(2);
 value /= 2;value /= 2;value /= 2;value /= 2;
 }}}}
 ifififif (value > 1)(value > 1)(value > 1)(value > 1)
 values.push(value);values.push(value);values.push(value);values.push(value);

5.7.4 Of 5 …

This one just works because it’s the same as 3.

TEST(PrimeFactorsOf, 5Are5) {TEST(PrimeFactorsOf, 5Are5) {TEST(PrimeFactorsOf, 5Are5) {TEST(PrimeFactorsOf, 5Are5) {
 givenTheValue(5);givenTheValue(5);givenTheValue(5);givenTheValue(5);
 whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();
 expect(5);expect(5);expect(5);expect(5);
 andThen();andThen();andThen();andThen();
 expectNoResults();expectNoResults();expectNoResults();expectNoResults();
}}}}

5.7.5 Of 6 … two values, but they are different

TEST(PrimeFactorsOf, 6Are3And2) {TEST(PrimeFactorsOf, 6Are3And2) {TEST(PrimeFactorsOf, 6Are3And2) {TEST(PrimeFactorsOf, 6Are3And2) {
 givenTheValue(6);givenTheValue(6);givenTheValue(6);givenTheValue(6);
 whenCalculatingItsPriwhenCalculatingItsPriwhenCalculatingItsPriwhenCalculatingItsPrimeFactors();meFactors();meFactors();meFactors();
 expect(3);expect(3);expect(3);expect(3);
 andThen();andThen();andThen();andThen();
 expect(2);expect(2);expect(2);expect(2);

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 196 Author: Brett L. Schuchert (schuchert@yahoo.com)

 andThen();andThen();andThen();andThen();
 expectNoResults();expectNoResults();expectNoResults();expectNoResults();
}}}}

Surprisingly, or not, this one also works.

5.7.6 As will 7 …

TEST(PrimeFactorsOf, 7Are7) {TEST(PrimeFactorsOf, 7Are7) {TEST(PrimeFactorsOf, 7Are7) {TEST(PrimeFactorsOf, 7Are7) {
 givenTheValue(7);givenTheValue(7);givenTheValue(7);givenTheValue(7);
 whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();
 expect(7);expect(7);expect(7);expect(7);
 andThen();andThen();andThen();andThen();
 expectNoResults();expectNoResults();expectNoResults();expectNoResults();
}}}}

5.7.7 But 8 is different, 3 values, instead of just 2.

TEST(PrimeFactorsOf, 8Are2And2And2) {TEST(PrimeFactorsOf, 8Are2And2And2) {TEST(PrimeFactorsOf, 8Are2And2And2) {TEST(PrimeFactorsOf, 8Are2And2And2) {
 givenTheValue(8);givenTheValue(8);givenTheValue(8);givenTheValue(8);
 whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();
 expect(2);expect(2);expect(2);expect(2);
 andThen();andThen();andThen();andThen();
 expect(2);expect(2);expect(2);expect(2);
 andThen();andThen();andThen();andThen();
 expect(2);expect(2);expect(2);expect(2);
 andThen();andThen();andThen();andThen();
 expectNoResexpectNoResexpectNoResexpectNoResults();ults();ults();ults();
}}}}

Finally an update to PrimeFactors.cpp

 whilewhilewhilewhile (value % 2 == 0) {(value % 2 == 0) {(value % 2 == 0) {(value % 2 == 0) {

Simply changing the if to a while fixes this.

5.7.8 Is 9 different?

TEST(PrimeFactorsOf, 9Are3And3) {TEST(PrimeFactorsOf, 9Are3And3) {TEST(PrimeFactorsOf, 9Are3And3) {TEST(PrimeFactorsOf, 9Are3And3) {
 givenTheValue(9);givenTheValue(9);givenTheValue(9);givenTheValue(9);
 whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();whenCalculatingItsPrimeFactors();
 expect(3);expect(3);expect(3);expect(3);
 andThen();andThen();andThen();andThen();
 expect(3);expect(3);expect(3);expect(3);
 andThen();andThen();andThen();andThen();
 expectNoResults();expectNoResults();expectNoResults();expectNoResults();
}}}}

This requires that we vary the divisor:

 ifififif (value >= 2) {(value >= 2) {(value >= 2) {(value >= 2) {
 forforforfor ((((intintintint divisor = 2; divisor <= value; ++divisor)divisor = 2; divisor <= value; ++divisor)divisor = 2; divisor <= value; ++divisor)divisor = 2; divisor <= value; ++divisor)
 whilewhilewhilewhile (value % divisor == 0) {(value % divisor == 0) {(value % divisor == 0) {(value % divisor == 0) {
 values.push(divisor);values.push(divisor);values.push(divisor);values.push(divisor);
 value /= divisor;value /= divisor;value /= divisor;value /= divisor;
 }}}}
 ifififif (value > 1)(value > 1)(value > 1)(value > 1)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 197 Author: Brett L. Schuchert (schuchert@yahoo.com)

 values.push(value);values.push(value);values.push(value);values.push(value);
 }}}}

But wait, the loop starts at 2, so do we need the outer if statement? Not at all.

 forforforfor ((((intintintint divisor = 2; divisor <= value; ++divisor)divisor = 2; divisor <= value; ++divisor)divisor = 2; divisor <= value; ++divisor)divisor = 2; divisor <= value; ++divisor)
 whilewhilewhilewhile (value % divisor == 0) {(value % divisor == 0) {(value % divisor == 0) {(value % divisor == 0) {
 values.push(divisor);values.push(divisor);values.push(divisor);values.push(divisor);
 value /= divisor;value /= divisor;value /= divisor;value /= divisor;
 }}}}
 ifififif (value > 1)(value > 1)(value > 1)(value > 1)
 values.push(value);values.push(value);values.push(value);values.push(value);

What about the bottom if statement?

voidvoidvoidvoid PrimeFactors::perform(RpnStack &values) {PrimeFactors::perform(RpnStack &values) {PrimeFactors::perform(RpnStack &values) {PrimeFactors::perform(RpnStack &values) {
 intintintint value = values.top();value = values.top();value = values.top();value = values.top();
 values.pop();values.pop();values.pop();values.pop();

 forforforfor ((((intintintint divisor = 2; divisor <= value; ++divisor)divisor = 2; divisor <= value; ++divisor)divisor = 2; divisor <= value; ++divisor)divisor = 2; divisor <= value; ++divisor)
 whilewhilewhilewhile (value % divisor == 0) {(value % divisor == 0) {(value % divisor == 0) {(value % divisor == 0) {
 values.push(divisor);values.push(divisor);values.push(divisor);values.push(divisor);
 value /= divisor;value /= divisor;value /= divisor;value /= divisor;
 }}}}
}}}}

It was also not necessary, and that finishes it. Try with a few larger values.

5.7.9 Register It

We spent so much time on checking the operation we nearly forget to make sure it is
registered in the factory:

One more automated check in PrimeFactorsOf.cpp

#include#include#include#include "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"
CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(PrimeFactorsPrimeFactorsPrimeFactorsPrimeFactors, , , , """"pfpfpfpf""""););););

Actual Registration in PrimeFactors.cpp

#include#include#include#include "MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h"
MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant
 register_primeFactors(register_primeFactors(register_primeFactors(register_primeFactors(""""pfpfpfpf"""", , , , newnewnewnew PrimeFactors);PrimeFactors);PrimeFactors);PrimeFactors);

5.8 Examples as Rejection Checks

Notice that all of the automate checks written targeted the implementation class directly?
If we follow the stated policy, then we should have several more checks written against
the RpnCalculator class. Before you write any of those, do you expect any of them to
fail? If not, how might you work this information into your project work?

In writing these checks, I observed a lot of duplication but also a lot of unnecessary
detail. I spend just a touch of time removing some duplication:

TEST_GROUP(RpnCalculatorShould) {TEST_GROUP(RpnCalculatorShould) {TEST_GROUP(RpnCalculatorShould) {TEST_GROUP(RpnCalculatorShould) {
 RpnCalculator *RpnCalculator *RpnCalculator *RpnCalculator *calculatorcalculatorcalculatorcalculator;;;;
 voidvoidvoidvoid setup() {setup() {setup() {setup() {
 calculatorcalculatorcalculatorcalculator = = = = newnewnewnew RpnCalculator;RpnCalculator;RpnCalculator;RpnCalculator;

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 198 Author: Brett L. Schuchert (schuchert@yahoo.com)

 }}}}
 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deletedeletedeletedelete calculatorcalculatorcalculatorcalculator;;;;
 }}}}
 voidvoidvoidvoid topWas(topWas(topWas(topWas(intintintint value) {value) {value) {value) {
 LOLOLOLONGS_EQUAL(value, NGS_EQUAL(value, NGS_EQUAL(value, NGS_EQUAL(value, calculatorcalculatorcalculatorcalculator---->getX());>getX());>getX());>getX());
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("drop""drop""drop""drop"););););
 }}}}
 voidvoidvoidvoid enter(enter(enter(enter(intintintint value) {value) {value) {value) {
 calculatorcalculatorcalculatorcalculator---->enter(value);>enter(value);>enter(value);>enter(value);
 }}}}
 voidvoidvoidvoid execute(execute(execute(execute(constconstconstconst std::string &opName) {std::string &opName) {std::string &opName) {std::string &opName) {
 calculatorcalculatorcalculatorcalculator---->execute(opName);>execute(opName);>execute(opName);>execute(opName);
 }}}}
};};};};

TEST(RpnCalculatorShould, AddTwoNumbers) {TEST(RpnCalculatorShould, AddTwoNumbers) {TEST(RpnCalculatorShould, AddTwoNumbers) {TEST(RpnCalculatorShould, AddTwoNumbers) {
 enter(30);enter(30);enter(30);enter(30);
 enter(4);enter(4);enter(4);enter(4);
 execute(execute(execute(execute("+""+""+""+"););););
 topWas(34);topWas(34);topWas(34);topWas(34);
}}}}

TEST(RpnCalculatorShould, SubtractTwoNumbers) {TEST(RpnCalculatorShould, SubtractTwoNumbers) {TEST(RpnCalculatorShould, SubtractTwoNumbers) {TEST(RpnCalculatorShould, SubtractTwoNumbers) {
 enter(30);enter(30);enter(30);enter(30);
 enter(4);enter(4);enter(4);enter(4);
 execute(execute(execute(execute(""""----""""););););
 topWas(26);topWas(26);topWas(26);topWas(26);
}}}}
............
TEST(RpnCalculatorShould, NDupCorrectly) {TEST(RpnCalculatorShould, NDupCorrectly) {TEST(RpnCalculatorShould, NDupCorrectly) {TEST(RpnCalculatorShould, NDupCorrectly) {
 enter(4);enter(4);enter(4);enter(4);
 enter(3);enter(3);enter(3);enter(3);
 enter(2);enter(2);enter(2);enter(2);
 enter(1);enter(1);enter(1);enter(1);
 enter(5);enter(5);enter(5);enter(5);
 enter(2);enter(2);enter(2);enter(2);
 execute(execute(execute(execute("n_dup""n_dup""n_dup""n_dup"););););
 topWas(5);topWas(5);topWas(5);topWas(5);
 topWas(1);topWas(1);topWas(1);topWas(1);
 topWas(5);topWas(5);topWas(5);topWas(5);
 topWas(1);topWas(1);topWas(1);topWas(1);
 topWas(2);topWas(2);topWas(2);topWas(2);
 topWas(3);topWas(3);topWas(3);topWas(3);
 topWas(4);topWas(4);topWas(4);topWas(4);
 topWas(0);topWas(0);topWas(0);topWas(0);
}}}}

TEST(RpnCalculatorShould, CalculatePrimeFactorsOf100Correctly) {TEST(RpnCalculatorShould, CalculatePrimeFactorsOf100Correctly) {TEST(RpnCalculatorShould, CalculatePrimeFactorsOf100Correctly) {TEST(RpnCalculatorShould, CalculatePrimeFactorsOf100Correctly) {
 enter(100);enter(100);enter(100);enter(100);
 execute(execute(execute(execute(""""pfpfpfpf""""););););
 topWas(5topWas(5topWas(5topWas(5););););

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 199 Author: Brett L. Schuchert (schuchert@yahoo.com)

 topWas(5);topWas(5);topWas(5);topWas(5);
 topWas(2);topWas(2);topWas(2);topWas(2);
 topWas(2);topWas(2);topWas(2);topWas(2);
 topWas(0);topWas(0);topWas(0);topWas(0);
}}}}

The remainder of the missing automated rejection checks is left as an exercise.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 200 Author: Brett L. Schuchert (schuchert@yahoo.com)

6 Rpn Calculator – Sprint 3 – Macros
It is finally time to begin programming the calculator. First some examples:

Example 1 Example 2 Example 3 Example 4 Example 5

startstartstartstart
++++

save macro1save macro1save macro1save macro1
6666
4 4 4 4
9 9 9 9
3333
macro1macro1macro1macro1
----42424242

startstartstartstart
save macro3save macro3save macro3save macro3
<error><error><error><error>
too few too few too few too few
stepsstepsstepssteps

startstartstartstart
^^%^^%^^%^^%
<error><error><error><error>
unknown unknown unknown unknown
operationoperationoperationoperation
4444
2222
++++
6666

startstartstartstart
++++
++++
save +save +save +save +
<error> <error> <error> <error>
operation operation operation operation
name in name in name in name in
useuseuseuse

startstartstartstart
////
!!!!
save m1save m1save m1save m1
startstartstartstart
swap_xyswap_xyswap_xyswap_xy
m1m1m1m1
save m2save m2save m2save m2
2222
8888
m2m2m2m2
24242424

This is not a complete description of macro recording but it is a good start.

● Example 1 demonstrates a simple macro. Create a macro with three math operations,
enter 4 values and execute that macro. The result of -42 shows that the execution of
the steps is in the order entered.

● Example 2 demonstrates that there must be at least 1 step in any macro – a somewhat
arbitrary requirement, but one nonetheless. Generate an error if this condition is not
met.

● Example 3 demonstrates that a macro can only be built with known operations; if an
unknown operation is provided, stop recording. This is simple behavior. It makes
creating a circular set of macros more difficult.

● The fourth example demonstrates that you cannot use a name that is already in use.
This particular example only demonstrates that with a build-in operation, but it
applies for the ones you create yourself. Notice, with this additional limitation, it is
not possible to create circular macros (the proof is left as an exercise).

● The final example demonstrates that one macro can refer to another. Since there is a
requirement that macros should execute like regular operations, this may not seem
significant. What is significant, however, is that there are 2 macros in the system. In
general, a user can create any number of macros. That’s what this example suggests.

If we take these examples at face value, what are the actual messages coming into our
system? It looks like the follow methods must be added: start, save. Are these methods on
the Rpn Calculator, on a different façade or are they simply new kinds of math
operations? Any of the above will work. For now, we’ll take the easier road and say these
are new methods on the RpnCalculator. What of the operations, do we need to create a
new method or can we use the existing one? The decision isn’t arbitrary: add a new
method, change an existing method, but both will work. Rather than belabor the decision,
we’ll use the existing method and see what happens.

6.1 Happy Path

Here’s a happy path rejection check:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 201 Author: Brett L. Schuchert (schuchert@yahoo.com)

Added to RpnCalculatorShould.cpp

TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro) {TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro) {TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro) {TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro) {
 calculatorcalculatorcalculatorcalculator---->start();>start();>start();>start();
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("+""+""+""+"););););
 calculcalculcalculcalculatoratoratorator---->execute(>execute(>execute(>execute("*""*""*""*"););););
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute(""""----""""););););
 calculatorcalculatorcalculatorcalculator---->save(>save(>save(>save("macro1""macro1""macro1""macro1"););););
 enter(6);enter(6);enter(6);enter(6);
 enter(4);enter(4);enter(4);enter(4);
 enter(9);enter(9);enter(9);enter(9);
 enter(3);enter(3);enter(3);enter(3);
 calculatorcalculatorcalculatorcalculator---->execute(>execute(>execute(>execute("macro1""macro1""macro1""macro1"););););
 topWas(topWas(topWas(topWas(----42);42);42);42);
}}}}

Get to compiling: Update RpnCalculator.h

 voidvoidvoidvoid start();start();start();start();
 voidvoidvoidvoid save(save(save(save(constconstconstconst std::std::std::std::string ¯oName);string ¯oName);string ¯oName);string ¯oName);

Get to linking: Update RpnCalculator.cpp

voidvoidvoidvoid RpnCalculator::start() {RpnCalculator::start() {RpnCalculator::start() {RpnCalculator::start() {
}}}}

voidvoidvoidvoid RpnCalculator::RpnCalculator::RpnCalculator::RpnCalculator::save(save(save(save(constconstconstconst std::string ¯oName) {std::string ¯oName) {std::string ¯oName) {std::string ¯oName) {
}}}}

Now we have a failing rejection check. We have a few options:

● Get this working out-to-in
● Get this working in-to-out

There are a number of moving parts to this and we already have several things in place:

● This new construct should operate like a regular math operation, so it should inherit
from the math operation interface (abstract base class).

● Math operations reside in the math operation factory, which is also where they are
looked up. So it seems that any new operations should end up there.

● Currently, math operations self-register. This option is for ones that are known when
the system is written, not when it is executing, so we might need to update the factory
to allow for new operations while the system is running.

Rather than getting this check to pass out-to-in, let’s start working in-to-out (or bottom-
up). We have a decision; do we leave this check failing while we do our other work or do
we “remove” it somehow? There’s an easy way to note this as “not ready to check yet”:

IGNORE_TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro) {IGNORE_TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro) {IGNORE_TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro) {IGNORE_TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro) {

When we execute our automated checks, the summary will show one ignored check.
We’ll leave this in place until we think we’re ready to give it a go.

6.1.1 A Macro

First, we need to create something that can hold on to a number of math operations but
itself behaves like a math operation. Here’s one such example:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 202 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include <CppUT<CppUT<CppUT<CppUTest/TestHarness.h>est/TestHarness.h>est/TestHarness.h>est/TestHarness.h>

#include#include#include#include "Macro.h""Macro.h""Macro.h""Macro.h"
#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"
#include#include#include#include "Add.h""Add.h""Add.h""Add.h"

TEST_GROUP(MacroShould) {TEST_GROUP(MacroShould) {TEST_GROUP(MacroShould) {TEST_GROUP(MacroShould) {
};};};};

structstructstructstruct MathOperationSpyMathOperationSpyMathOperationSpyMathOperationSpy : : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{
 MathOperationSpy() : MathOperationSpy() : MathOperationSpy() : MathOperationSpy() : performCountperformCountperformCountperformCount(0) {}(0) {}(0) {}(0) {}
 voidvoidvoidvoid perform(perform(perform(perform(RpnStackRpnStackRpnStackRpnStack &values) {&values) {&values) {&values) {
 ++++++++performCountperformCountperformCountperformCount;;;;
 }}}}
 intintintint performCountperformCountperformCountperformCount;;;;
};};};};

TEST(MacroShould, HandleMultipleMathOperations) {TEST(MacroShould, HandleMultipleMathOperations) {TEST(MacroShould, HandleMultipleMathOperations) {TEST(MacroShould, HandleMultipleMathOperations) {
 MathOperationSpyMathOperationSpyMathOperationSpyMathOperationSpy spy;spy;spy;spy;
 MacroMacroMacroMacro op;op;op;op;
 RpnStackRpnStackRpnStackRpnStack values;values;values;values;
 op.append(spy);op.append(spy);op.append(spy);op.append(spy);
 op.append(spy);op.append(spy);op.append(spy);op.append(spy);
 op.perform(values);op.perform(values);op.perform(values);op.perform(values);
 LONGS_EQUAL(2, spy.LONGS_EQUAL(2, spy.LONGS_EQUAL(2, spy.LONGS_EQUAL(2, spy.performCountperformCountperformCountperformCount););););
}}}}

This check verifies that we can add multiple math operations to a macro and that each is
sent the perform message.

Macro.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef MACRO_H_MACRO_H_MACRO_H_MACRO_H_
#define#define#define#define MACRO_H_MACRO_H_MACRO_H_MACRO_H_

#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"
#include#include#include#include <list><list><list><list>

classclassclassclass MacroMacroMacroMacro: : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(perform(perform(perform(RpnStackRpnStackRpnStackRpnStack &values);&values);&values);&values);
 voidvoidvoidvoid append(append(append(append(MathOperationMathOperationMathOperationMathOperation &op);&op);&op);&op);

privateprivateprivateprivate::::
 typedeftypedeftypedeftypedef std::std::std::std::listlistlistlist<<<<MathOperationMathOperationMathOperationMathOperation*> *> *> *> MathOperationListMathOperationListMathOperationListMathOperationList;;;;
 typedeftypedeftypedeftypedef MathOperationListMathOperationListMathOperationListMathOperationList::::::::iteratoriteratoriteratoriterator iteratoriteratoriteratoriterator;;;;
 MathOperationListMathOperationListMathOperationListMathOperationList operationsoperationsoperationsoperations;;;;
};};};};

#endif#endif#endif#endif

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 203 Author: Brett L. Schuchert (schuchert@yahoo.com)

Notice that this class uses the <list> class instead of <vector>. This is more for you to be
aware of the class that for a compelling design reason. Other than std::list versus
std::vector, you won’t notice any difference in this simple example.

Macro.cpp

#include#include#include#include "Macro.h""Macro.h""Macro.h""Macro.h"

voidvoidvoidvoid Macro::perform(Macro::perform(Macro::perform(Macro::perform(RpnStackRpnStackRpnStackRpnStack &values&values&values&values) {) {) {) {
 forforforfor((((iteratoriteratoriteratoriterator i = i = i = i = operationsoperationsoperationsoperations.begin(); i != .begin(); i != .begin(); i != .begin(); i != operationsoperationsoperationsoperations.end(); ++i).end(); ++i).end(); ++i).end(); ++i)
 (*i)(*i)(*i)(*i)---->perform(values);>perform(values);>perform(values);>perform(values);
}}}}

voidvoidvoidvoid Macro::append(Macro::append(Macro::append(Macro::append(MathOperationMathOperationMathOperationMathOperation &op) {&op) {&op) {&op) {
 operationsoperationsoperationsoperations.push_back(&op);.push_back(&op);.push_back(&op);.push_back(&op);
}}}}

This is a minimal implementation of Macro that gets the automated check passing.

6.1.2 Adding to factory

Now we need to be able to add one of these to the factory. Here is an automated check for
that:

Added to MathOperationFactoryShould.cpp

#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"
structstructstructstruct MathOperationStubMathOperationStubMathOperationStubMathOperationStub : : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{
 voidvoidvoidvoid perform(perform(perform(perform(RpnStackRpnStackRpnStackRpnStack &val&val&val&values) {}ues) {}ues) {}ues) {}
};};};};

TEST(MathOperationFactoryShould, AllowRegistrationOfNewMathOperations) TEST(MathOperationFactoryShould, AllowRegistrationOfNewMathOperations) TEST(MathOperationFactoryShould, AllowRegistrationOfNewMathOperations) TEST(MathOperationFactoryShould, AllowRegistrationOfNewMathOperations)
{{{{
 MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory factory;factory;factory;factory;
 MathOperationStubMathOperationStubMathOperationStubMathOperationStub *op = *op = *op = *op = newnewnewnew MathOperationStub;MathOperationStub;MathOperationStub;MathOperationStub;
 factory.add(factory.add(factory.add(factory.add(""""newopnewopnewopnewop"""", op);, op);, op);, op);
 trytrytrytry {{{{
 CHECK(op == &factory.findOperationNamed(CHECK(op == &factory.findOperationNamed(CHECK(op == &factory.findOperationNamed(CHECK(op == &factory.findOperationNamed(""""newopnewopnewopnewop""""));));));));
 } } } } catchcatchcatchcatch((((UnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationException &) {&) {&) {&) {
 FAIL(FAIL(FAIL(FAIL("Should have found a math operation""Should have found a math operation""Should have found a math operation""Should have found a math operation"););););
 }}}}
}}}}

This almost works. The check passes, but there is a memory leak. The factory gets most
of its operations from the math operation registrant; all but this one. We need to update
the destructor of the factory to remove this memory leak:

MathOperationFactory::~MathOperationFactory() {MathOperationFactory::~MathOperationFactory() {MathOperationFactory::~MathOperationFactory() {MathOperationFactory::~MathOperationFactory() {
 MathOperationRegistrant r;MathOperationRegistrant r;MathOperationRegistrant r;MathOperationRegistrant r;
 forforforfor(MathOperationRegistrant::iterator i = r.begin(); (MathOperationRegistrant::iterator i = r.begin(); (MathOperationRegistrant::iterator i = r.begin(); (MathOperationRegistrant::iterator i = r.begin();
 i != r.end(); ++i)i != r.end(); ++i)i != r.end(); ++i)i != r.end(); ++i)
 operationsByNamoperationsByNamoperationsByNamoperationsByNameeee.erase((*i)..erase((*i)..erase((*i)..erase((*i).firstfirstfirstfirst););););
 forforforfor(iterator i = (iterator i = (iterator i = (iterator i = operationsByNameoperationsByNameoperationsByNameoperationsByName.begin(); .begin(); .begin(); .begin();
 i != i != i != i != operationsByNameoperationsByNameoperationsByNameoperationsByName.end(); ++i).end(); ++i).end(); ++i).end(); ++i)
 deletedeletedeletedelete (*i).(*i).(*i).(*i).secondsecondsecondsecond;;;;

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 204 Author: Brett L. Schuchert (schuchert@yahoo.com)

}}}}

This is quite a bit, remove the operations in the factory that come from the math
operation registrant and then delete anything else that is left over. While this does seem to
work, it’s a bit of a mess:

● Allocation in the calculator is passed to the factory and then released: what happens if
save() is not called?

● The factory has to include MathOperation.h again because of the destructor.
● The destructor is ugly.

Auto-registration is to blame for some of this; the destructor is more complex because of
it. The split of allocation and deallocation is problematic; we could have the factory
perform the allocation and deallocation or put it somewhere else. We could update the
factory to use the auto registration rather than copy it. Then the factory would look in two
places for an operation. Before doing any of that, let’s take this a bit further to see how
much uglier it gets.

6.1.3 Adding it to RpnCalculator

We have two stub methods and we’re working on a happy path. Here is something that
will work for this first automated check:

voidvoidvoidvoid RpnCalculator::start() {RpnCalculator::start() {RpnCalculator::start() {RpnCalculator::start() {
 macro = macro = macro = macro = newnewnewnew Macro;Macro;Macro;Macro;
 recording = recording = recording = recording = truetruetruetrue;;;;
}}}}

voidvoidvoidvoid RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(constconstconstconst std::sstd::sstd::sstd::string ¯oName) {tring ¯oName) {tring ¯oName) {tring ¯oName) {
 factoryfactoryfactoryfactory---->add(macroName, macro);>add(macroName, macro);>add(macroName, macro);>add(macroName, macro);
 recording = recording = recording = recording = falsefalsefalsefalse;;;;
}}}}

voidvoidvoidvoid RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(constconstconstconst std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {
 MathOperation &op = MathOperation &op = MathOperation &op = MathOperation &op = factoryfactoryfactoryfactory---->findOperationNamed(operatorName);>findOperationNamed(operatorName);>findOperationNamed(operatorName);>findOperationNamed(operatorName);

 ifififif (!recording) {(!recording) {(!recording) {(!recording) {
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););
 } } } } eeeelselselselse {{{{
 macromacromacromacro---->>>>append(append(append(append(op);op);op);op);
 }}}}
}}}}

Member Data: Update header

classclassclassclass MacroMacroMacroMacro;;;;

classclassclassclass RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator {{{{

privateprivateprivateprivate::::

 MacroMacroMacroMacro ****macromacromacromacro;;;;
 boolboolboolbool recordingrecordingrecordingrecording;;;;

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 205 Author: Brett L. Schuchert (schuchert@yahoo.com)

Member Data: Initialization

RpnCalculator::RpnCalculator() :RpnCalculator::RpnCalculator() :RpnCalculator::RpnCalculator() :RpnCalculator::RpnCalculator() :
 factoryfactoryfactoryfactory((((newnewnewnew MathOperationFactory), MathOperationFactory), MathOperationFactory), MathOperationFactory), macromacromacromacro(0), (0), (0), (0), recordingrecordingrecordingrecording((((falsefalsefalsefalse) {) {) {) {
}}}}

These changes should work. Now update the rejection check in RpnCalculatorShould by
removing IGNORE_ and verify that it now passes.

6.2 Empty macros not allowed

Here’s a rejection check for this one:

Added to RpnCalculatorShould.cpp

#include#include#include#include "IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h"
TEST(RpnCalculatorShould, TEST(RpnCalculatorShould, TEST(RpnCalculatorShould, TEST(RpnCalculatorShould,
ThrowExceptionWhenAttemptingToSaveZeroLengthMacro) {ThrowExceptionWhenAttemptingToSaveZeroLengthMacro) {ThrowExceptionWhenAttemptingToSaveZeroLengthMacro) {ThrowExceptionWhenAttemptingToSaveZeroLengthMacro) {
 calculatorcalculatorcalculatorcalculator---->start();>start();>start();>start();
 trytrytrytry {{{{
 calculatorcalculatorcalculatorcalculator---->save(>save(>save(>save("should fail""should fail""should fail""should fail"););););
 FAIL(FAIL(FAIL(FAIL("Should have thrown exception""Should have thrown exception""Should have thrown exception""Should have thrown exception"););););
 } } } } catchcatchcatchcatch((((IllegalMacroExceptionIllegalMacroExceptionIllegalMacroExceptionIllegalMacroException &e) {&e) {&e) {&e) {
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
 }}}}
}}}}

IllegalMacroException.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef ILLEGALMACROEXCEPTION_H_ILLEGALMACROEXCEPTION_H_ILLEGALMACROEXCEPTION_H_ILLEGALMACROEXCEPTION_H_
#define#define#define#define ILLEGALMACROEXCEPTION_H_ILLEGALMACROEXCEPTION_H_ILLEGALMACROEXCEPTION_H_ILLEGALMACROEXCEPTION_H_

#include#include#include#include <exception><exception><exception><exception>

classclassclassclass IllegalMacroExceptionIllegalMacroExceptionIllegalMacroExceptionIllegalMacroException : : : : publicpublicpublicpublic std::std::std::std::exceptionexceptionexceptionexception {{{{
};};};};

#endif#endif#endif#endif

This check fails, so we need to update the save() method to check:

#include#include#include#include "IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h"
voidvoidvoidvoid RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(constconstconstconst std::std::std::std::stringstringstringstring ¯oName) {¯oName) {¯oName) {¯oName) {
 ifififif((((macromacromacromacro---->stepCountAtLeast(1) == >stepCountAtLeast(1) == >stepCountAtLeast(1) == >stepCountAtLeast(1) == falsefalsefalsefalse))))
 throwthrowthrowthrow IllegalMacroException();IllegalMacroException();IllegalMacroException();IllegalMacroException();
 factoryfactoryfactoryfactory---->add(macroName, >add(macroName, >add(macroName, >add(macroName, macromacromacromacro););););
 recordingrecordingrecordingrecording = = = = falsefalsefalsefalse;;;;
}}}}

For this to compile, link and pass:

Added to Macro.h

boolboolboolbool stepCountAtLeast(stepCountAtLeast(stepCountAtLeast(stepCountAtLeast(unsighedunsighedunsighedunsighed length) length) length) length) constconstconstconst;;;;

Defined in Macro.cpp

boolboolboolbool Macro::stepCountAtLeast(Macro::stepCountAtLeast(Macro::stepCountAtLeast(Macro::stepCountAtLeast(unsignedunsignedunsignedunsigned length) length) length) length) constconstconstconst {{{{

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 206 Author: Brett L. Schuchert (schuchert@yahoo.com)

 returnreturnreturnreturn operationsoperationsoperationsoperations.size() >= length;.size() >= length;.size() >= length;.size() >= length;
}}}}

The check passes but there’s a memory leak. If the macro has been allocated in start(), it
should be released either here or in the destructor. We noticed the problem here, we can
fix it here; this also points to other problematic paths of execution:

#include#include#include#include "IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h"
voidvoidvoidvoid RpnCalcRpnCalcRpnCalcRpnCalculator::save(ulator::save(ulator::save(ulator::save(constconstconstconst std::std::std::std::stringstringstringstring ¯oName) {¯oName) {¯oName) {¯oName) {
 MacroMacroMacroMacro *candidate = *candidate = *candidate = *candidate = macromacromacromacro;;;;
 recordingrecordingrecordingrecording = = = = falsefalsefalsefalse;;;;
 macromacromacromacro = 0;= 0;= 0;= 0;
 ifififif(candidate(candidate(candidate(candidate---->stepCountAtLeast(1)) {>stepCountAtLeast(1)) {>stepCountAtLeast(1)) {>stepCountAtLeast(1)) {
 factoryfactoryfactoryfactory---->add(macroName, candidate);>add(macroName, candidate);>add(macroName, candidate);>add(macroName, candidate);
 } } } } elseelseelseelse {{{{
 deletedeletedeletedelete candidate;candidate;candidate;candidate;
 throwthrowthrowthrow IllegalMacroException();IllegalMacroException();IllegalMacroException();IllegalMacroException();
 }}}}
}}}}

After this method is done, either the macro was recorded, in which case its memory is
owned by the factory, or the macro was deleted. Regardless, the calculator is no longer
recording and the macro attribute is initialized to 0. This points to another problem, what
if start() was not first called?

6.2.1 Must call start first()

TEST(RpnCalculatorShould, RequireStartToBeCalledBeforeSave) {TEST(RpnCalculatorShould, RequireStartToBeCalledBeforeSave) {TEST(RpnCalculatorShould, RequireStartToBeCalledBeforeSave) {TEST(RpnCalculatorShould, RequireStartToBeCalledBeforeSave) {
 trytrytrytry {{{{
 calculatorcalculatorcalculatorcalculator---->save(>save(>save(>save("should fail""should fail""should fail""should fail"););););
 FAIL(FAIL(FAIL(FAIL("Should have thrown exception""Should have thrown exception""Should have thrown exception""Should have thrown exception"););););
 } } } } catchcatchcatchcatch(IllegalMacroException &e) (IllegalMacroException &e) (IllegalMacroException &e) (IllegalMacroException &e) {{{{
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
 }}}}
}}}}

This automated check fails. How it fails is somewhat platform dependent. In my case it
simply stops tests from running. What’s happening is a null pointer reference on this line:

 ifififif(candidate(candidate(candidate(candidate---->stepCountAtLeast(1)) {>stepCountAtLeast(1)) {>stepCountAtLeast(1)) {>stepCountAtLeast(1)) {

We can fix this by checking for it:

#include#include#include#include "IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h"
voidvoidvoidvoid RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(constconstconstconst std::std::std::std::stringstringstringstring ¯oName) {¯oName) {¯oName) {¯oName) {
 ifififif((((macromacromacromacro == 0)== 0)== 0)== 0)
 throwthrowthrowthrow IllegalMacroException();IllegalMacroException();IllegalMacroException();IllegalMacroException();

}}}}

Notice this is getting a touch ugly. We will work on this in a bit; let’s continue with
automated rejection checks based on the provided examples.

6.2.2 Unknown operation cannot be added to a macro

TEST(RpnCalculatorShould, OnlyAllowValidMathOperationsToBeAdded) {TEST(RpnCalculatorShould, OnlyAllowValidMathOperationsToBeAdded) {TEST(RpnCalculatorShould, OnlyAllowValidMathOperationsToBeAdded) {TEST(RpnCalculatorShould, OnlyAllowValidMathOperationsToBeAdded) {

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 207 Author: Brett L. Schuchert (schuchert@yahoo.com)

 calculatorcalculatorcalculatorcalculator---->start();>start();>start();>start();
 trytrytrytry {{{{
 execute(execute(execute(execute("^^%""^^%""^^%""^^%"););););
 FAIL(FAIL(FAIL(FAIL("Should have thrown "Should have thrown "Should have thrown "Should have thrown exception"exception"exception"exception"););););
 } } } } catchcatchcatchcatch(UnknownMathOperationException &e) {(UnknownMathOperationException &e) {(UnknownMathOperationException &e) {(UnknownMathOperationException &e) {
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
 }}}}
 enter(4);enter(4);enter(4);enter(4);
 enter(2);enter(2);enter(2);enter(2);
 execute(execute(execute(execute("+""+""+""+"););););
 topWas(6);topWas(6);topWas(6);topWas(6);
}}}}

This check fails. While the system already throws UnknownMathOperationException,
the code needs to clean up the current macro and move back into record mode after the
exception, and it doesn’t.

Update RpnCalculator.execute:

#include#include#include#include "UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h"
voidvoidvoidvoid RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(constconstconstconst std::std::std::std::stringstringstringstring &operatorName) {&operatorName) {&operatorName) {&operatorName) {
 ifififif (!(!(!(!recordingrecordingrecordingrecording) {) {) {) {
 MathOperationMathOperationMathOperationMathOperation &op = &op = &op = &op = factofactofactofactoryryryry---->findOperationNamed(operatorName);>findOperationNamed(operatorName);>findOperationNamed(operatorName);>findOperationNamed(operatorName);
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););
 } } } } elseelseelseelse {{{{
 trytrytrytry {{{{
 MathOperationMathOperationMathOperationMathOperation &op = &op = &op = &op = factoryfactoryfactoryfactory---->findOperationNamed(operatorName);>findOperationNamed(operatorName);>findOperationNamed(operatorName);>findOperationNamed(operatorName);
 macromacromacromacro---->append(op);>append(op);>append(op);>append(op);
 } } } } catchcatchcatchcatch ((((UnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationException &e) {&e) {&e) {&e) {
 deletedeletedeletedelete macromacromacromacro;;;;
 macrmacrmacrmacroooo = 0;= 0;= 0;= 0;
 recordingrecordingrecordingrecording = 0;= 0;= 0;= 0;
 throwthrowthrowthrow e;e;e;e;
 }}}}
 }}}}
}}}}

This is getting pretty ugly. There’s duplication and there are essentially two different
methods in this based on the state of things. We will address this shortly. For now, let’s
finish the last two examples then we’ll come back and consider different approaches to
removing this ugliness.

6.2.3 Cannot save under existing name

The system should not allow saving a macro name under a name that is already in use:

Added to RpnCalculatorShould.cpp

#include#include#include#include "NameI"NameI"NameI"NameInUseException.h"nUseException.h"nUseException.h"nUseException.h"
TEST(RpnCalculatorShould, DisallowSavingUnderExistingName) {TEST(RpnCalculatorShould, DisallowSavingUnderExistingName) {TEST(RpnCalculatorShould, DisallowSavingUnderExistingName) {TEST(RpnCalculatorShould, DisallowSavingUnderExistingName) {
 calculatorcalculatorcalculatorcalculator---->start();>start();>start();>start();
 trytrytrytry {{{{
 execute(execute(execute(execute("+""+""+""+"););););
 execute(execute(execute(execute("+""+""+""+"););););
 calculatorcalculatorcalculatorcalculator---->save(>save(>save(>save("+""+""+""+"););););

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 208 Author: Brett L. Schuchert (schuchert@yahoo.com)

 FAIL(FAIL(FAIL(FAIL("Should have thrown exception.""Should have thrown exception.""Should have thrown exception.""Should have thrown exception."))))
 } } } } catchcatchcatchcatch ((((NameInUseExceptionNameInUseExceptionNameInUseExceptionNameInUseException &e) {&e) {&e) {&e) {
 CHCHCHCHECK(1);ECK(1);ECK(1);ECK(1);
 }}}}
}}}}

NameInUseException.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_
#define#define#define#define NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_NAMEINUSEEXCEPTION_H_

#include#include#include#include <exception><exception><exception><exception>

classclassclassclass NameInUseExceptionNameInUseExceptionNameInUseExceptionNameInUseException : : : : publicpublicpublicpublic std::std::std::std::exceptionexceptionexceptionexception {};{};{};{};

#endif#endif#endif#endif

This check fails. This is really a behavior of the factory, not the rpn calculator, so we can
get this check to pass but then we should consider adding another micro-check to the
math operation factory should source file.

Update MathOperationFactory.cpp

#include#include#include#include "NameInUseException.h""NameInUseException.h""NameInUseException.h""NameInUseException.h"
voidvoidvoidvoid MathOperationFactory::add(MathOperationFactory::add(MathOperationFactory::add(MathOperationFactory::add(conconconconstststst std::std::std::std::stringstringstringstring &name, &name, &name, &name, MathOperationMathOperationMathOperationMathOperation
*op) {*op) {*op) {*op) {
 ifififif((((operationsByNameoperationsByNameoperationsByNameoperationsByName.find(name) != .find(name) != .find(name) != .find(name) != operationsByNameoperationsByNameoperationsByNameoperationsByName.end()).end()).end()).end())
 throwthrowthrowthrow NameInUseException();NameInUseException();NameInUseException();NameInUseException();
 operationsByNameoperationsByNameoperationsByNameoperationsByName[name] = op;[name] = op;[name] = op;[name] = op;
}}}}

While the check passes, there’s a memory leak (again). To fix this:

Update RpnCalculator::save

#include#include#include#include "IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h"
#include#include#include#include "NameInUseException.h""NameInUseException.h""NameInUseException.h""NameInUseException.h"
voidvoidvoidvoid RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(constconstconstconst std::std::std::std::stringstringstringstring ¯oName) {¯oName) {¯oName) {¯oName) {

 ifififif (candidate(candidate(candidate(candidate---->stepCountAtLeast(1)) {>stepCountAtLeast(1)) {>stepCountAtLeast(1)) {>stepCountAtLeast(1)) {
 trytrytrytry {{{{
 factoryfactoryfactoryfactory---->add(macroName, candidate);>add(macroName, candidate);>add(macroName, candidate);>add(macroName, candidate);
 } } } } catchcatchcatchcatch ((((NameInUseExcepNameInUseExcepNameInUseExcepNameInUseExceptiontiontiontion &e) {&e) {&e) {&e) {
 deletedeletedeletedelete candidate;candidate;candidate;candidate;
 throwthrowthrowthrow e;e;e;e;
 }}}}

}}}}

Notice how the rpn calculator keeps growing? This class violates the single responsibility
principle, it is no longer cohesive. We’ll address this once we finish the examples.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 209 Author: Brett L. Schuchert (schuchert@yahoo.com)

6.2.4 Adding missing check on the factory

The last automated rejection check required changes to the factory, so let’s add that
missing check on the factory:

Added to MathOperationFactoryShould.cpp

#include#include#include#include "NameInUseException.h""NameInUseException.h""NameInUseException.h""NameInUseException.h"
TEST(MathOperationFactoryShould, NoAllowRegistraTEST(MathOperationFactoryShould, NoAllowRegistraTEST(MathOperationFactoryShould, NoAllowRegistraTEST(MathOperationFactoryShould, NoAllowRegistrationOfAlreadyUsedName) tionOfAlreadyUsedName) tionOfAlreadyUsedName) tionOfAlreadyUsedName)
{{{{
 MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory factory;factory;factory;factory;
 MathOperationStubMathOperationStubMathOperationStubMathOperationStub *op = *op = *op = *op = newnewnewnew MathOperationStub;MathOperationStub;MathOperationStub;MathOperationStub;
 factory.add(factory.add(factory.add(factory.add(""""newopnewopnewopnewop"""", op);, op);, op);, op);
 trytrytrytry {{{{
 factory.add(factory.add(factory.add(factory.add(""""newopnewopnewopnewop"""", op);, op);, op);, op);
 FAIL(FAIL(FAIL(FAIL("Should have thrown exception""Should have thrown exception""Should have thrown exception""Should have thrown exception"););););
 } } } } catchcatchcatchcatch((((NameInUseExceptionNameInUseExceptionNameInUseExceptionNameInUseException &e) {&e) {&e) {&e) {
 CHECHECHECHECK(1);CK(1);CK(1);CK(1);
 }}}}
}}}}

Notice, this one passes as is. That’s because we already wrote a more integration-oriented
check that required this behavior. This is just keeping us honest.

6.2.5 Macros can refer to other macros

This should be no problem, let’s see how well we’ve done up to this point:

TEST(RpnCalculatorShould, AllowMacrosToReferToOtherMacros) {TEST(RpnCalculatorShould, AllowMacrosToReferToOtherMacros) {TEST(RpnCalculatorShould, AllowMacrosToReferToOtherMacros) {TEST(RpnCalculatorShould, AllowMacrosToReferToOtherMacros) {
 calculatorcalculatorcalculatorcalculator---->start();>start();>start();>start();
 execute(execute(execute(execute("/""/""/""/"););););
 execute(execute(execute(execute("!""!""!""!"););););
 calculatorcalculatorcalculatorcalculator---->save(>save(>save(>save("m1""m1""m1""m1"););););
 calculatorcalculatorcalculatorcalculator---->start();>start();>start();>start();
 execute(execute(execute(execute("swap_xy""swap_xy""swap_xy""swap_xy"););););
 execute(execute(execute(execute("m1""m1""m1""m1"););););
 calculatorcalculatorcalculatorcalculator---->save(>save(>save(>save("m2""m2""m2""m2"););););
 eeeenter(2);nter(2);nter(2);nter(2);
 enter(8);enter(8);enter(8);enter(8);
 execute(execute(execute(execute("m2""m2""m2""m2"););););
 topWas(24);topWas(24);topWas(24);topWas(24);
}}}}

This automated rejection check passes without changing the underlying system. This is
no surprise since we treat macros like regular operations.

6.3 Cleaning up the calculator

The calculator has become a bit of a mess by adding support for programmability. Here
are the offending member functions:

#include#include#include#include "UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h"
voidvoidvoidvoid RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(constconstconstconst std::std::std::std::stringstringstringstring &operatorName) {&operatorName) {&operatorName) {&operatorName) {
 ifififif (!(!(!(!recordingrecordingrecordingrecording) {) {) {) {
 MathOperationMathOperationMathOperationMathOperation &op = &op = &op = &op = factoryfactoryfactoryfactory---->findO>findO>findO>findOperationNamed(operatorName);perationNamed(operatorName);perationNamed(operatorName);perationNamed(operatorName);
 op.perform(op.perform(op.perform(op.perform(valuesvaluesvaluesvalues););););

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 210 Author: Brett L. Schuchert (schuchert@yahoo.com)

 } } } } elseelseelseelse {{{{
 trytrytrytry {{{{
 MathOperationMathOperationMathOperationMathOperation &op = &op = &op = &op = factoryfactoryfactoryfactory---->findOperationNamed(operatorName);>findOperationNamed(operatorName);>findOperationNamed(operatorName);>findOperationNamed(operatorName);
 macromacromacromacro---->append(op);>append(op);>append(op);>append(op);
 } } } } catchcatchcatchcatch ((((UnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationException &e) {&e) {&e) {&e) {
 deletedeletedeletedelete macromacromacromacro;;;;
 macromacromacromacro = 0;= 0;= 0;= 0;
 recordingrecordingrecordingrecording = 0;= 0;= 0;= 0;
 throwthrowthrowthrow e;e;e;e;
 }}}}
 }}}}
}}}}

#include#include#include#include "IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h"
#include#include#include#include "NameInUseException.h""NameInUseException.h""NameInUseException.h""NameInUseException.h"
voidvoidvoidvoid RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(constconstconstconst std::std::std::std::stringstringstringstring ¯oName) {¯oName) {¯oName) {¯oName) {
 ifififif ((((macromacromacromacro == 0)== 0)== 0)== 0)
 throwthrowthrowthrow IllegalMacroException();IllegalMacroException();IllegalMacroException();IllegalMacroException();

 MacroMacroMacroMacro *candidate = *candidate = *candidate = *candidate = macromacromacromacro;;;;
 rrrrecordingecordingecordingecording = = = = falsefalsefalsefalse;;;;
 macromacromacromacro = 0;= 0;= 0;= 0;
 ifififif (candidate(candidate(candidate(candidate---->stepCountAtLeast(1)) {>stepCountAtLeast(1)) {>stepCountAtLeast(1)) {>stepCountAtLeast(1)) {
 trytrytrytry {{{{
 factoryfactoryfactoryfactory---->add(macroName, candidate);>add(macroName, candidate);>add(macroName, candidate);>add(macroName, candidate);
 } } } } catchcatchcatchcatch ((((NameInUseExceptionNameInUseExceptionNameInUseExceptionNameInUseException &e) {&e) {&e) {&e) {
 deletedeletedeletedelete candidate;candidate;candidate;candidate;
 throwthrowthrowthrow e;e;e;e;
 }}}}
 } } } } elseelseelseelse {{{{
 deletedeletedeletedelete candidate;candidate;candidate;candidate;
 throwthrowthrowthrow IllegalIllegalIllegalIllegalMacroException();MacroException();MacroException();MacroException();
 }}}}
}}}}

The RpnCalculator serves as the entry point into the system. It shouldn’t do too much;
instead it should delegate much of the work to other objects. Generally, when a class does
too much work, we extract out part of the class into another class. This work is a prime
candidate for such a refactoring. We could:

● Create a class that does the programming
● Use the state pattern

The state pattern is a more specific form of factoring out part of the work into another
class. The difference is that there are typically multiple states, which we have, and the
next state is determined by messages coming into the system. Consider:

● The calculator is initially in calculation mode
● When the start() message is received, the system is in programming mode
● When the save() message is received, the system returns to normal mode

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 211 Author: Brett L. Schuchert (schuchert@yahoo.com)

As it is, the state pattern may seem a bit complex for this and it probably is. However,
let’s go with it and see what we end up with. Here’s a model of the state pattern applied
to our domain:

In the state pattern, there’s a hierarchy of state objects. In our case, that is the calculator
mode and its two derivatives: Calculation and Programming. The calculator has a
reference to one of these at all times, that’s the solid line from Rpn Calculator to
Calculator Mode. The thing with the state is called the “context” object. Typically, the
state objects need to work directly with the context, the rpn calculator in this case. If you
do so directly, then there is a circular reference between the object with the state and the
state hierarchy. Circular references are causes a number of problems, so we’ll extract an
interface called Context. The calculator will depend on its mode; the mode will depend
on the context. This breaks the circular reference.

The Rpn Calculator and its Calculator Mode can be considered one logical grouping of
functionality. When a message comes into the calculator, depending on its mode it does
one of a few things:

Calculation Mode

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 212 Author: Brett L. Schuchert (schuchert@yahoo.com)

Programming

Rpn

Calculator
Calculation

Math Operation

Factory

start

start

m: Macro

setMode(Programming)

create

Programming

execute(“+”)

execute(“+”)

op := findOperationNamed(“+”)

append(op)

save(“m1”)

save(“m1”)

add(“m1”, m)

setMode(:Calculation)

This is a lot to take in, so we’ll take it test-first.

6.3.1 Calculation Mode

In calculation mode, we should do what the calculator was doing before we added
macros. With that in mind, here is a series of automated checks on the Calculation class:

CalculationShould.cpp

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "RpnCalculator.h""RpnCalculator.h""RpnCalculator.h""RpnCalculator.h"
#include#include#include#include "Calculation.h""Calculation.h""Calculation.h""Calculation.h"

TEST_GROUP(CalculationShould) {TEST_GROUP(CalculationShould) {TEST_GROUP(CalculationShould) {TEST_GROUP(CalculationShould) {
 RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator ****contextcontextcontextcontext;;;;
 voidvoidvoidvoid setup() {setup() {setup() {setup() {
 contextcontextcontextcontext = = = = newnewnewnew RpnRpnRpnRpnCalculator;Calculator;Calculator;Calculator;
 }}}}
 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deletedeletedeletedelete contextcontextcontextcontext;;;;
 }}}}
};};};};

TEST(CalculationShould, PutNumbersOnStackForEnter) {TEST(CalculationShould, PutNumbersOnStackForEnter) {TEST(CalculationShould, PutNumbersOnStackForEnter) {TEST(CalculationShould, PutNumbersOnStackForEnter) {
 Calculation mode;Calculation mode;Calculation mode;Calculation mode;
 mode.enter(mode.enter(mode.enter(mode.enter(contextcontextcontextcontext, 5);, 5);, 5);, 5);
 LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, LONGS_EQUAL(5, contextcontextcontextcontext---->getX());>getX());>getX());>getX());
}}}}

For this to compile, you’ll need to make several changes:

Create Calculation.h

#pragma#pragma#pragma#pragma onceonceonceonce

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 213 Author: Brett L. Schuchert (schuchert@yahoo.com)

#ifndef#ifndef#ifndef#ifndef CALCULATION_H_CALCULATION_H_CALCULATION_H_CALCULATION_H_
#define#define#define#define CALCULATION_H_CALCULATION_H_CALCULATION_H_CALCULATION_H_

classclassclassclass ContextContextContextContext;;;;

classclassclassclass CalculationCalculationCalculationCalculation {{{{
publicpublicpublicpublic::::
 Calculation();Calculation();Calculation();Calculation();
 virtualvirtualvirtualvirtual ~Calculation();~Calculation();~Calculation();~Calculation();
 voidvoidvoidvoid enter(enter(enter(enter(ContextContextContextContext *context, *context, *context, *context, intintintint value);value);value);value);
};};};};

#endif#endif#endif#endif

Create Calculation.cpp

#include#include#include#include "Calculation.h""Calculation.h""Calculation.h""Calculation.h"

#include#include#include#include "Context.h""Context.h""Context.h""Context.h"
#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

Calculation::Calculation() {Calculation::Calculation() {Calculation::Calculation() {Calculation::Calculation() {
}}}}

Calculation::~Calculation() {Calculation::~Calculation() {Calculation::~Calculation() {Calculation::~Calculation() {
}}}}

voidvoidvoidvoid Calculation::enter(Calculation::enter(Calculation::enter(Calculation::enter(ContextContextContextContext *context, *context, *context, *context, intintintint value) {value) {value) {value) {
 contextcontextcontextcontext---->getStack().push(value);>getStack().push(value);>getStack().push(value);>getStack().push(value);
}}}}

Create Context.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef CONTEXT_H_CONTEXT_H_CONTEXT_H_CONTEXT_H_
#define#define#define#define CONTEXT_H_CONTEXT_H_CONTEXT_H_CONTEXT_H_

class RpnStack;class RpnStack;class RpnStack;class RpnStack;
classclassclassclass ContextContextContextContext {{{{
publicpublicpublicpublic::::
 virtualvirtualvirtualvirtual ~Context() = 0;~Context() = 0;~Context() = 0;~Context() = 0;
 virtualvirtualvirtualvirtual RpnStack &getStack() = 0;RpnStack &getStack() = 0;RpnStack &getStack() = 0;RpnStack &getStack() = 0;
 virtualvirtualvirtualvirtual voidvoidvoidvoid enter(enter(enter(enter(intintintint value) = 0;value) = 0;value) = 0;value) = 0;
};};};};

#endif#endif#endif#endif

Make RpnCalculator inherit from Context and add new method:

#include#include#include#include "Conte"Conte"Conte"Context.h"xt.h"xt.h"xt.h"
classclassclassclass RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator : : : : publicpublicpublicpublic ContextContextContextContext {{{{
publicpublicpublicpublic::::

 RpnStackRpnStackRpnStackRpnStack &getStack() { &getStack() { &getStack() { &getStack() { returnreturnreturnreturn valuesvaluesvaluesvalues; }; }; }; }

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 214 Author: Brett L. Schuchert (schuchert@yahoo.com)

The first check now passes.

6.3.2 Executes Operations Directly

TEST(CalculationShould, ExecuteOperationsDirectly) {TEST(CalculationShould, ExecuteOperationsDirectly) {TEST(CalculationShould, ExecuteOperationsDirectly) {TEST(CalculationShould, ExecuteOperationsDirectly) {
 Calculation mode;Calculation mode;Calculation mode;Calculation mode;
 contextcontextcontextcontext---->enter(5);>enter(5);>enter(5);>enter(5);
 cocococontextntextntextntext---->enter(2);>enter(2);>enter(2);>enter(2);
 mode.mode.mode.mode.execute(execute(execute(execute(contextcontextcontextcontext, , , , "+""+""+""+"););););
}}}}

Update Calculation.h

#include#include#include#include <string><string><string><string>

classclassclassclass CalculationCalculationCalculationCalculation {{{{
publicpublicpublicpublic::::

 voidvoidvoidvoid execute(execute(execute(execute(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name);&name);&name);&name);

Update Calculation.cpp

#include#include#include#include "MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h"
#include#include#include#include "MathOpe"MathOpe"MathOpe"MathOperation.h"ration.h"ration.h"ration.h"
voidvoidvoidvoid Calculation::execute(Calculation::execute(Calculation::execute(Calculation::execute(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name) {&name) {&name) {&name) {
 MathOperationMathOperationMathOperationMathOperation &op &op &op &op
 = context= context= context= context---->getFactory()>getFactory()>getFactory()>getFactory()---->findOperationNamed(name);>findOperationNamed(name);>findOperationNamed(name);>findOperationNamed(name);
 op.perform(contextop.perform(contextop.perform(contextop.perform(context---->getStack());>getStack());>getStack());>getStack());
}}}}

Update Context.h:

#include#include#include#include <string><string><string><string>
classclassclassclass ContextContextContextContext {{{{
publicpublicpublicpublic::::

 virtualvirtualvirtualvirtual voidvoidvoidvoid execute(execute(execute(execute(constconstconstconst std::std::std::std::stringstringstringstring &name) = 0;&name) = 0;&name) = 0;&name) = 0;

6.3.3 Throw exception when told to save

#include#include#include#include "IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h"
TEST(CalculationShould, ThrowExceptionWhenToldToSave) {TEST(CalculationShould, ThrowExceptionWhenToldToSave) {TEST(CalculationShould, ThrowExceptionWhenToldToSave) {TEST(CalculationShould, ThrowExceptionWhenToldToSave) {
 CalculationCalculationCalculationCalculation mode;mode;mode;mode;
 trytrytrytry {{{{
 mode.save(mode.save(mode.save(mode.save(contextcontextcontextcontext, , , , "should fail""should fail""should fail""should fail"););););
 FAIFAIFAIFAIL(L(L(L("Should have thrown exception""Should have thrown exception""Should have thrown exception""Should have thrown exception"););););
 } } } } catchcatchcatchcatch((((IllegalMacroExceptionIllegalMacroExceptionIllegalMacroExceptionIllegalMacroException &e) {&e) {&e) {&e) {
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
 }}}}
}}}}

Update Calculation.h

classclassclassclass CalculationCalculationCalculationCalculation {{{{

 voidvoidvoidvoid save(save(save(save(Context *context, Context *context, Context *context, Context *context, constconstconstconst std::std::std::std::stringstringstringstring &name);&name);&name);&name);

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 215 Author: Brett L. Schuchert (schuchert@yahoo.com)

Update Calculation.cpp

#include#include#include#include "IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h"
vovovovoidididid Calculation::save(Calculation::save(Calculation::save(Calculation::save(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name) {&name) {&name) {&name) {
 throwthrowthrowthrow IllegalMacroException();IllegalMacroException();IllegalMacroException();IllegalMacroException();
}}}}

6.3.4 Change to Programming Mode When Told To Start

Create an automated check

#include#include#include#include <typeinfo><typeinfo><typeinfo><typeinfo>
#include#include#include#include "Programming.h""Programming.h""Programming.h""Programming.h"
TEST(CalculationShould, ChangeToPrograTEST(CalculationShould, ChangeToPrograTEST(CalculationShould, ChangeToPrograTEST(CalculationShould, ChangeToProgrammingStateWhenToldToStart) {mmingStateWhenToldToStart) {mmingStateWhenToldToStart) {mmingStateWhenToldToStart) {
 CalculationCalculationCalculationCalculation mode;mode;mode;mode;
 mode.start(mode.start(mode.start(mode.start(contextcontextcontextcontext););););
 CalculatorModeCalculatorModeCalculatorModeCalculatorMode *finalMode = *finalMode = *finalMode = *finalMode = contextcontextcontextcontext---->getState();>getState();>getState();>getState();
 CHECK(CHECK(CHECK(CHECK(typeidtypeidtypeidtypeid(*finalMode) == (*finalMode) == (*finalMode) == (*finalMode) == typeidtypeidtypeidtypeid((((ProgrammingProgrammingProgrammingProgramming));));));));
}}}}

This requires several changes to compile:

● Add a start method to Calculation
● Create CalculationMode interface
● Update Calculation to use CalculationMode interface
● Create Programming class from CalculationMode interface
● Add getState() and setState methods to Context
● Implement getState() and setState methods in RpnCalculator

Calculation.h

classclassclassclass CalculationCalculationCalculationCalculation {{{{

 voidvoidvoidvoid start(start(start(start(ContextContextContextContext *context);*context);*context);*context);

CalculatorMode.h (extract interface from Calculatio n.h)

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef CALCULATORMODE_H_CALCULATORMODE_H_CALCULATORMODE_H_CALCULATORMODE_H_
#define#define#define#define CALCULATORMODE_H_CALCULATORMODE_H_CALCULATORMODE_H_CALCULATORMODE_H_

#include#include#include#include <string><string><string><string>
classclassclassclass ContextContextContextContext;;;;

classclassclassclass CalculatorModeCalculatorModeCalculatorModeCalculatorMode {{{{
publicpublicpublicpublic::::
 virtuavirtuavirtuavirtuallll ~CalculatorMode() = 0;~CalculatorMode() = 0;~CalculatorMode() = 0;~CalculatorMode() = 0;
 virtualvirtualvirtualvirtual voidvoidvoidvoid enter(enter(enter(enter(ContextContextContextContext *context, *context, *context, *context, intintintint value) = 0;value) = 0;value) = 0;value) = 0;
 virtualvirtualvirtualvirtual voidvoidvoidvoid execute(execute(execute(execute(ContextContextContextContext *context,*context,*context,*context,constconstconstconst std::std::std::std::stringstringstringstring &name) = 0;&name) = 0;&name) = 0;&name) = 0;
 virtualvirtualvirtualvirtual voidvoidvoidvoid save(save(save(save(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name) = 0;&name) = 0;&name) = 0;&name) = 0;
 virtualvirtualvirtualvirtual voidvoidvoidvoid start(start(start(start(ContextContextContextContext *context)*context)*context)*context) = 0;= 0;= 0;= 0;
};};};};

#endif#endif#endif#endif

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 216 Author: Brett L. Schuchert (schuchert@yahoo.com)

CalculatorMode.cpp

#include#include#include#include "CalculatorMode.h""CalculatorMode.h""CalculatorMode.h""CalculatorMode.h"

CalculatorMode::~CalculatorMode() {CalculatorMode::~CalculatorMode() {CalculatorMode::~CalculatorMode() {CalculatorMode::~CalculatorMode() {
}}}}

Update Calculation.h

#include#include#include#include "CalculatorMode.h""CalculatorMode.h""CalculatorMode.h""CalculatorMode.h"
classclassclassclass CalculationCalculationCalculationCalculation : : : : publicpublicpublicpublic CalculatorModeCalculatorModeCalculatorModeCalculatorMode {{{{

Create Programming.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef PROGRAMMING_PROGRAMMING_PROGRAMMING_PROGRAMMING_H_H_H_H_
#define#define#define#define PROGRAMMING_H_PROGRAMMING_H_PROGRAMMING_H_PROGRAMMING_H_

#include#include#include#include "CalculatorMode.h""CalculatorMode.h""CalculatorMode.h""CalculatorMode.h"

classclassclassclass ProgrammingProgrammingProgrammingProgramming: : : : publicpublicpublicpublic CalculatorModeCalculatorModeCalculatorModeCalculatorMode {{{{
publicpublicpublicpublic::::
 Programming();Programming();Programming();Programming();
 ~Programming();~Programming();~Programming();~Programming();
 voidvoidvoidvoid enter(enter(enter(enter(ContextContextContextContext *context, *context, *context, *context, intintintint value);value);value);value);
 voidvoidvoidvoid execute(execute(execute(execute(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name);&name);&name);&name);
 voidvoidvoidvoid save(save(save(save(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name);&name);&name);&name);
 voidvoidvoidvoid start(start(start(start(ContextContextContextContext *context);*context);*context);*context);
};};};};

#endif#endif#endif#endif

Create Programming.cpp

#include#include#include#include "Programming.h""Programming.h""Programming.h""Programming.h"

Programming::Programming() {Programming::Programming() {Programming::Programming() {Programming::Programming() {
}}}}

Programming::~Programming() {Programming::~Programming() {Programming::~Programming() {Programming::~Programming() {
}}}}

voidvoidvoidvoid Programming::enter(Programming::enter(Programming::enter(Programming::enter(ContextContextContextContext *context, *context, *context, *context, intintintint value) {value) {value) {value) {
}}}}

voidvoidvoidvoid Programming::execute(Programming::execute(Programming::execute(Programming::execute(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name) {&name) {&name) {&name) {
}}}}

voidvoidvoidvoid Programming::save(Programming::save(Programming::save(Programming::save(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name) {&name) {&name) {&name) {
}}}}

voidvoidvoidvoid Programming::start(Programming::start(Programming::start(Programming::start(ContextContextContextContext *context) {*context) {*context) {*context) {
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 217 Author: Brett L. Schuchert (schuchert@yahoo.com)

Update Context.h

classclassclassclass CalculatorModeCalculatorModeCalculatorModeCalculatorMode;;;;

classclassclassclass ContextContextContextContext {{{{

 virtualvirtualvirtualvirtual CalculatorModeCalculatorModeCalculatorModeCalculatorMode *getState() = 0;*getState() = 0;*getState() = 0;*getState() = 0;
 virtualvirtualvirtualvirtual voidvoidvoidvoid setState(setState(setState(setState(CalculatorModeCalculatorModeCalculatorModeCalculatorMode *newMode) = 0;*newMode) = 0;*newMode) = 0;*newMode) = 0;
};};};};

Update RpnCalculator.cpp

classclassclassclass RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator : : : : publicpublicpublicpublic ContextContextContextContext {{{{
publicpublicpublicpublic::::

 CalculatorModeCalculatorModeCalculatorModeCalculatorMode *getState();*getState();*getState();*getState();
 voidvoidvoidvoid setState(setState(setState(setState(CalculatorModeCalculatorModeCalculatorModeCalculatorMode *newMode);*newMode);*newMode);*newMode);

privatprivatprivatprivateeee::::

 CalculatorModeCalculatorModeCalculatorModeCalculatorMode ****modemodemodemode;;;;

Update RpnCalculator.cpp

RpnCalculator::RpnCalculator() :RpnCalculator::RpnCalculator() :RpnCalculator::RpnCalculator() :RpnCalculator::RpnCalculator() :
 factoryfactoryfactoryfactory((((newnewnewnew MathOperationFactory), MathOperationFactory), MathOperationFactory), MathOperationFactory), macromacromacromacro(0), (0), (0), (0), recordingrecordingrecordingrecording((((falsefalsefalsefalse),),),),
 modemodemodemode(0) {(0) {(0) {(0) {
}}}}

RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {
 deletedeletedeletedelete factoryfactoryfactoryfactory;;;;
 deletedeletedeletedelete modemodemodemode;;;;
}}}}

CalculatorModeCalculatorModeCalculatorModeCalculatorMode *RpnCalculator::getState() {*RpnCalculator::getState() {*RpnCalculator::getState() {*RpnCalculator::getState() {
 returnreturnreturnreturn modemodemodemode;;;;
}}}}

voidvoidvoidvoid RpnCalculator::setState(RpnCalculator::setState(RpnCalculator::setState(RpnCalculator::setState(CalculatorModeCalculatorModeCalculatorModeCalculatorMode *newMode) {*newMode) {*newMode) {*newMode) {
 deletedeletedeletedelete modemodemodemode;;;;
 modemodemodemode = newMode;= newMode;= newMode;= newMode;
}}}}

That’s a lot of mechanical work but it having done this and gotten the final check against
Calculation passing, you’ve well past the half-way mark.

6.3.5 Programming Mode

Now we do the same thing with Programming mode (in the same order):

TEST(ProgrammingShould, IgnoreEnterForNow) {TEST(ProgrammingShould, IgnoreEnterForNow) {TEST(ProgrammingShould, IgnoreEnterForNow) {TEST(ProgrammingShould, IgnoreEnterForNow) {
 Programming op;Programming op;Programming op;Programming op;
 op.enter(op.enter(op.enter(op.enter(contextcontextcontextcontext, 5);, 5);, 5);, 5);
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 218 Author: Brett L. Schuchert (schuchert@yahoo.com)

This is a bit odd. For now enter should do nothing. This is probably OK but it does
appear to violate the Liskov substitution principle. This happens when using the state
pattern. What it means is that there is no necessary behavior (for now) for this particular
request. We will put this to good use in the next section.

Since we had to stub out the enter() method on Programming to get finish
CalculationShould, this automated check just works. The use of CHECK(1) at the end is
an indication that this test is really a placeholder for now.

6.3.6 Record Steps for Execution

TEST(ProgrammingShould, RecordOperationsForExecute) {TEST(ProgrammingShould, RecordOperationsForExecute) {TEST(ProgrammingShould, RecordOperationsForExecute) {TEST(ProgrammingShould, RecordOperationsForExecute) {
 Programming op;Programming op;Programming op;Programming op;
 op.execute(op.execute(op.execute(op.execute(contextcontextcontextcontext, , , , "+""+""+""+"););););
 op.execute(op.execute(op.execute(op.execute(contextcontextcontextcontext, , , , """"----""""););););
 CHECK(op.getMacro()CHECK(op.getMacro()CHECK(op.getMacro()CHECK(op.getMacro()---->stepCountAtLeast(2));>stepCountAtLeast(2));>stepCountAtLeast(2));>stepCountAtLeast(2));
}}}}

This requires adding a few things to Programming.h:

classclassclassclass MacroMacroMacroMacro;;;;
classclassclassclass ProgrammingProgrammingProgrammingProgramming: : : : publicpublicpublicpublic CalculatorModeCalculatorModeCalculatorModeCalculatorMode {{{{
publicpublicpublicpublic::::

 MacroMacroMacroMacro *getMacro() { *getMacro() { *getMacro() { *getMacro() { returnreturnreturnreturn macromacromacromacro; }; }; }; }

privateprivateprivateprivate::::
 MacroMacroMacroMacro ****macromacromacromacro;;;;
};};};};

And updating Programming.cpp

#include#include#include#include "Macro.h""Macro.h""Macro.h""Macro.h"
#include#include#include#include "Context.h""Context.h""Context.h""Context.h"
#include#include#include#include "MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h"

Programming::Programming()Programming::Programming()Programming::Programming()Programming::Programming() : : : : macromacromacromacro((((newnewnewnew Macro) {Macro) {Macro) {Macro) {
}}}}

Programming::~Programming() {Programming::~Programming() {Programming::~Programming() {Programming::~Programming() {
 deletedeletedeletedelete macromacromacromacro;;;;
}}}}

voidvoidvoidvoid Programming::execute(Programming::execute(Programming::execute(Programming::execute(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name) {&name) {&name) {&name) {
 MathOperationMathOperationMathOperationMathOperation &op &op &op &op
 = context= context= context= context---->getFactory()>getFactory()>getFactory()>getFactory()---->findOperationNamed(name);>findOperationNamed(name);>findOperationNamed(name);>findOperationNamed(name);
 macromacromacromacro---->append(op);>append(op);>append(op);>append(op);
}}}}

This uses a new method on context, get factory.

Update Context.h:

classclassclassclass MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory;;;;

classclassclassclass ContextContextContextContext {{{{

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 219 Author: Brett L. Schuchert (schuchert@yahoo.com)

publicpublicpublicpublic::::

 virtualvirtualvirtualvirtual MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory *getFactory() = 0;*getFactory() = 0;*getFactory() = 0;*getFactory() = 0;

And, finally, an update to RpnCalculator.h:

classclassclassclass RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator : : : : publicpublicpublicpublic ContextContextContextContext {{{{
publicpublicpublicpublic::::

 MathOperationFactoryMathOperationFactoryMathOperationFactoryMathOperationFactory *getFactory() { *getFactory() { *getFactory() { *getFactory() { returnreturnreturnreturn factoryfactoryfactoryfactory; }; }; }; }

6.3.7 Adding macro to factory

Here’s an automated check:

#include#include#include#include "UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h"
#include#include#include#include "MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h""MathOperationFactory.h"
TEST(ProgrammingShould, AddMacroToFactoryUponSave) {TEST(ProgrammingShould, AddMacroToFactoryUponSave) {TEST(ProgrammingShould, AddMacroToFactoryUponSave) {TEST(ProgrammingShould, AddMacroToFactoryUponSave) {
 ProgrammingProgrammingProgrammingProgramming op;op;op;op;
 op.execute(op.execute(op.execute(op.execute(contextcontextcontextcontext, , , , "+""+""+""+"););););
 op.execute(op.execute(op.execute(op.execute(contextcontextcontextcontext, , , , """"----""""););););
 op.save(op.save(op.save(op.save(contextcontextcontextcontext, , , , "__add_sub__""__add_sub__""__add_sub__""__add_sub__"););););
 trytrytrytry {{{{
 contextcontextcontextcontext---->getFactory()>getFactory()>getFactory()>getFactory()---->findOperationNamed(>findOperationNamed(>findOperationNamed(>findOperationNamed("__add_sub__""__add_sub__""__add_sub__""__add_sub__"););););
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
 } } } } catchcatchcatchcatch((((UnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationException &e) {&e) {&e) {&e) {
 FAIL(FAIL(FAIL(FAIL("Operation not added t"Operation not added t"Operation not added t"Operation not added to factory"o factory"o factory"o factory"););););
 }}}}
}}}}

To get this to work, we need to update Programming.cpp. Note that this work already
exists in RpnCalculator::save, even so, I’ll write a minimal version and then make sure all
checks are passing before moving on:

voidvoidvoidvoid Programming::save(CProgramming::save(CProgramming::save(CProgramming::save(Context *context, ontext *context, ontext *context, ontext *context, constconstconstconst std::string &name) {std::string &name) {std::string &name) {std::string &name) {
 contextcontextcontextcontext---->getFactory()>getFactory()>getFactory()>getFactory()---->add(name, >add(name, >add(name, >add(name, macromacromacromacro););););
 macromacromacromacro = 0;= 0;= 0;= 0;
}}}}

6.3.8 Saving causes state change

Saving should also put the calculator back into calculation mode:

#include#include#include#include <typeinfo><typeinfo><typeinfo><typeinfo>
#include#include#include#include "Calculation.h""Calculation.h""Calculation.h""Calculation.h"
TEST(ProgrammingTEST(ProgrammingTEST(ProgrammingTEST(ProgrammingShould, ChangeStateToCalculationUponSave) {Should, ChangeStateToCalculationUponSave) {Should, ChangeStateToCalculationUponSave) {Should, ChangeStateToCalculationUponSave) {
 ProgrammingProgrammingProgrammingProgramming op;op;op;op;
 op.execute(op.execute(op.execute(op.execute(contextcontextcontextcontext, , , , "+""+""+""+"););););
 op.save(op.save(op.save(op.save(contextcontextcontextcontext, , , , "__add__""__add__""__add__""__add__"););););
 CHECK(CHECK(CHECK(CHECK(typeidtypeidtypeidtypeid((((CalculationCalculationCalculationCalculation) ==) ==) ==) == typeidtypeidtypeidtypeid(*(*(*(*contextcontextcontextcontext---->getState()));>getState()));>getState()));>getState()));
}}}}

To get this working:

#include#include#include#include "Calculation.h""Calculation.h""Calculation.h""Calculation.h"
voidvoidvoidvoid Programming::save(Programming::save(Programming::save(Programming::save(CoCoCoContextntextntextntext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name) {&name) {&name) {&name) {
 contextcontextcontextcontext---->getFactory()>getFactory()>getFactory()>getFactory()---->add(name, >add(name, >add(name, >add(name, macromacromacromacro););););

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 220 Author: Brett L. Schuchert (schuchert@yahoo.com)

 macromacromacromacro = 0;= 0;= 0;= 0;
 contextcontextcontextcontext---->setState(>setState(>setState(>setState(newnewnewnew Calculation);Calculation);Calculation);Calculation);
}}}}

6.3.9 Other checking

A quick review of the RpnCalculator::save shows it does more checking than our current
Programming::save mode. This needs to be fixed eventually, so now is as good of a time
as ever. Here’s a list of the other checks around saving from RpnCalculatorShould:

● Disallow Saving Under Existing Name
● Only Allow Valid Math Operations To Be Added
● Throw Exception When Attempting to Save Zero Length Macro
● Require Start to be called Before Save

Not all of these still make sense. For example, the calculator will only be in programming
mode if start() has been called, so we can skip this check. The other checks seem to make
sense, so let’s add them (as a set):

Disallow…

#include#include#include#include "NameInUseException.h""NameInUseException.h""NameInUseException.h""NameInUseException.h"
TEST(ProgrammingShould, DisallowSavingUnderAnExistingName) {TEST(ProgrammingShould, DisallowSavingUnderAnExistingName) {TEST(ProgrammingShould, DisallowSavingUnderAnExistingName) {TEST(ProgrammingShould, DisallowSavingUnderAnExistingName) {
 ProgrammingProgrammingProgrammingProgramming op;op;op;op;
 op.execute(op.execute(op.execute(op.execute(contextcontextcontextcontext, , , , "+""+""+""+"););););
 trytrytrytry {{{{
 op.save(op.save(op.save(op.save(contextcontextcontextcontext, , , , "+""+""+""+"););););
 FAIL(FAIL(FAIL(FAIL("Should have thrown exce"Should have thrown exce"Should have thrown exce"Should have thrown exception"ption"ption"ption"););););
 } } } } catchcatchcatchcatch((((NameInUseExceptionNameInUseExceptionNameInUseExceptionNameInUseException &e) {&e) {&e) {&e) {
 CHECK(CHECK(CHECK(CHECK(typeidtypeidtypeidtypeid((((CalculationCalculationCalculationCalculation) ==) ==) ==) == typeidtypeidtypeidtypeid(*(*(*(*contextcontextcontextcontext---->getState()));>getState()));>getState()));>getState()));
 }}}}
}}}}

This check fails as the state after save() should be Calculation but it is not.

Here’s an update to Programming::save() to make that happen:

####includeincludeincludeinclude "Calculation.h""Calculation.h""Calculation.h""Calculation.h"
#include#include#include#include "NameInUseException.h""NameInUseException.h""NameInUseException.h""NameInUseException.h"
voidvoidvoidvoid Programming::save(Programming::save(Programming::save(Programming::save(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name) {&name) {&name) {&name) {
 trytrytrytry {{{{
 contextcontextcontextcontext---->getFactory()>getFactory()>getFactory()>getFactory()---->add(name, >add(name, >add(name, >add(name, macromacromacromacro););););
 macromacromacromacro = 0;= 0;= 0;= 0;
 contextcontextcontextcontext---->setState(>setState(>setState(>setState(newnewnewnew Calculation);Calculation);Calculation);Calculation);
 } } } } catchcatchcatchcatch((((NameInUseExcepNameInUseExcepNameInUseExcepNameInUseExceptiontiontiontion &e) {&e) {&e) {&e) {
 contextcontextcontextcontext---->setState(>setState(>setState(>setState(newnewnewnew Calculation);Calculation);Calculation);Calculation);
 throwthrowthrowthrow e;e;e;e;
 }}}}
}}}}

Valid Operations

#include#include#include#include "UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h""UnknownMathOperationException.h"
TEST(ProgrammingShould, OnlyAllowValidOperations) {TEST(ProgrammingShould, OnlyAllowValidOperations) {TEST(ProgrammingShould, OnlyAllowValidOperations) {TEST(ProgrammingShould, OnlyAllowValidOperations) {
 ProgrammingProgrammingProgrammingProgramming op;op;op;op;
 trytrytrytry {{{{

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 221 Author: Brett L. Schuchert (schuchert@yahoo.com)

 op.execute(op.execute(op.execute(op.execute(contextcontextcontextcontext, , , , "bogus___""bogus___""bogus___""bogus___"););););
 FAIL(FAIL(FAIL(FAIL("S"S"S"Should have thrown hould have thrown hould have thrown hould have thrown exceptexceptexceptexceptiiiioooonnnn""""););););
 } } } } catchcatchcatchcatch((((UnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationException &e) {&e) {&e) {&e) {
 CHECK(CHECK(CHECK(CHECK(typeidtypeidtypeidtypeid((((CalculationCalculationCalculationCalculation) ==) ==) ==) == typeidtypeidtypeidtypeid(*(*(*(*contextcontextcontextcontext---->getState()));>getState()));>getState()));>getState()));
 }}}}
}}}}

This fails as the last test failed, so we need to fix it as well.

#include#include#include#include "Calculation.h""Calculation.h""Calculation.h""Calculation.h"
#include#include#include#include "UnknownM"UnknownM"UnknownM"UnknownMathOperationException.h"athOperationException.h"athOperationException.h"athOperationException.h"
voidvoidvoidvoid Programming::execute(Programming::execute(Programming::execute(Programming::execute(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name) {&name) {&name) {&name) {
 trytrytrytry {{{{
 MathOperationMathOperationMathOperationMathOperation &op &op &op &op
 = context= context= context= context---->getFactory()>getFactory()>getFactory()>getFactory()---->findOperationNamed(name);>findOperationNamed(name);>findOperationNamed(name);>findOperationNamed(name);
 macromacromacromacro---->append(op);>append(op);>append(op);>append(op);
 } } } } catchcatchcatchcatch((((UnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationExceptionUnknownMathOperationException &e) {&e) {&e) {&e) {
 contextcontextcontextcontext---->setState(>setState(>setState(>setState(newnewnewnew Calculation);Calculation);Calculation);Calculation);
 throwthrowthrowthrow e;e;e;e;
 }}}}
}}}}

Zero Length…

#include#include#include#include "IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h""IllegalMacroException.h"
TEST(ProgrammingShould, DisallowZeroLengthMacro) {TEST(ProgrammingShould, DisallowZeroLengthMacro) {TEST(ProgrammingShould, DisallowZeroLengthMacro) {TEST(ProgrammingShould, DisallowZeroLengthMacro) {
 ProgrammingProgrammingProgrammingProgramming op;op;op;op;
 trytrytrytry {{{{
 op.save(op.save(op.save(op.save(contextcontextcontextcontext, , , , "name""name""name""name"););););
 FAIL(FAIL(FAIL(FAIL("Should have thrown exception""Should have thrown exception""Should have thrown exception""Should have thrown exception"););););
 }}}} catchcatchcatchcatch((((IllegalMacroExceptionIllegalMacroExceptionIllegalMacroExceptionIllegalMacroException &e) {&e) {&e) {&e) {
 CHECK(CHECK(CHECK(CHECK(typeidtypeidtypeidtypeid((((CalculationCalculationCalculationCalculation) ==) ==) ==) == typeidtypeidtypeidtypeid(*(*(*(*contextcontextcontextcontext---->getState()));>getState()));>getState()));>getState()));
 }}}}
}}}}

This makes the save method a bit unruly but similar to the original in RpnCalculator:

#include#include#include#include "NameInUseException.h""NameInUseException.h""NameInUseException.h""NameInUseException.h"
#include#include#include#include "IllegalMacroException.h"IllegalMacroException.h"IllegalMacroException.h"IllegalMacroException.h""""
voidvoidvoidvoid Programming::save(Programming::save(Programming::save(Programming::save(ContextContextContextContext *context, *context, *context, *context, constconstconstconst std::std::std::std::stringstringstringstring &name) {&name) {&name) {&name) {
 trytrytrytry {{{{
 ifififif((((macromacromacromacro---->stepCountAtLeast(1)) {>stepCountAtLeast(1)) {>stepCountAtLeast(1)) {>stepCountAtLeast(1)) {
 contextcontextcontextcontext---->getFactory()>getFactory()>getFactory()>getFactory()---->add(name, >add(name, >add(name, >add(name, macromacromacromacro););););
 macromacromacromacro = 0;= 0;= 0;= 0;
 contextcontextcontextcontext---->setState(>setState(>setState(>setState(newnewnewnew Calculation);Calculation);Calculation);Calculation);
 } } } } elseelseelseelse {{{{
 contextcontextcontextcontext---->setStat>setStat>setStat>setState(e(e(e(newnewnewnew Calculation);Calculation);Calculation);Calculation);
 throwthrowthrowthrow IllegalMacroException();IllegalMacroException();IllegalMacroException();IllegalMacroException();
 }}}}
 } } } } catchcatchcatchcatch((((NameInUseExceptionNameInUseExceptionNameInUseExceptionNameInUseException &e) {&e) {&e) {&e) {
 contextcontextcontextcontext---->setState(>setState(>setState(>setState(newnewnewnew Calculation);Calculation);Calculation);Calculation);
 throwthrowthrowthrow e;e;e;e;
 }}}}
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 222 Author: Brett L. Schuchert (schuchert@yahoo.com)

6.3.10 What about the start method?

A quick review of the Programming class reveals that the start() method is empty. It is an
error to call start() when already in Programming mode, so let’s make that a fact:

#include#include#include#include "InvalidRequestException.h""InvalidRequestException.h""InvalidRequestException.h""InvalidRequestException.h"
TEST(ProgrammingShould, DisallowStart) {TEST(ProgrammingShould, DisallowStart) {TEST(ProgrammingShould, DisallowStart) {TEST(ProgrammingShould, DisallowStart) {
 ProgrammingProgrammingProgrammingProgramming op;op;op;op;
 trytrytrytry {{{{
 op.start(op.start(op.start(op.start(contextcontextcontextcontext););););
 FAIL(FAIL(FAIL(FAIL("Should have thr"Should have thr"Should have thr"Should have thrown exception."own exception."own exception."own exception."););););
 } } } } catchcatchcatchcatch((((InvalidRequestExceptionInvalidRequestExceptionInvalidRequestExceptionInvalidRequestException &e) {&e) {&e) {&e) {
 CHECK(1);CHECK(1);CHECK(1);CHECK(1);
 }}}}
}}}}

This uses a new exception class:

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef INVALIDREQUESTEXCEPTION_H_INVALIDREQUESTEXCEPTION_H_INVALIDREQUESTEXCEPTION_H_INVALIDREQUESTEXCEPTION_H_
#define#define#define#define INVALIDREQUESTEXCEPTION_H_INVALIDREQUESTEXCEPTION_H_INVALIDREQUESTEXCEPTION_H_INVALIDREQUESTEXCEPTION_H_

#include#include#include#include <exception><exception><exception><exception>

structstructstructstruct InvalidRequestExceptionInvalidRequestExceptionInvalidRequestExceptionInvalidRequestException : : : : publicpublicpublicpublic std::std::std::std::exceptionexceptionexceptionexception { };{ };{ };{ };

#endif#endif#endif#endif

And it requires a little bit of work in Programming.cpp:

#include#include#include#include "InvalidRequestException.h""InvalidRequestException.h""InvalidRequestException.h""InvalidRequestException.h"
voidvoidvoidvoid Programming::start(Programming::start(Programming::start(Programming::start(ContextContextContextContext *context) {*context) {*context) {*context) {
 throwthrowthrowthrow InvalidRequestException();InvalidRequestException();InvalidRequestException();InvalidRequestException();
}}}}

6.3.11 Ready to finish what we’ve started…

Now that we have an implementation for the state hierarchy, it is time to update our
RpnCalculator to use it.

6.4 Updating RpnCalculator to use state...

Calculator already has state member data but it’s initialized to 0. Update the constructor:

#include#include#include#include "Calculation.h""Calculation.h""Calculation.h""Calculation.h"

RpnCaRpnCaRpnCaRpnCalculator::RpnCalculator() :lculator::RpnCalculator() :lculator::RpnCalculator() :lculator::RpnCalculator() :
 factoryfactoryfactoryfactory((((newnewnewnew MathOperationFactory), MathOperationFactory), MathOperationFactory), MathOperationFactory), macromacromacromacro(0), (0), (0), (0), recordingrecordingrecordingrecording((((falsefalsefalsefalse),),),),
 modemodemodemode((((newnewnewnew Calculation) {Calculation) {Calculation) {Calculation) {
}}}}

Most of the method in calculator now delegate to its mode member data:

voidvoidvoidvoid RpnCalculator::enter(RpnCalculator::enter(RpnCalculator::enter(RpnCalculator::enter(intintintint value) {value) {value) {value) {
 modemodemodemode---->enter(>enter(>enter(>enter(thisthisthisthis, value, value, value, value););););
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 223 Author: Brett L. Schuchert (schuchert@yahoo.com)

voidvoidvoidvoid RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(RpnCalculator::execute(constconstconstconst std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {std::string &operatorName) {
 modemodemodemode---->execute(>execute(>execute(>execute(thisthisthisthis, operatorName);, operatorName);, operatorName);, operatorName);
}}}}

voidvoidvoidvoid RpnCalculator::start() {RpnCalculator::start() {RpnCalculator::start() {RpnCalculator::start() {
 modemodemodemode---->start(>start(>start(>start(thisthisthisthis););););
}}}}

voidvoidvoidvoid RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(RpnCalculator::save(constconstconstconst std::string ¯oName) {std::string ¯oName) {std::string ¯oName) {std::string ¯oName) {
 modemodemodemode---->save(>save(>save(>save(thisthisthisthis, macroName);, macroName);, macroName);, macroName);
}}}}

Verify that all of the automated checks are passing.

6.4.1 Final Cleanup

Notice that the RpnCalculator has member data it no longer uses: macro, recording. Both
of these can be removed from the header and source files, along with the forward
declaration and #include of Macro.

6.4.2 Summary

This is a somewhat incomplete implementation of the state pattern:

● The two kinds of modes, programming and calculation, know about each other. Often
this is extracted out to a factory, but that seems like too much for only 2 states. This
suggests, as described above, that this pattern is maybe overkill for this problem.

● The RpnCalculator also creates an instance of Calculate. Again, a factory would solve
this problem.

● The places where state switches forces deallocation. This is OK, but notice that the
object sending the message to switch state is ultimately the one that gets deleted. That
turns out to be OK, but fragile.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 224 Author: Brett L. Schuchert (schuchert@yahoo.com)

7 Rpn Calculator – Sprint 4 – More Complex Blocks
Macros are interesting; it is time to add a few blocks. Here are some examples:

Example 1 Example 2 Example 3 Example 4 Example 5

65656565
8888
....
<out>8<out>8<out>8<out>8
emitemitemitemit
<out>A<out>A<out>A<out>A
crcrcrcr
<out><out><out><out>\\\\nnnn

startstartstartstart
2222

save times2save times2save times2save times2
5555
times2times2times2times2
10101010

startstartstartstart
ifififif
13131313
elseelseelseelse
9999
thenthenthenthen
save m1save m1save m1save m1
8888
m1m1m1m1
13131313
0000
m1m1m1m1
9999

startstartstartstart
2222
ndupndupndupndup
<<<<
ifififif
dropdropdropdrop
elseelseelseelse
swapswapswapswap
thenthenthenthen
save minsave minsave minsave min
14141414
2222
minminminmin
2222

startstartstartstart
2222
ndupndupndupndup
>>>>
ifififif
swapswapswapswap
1111

swapswapswapswap
elseelseelseelse
thenthenthenthen
save down1save down1save down1save down1
6666
3333
down1down1down1down1
5555

Example 6 Example 7

startstartstartstart
6666
timesdotimesdotimesdotimesdo
2222

endendendend
save m6save m6save m6save m6
3333
m7m7m7m7
192192192192

startstartstartstart
beginbeginbeginbegin
2222
ndupndupndupndup
>>>>
whilewhilewhilewhile
swapswapswapswap
1111

swapswapswapswap
elseelseelseelse
thenthenthenthen
swapswapswapswap
dupdupdupdup
....
swapswapswapswap
save downtosave downtosave downtosave downto
6666
2222
downtodowntodowntodownto
<out>5<out>5<out>5<out>5
<out>4<out>4<out>4<out>4
<out>3<out>3<out>3<out>3
<out>2<out>2<out>2<out>2

Example 1 demonstrates three new operations: “.”, “emit”, “cr”. These operations send
output to the terminal. In our case, we’ll use std::cout, but not directly. The first, ., simply
displays the top of the stack as a number and consumes that value. Emit, on the other
hand, treats the number as a character and displays it, thus since 65 is the ASCII value of
A, that is what is displayed. Finally, cr sends a new line to the output.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 225 Author: Brett L. Schuchert (schuchert@yahoo.com)

The second example demonstrates that a macro can contain constants. Those constants
are pushed onto the stack during execution. This simple program simply multiplies
what’s on the stack by 2.

The third example shows a new composite operation, if—else. If the value at the top of
the stack is non-zero, put 13 on the stack, else put 9 on the stack. It’s a simple little
program, but it demonstrates a whole new operation.

The fourth example uses the previous 2 examples to write a min function.

<fill in if I end up keeping those operations>

7.1 Output Operations

These operations produce output in some form. This introduces several problems:

● To what do we send output?
● How do we record it to verify that the correct output is in fact set?
● How do we bolt this into our current system?

The answer to the first question is simple: an object. We could use std::cout, but that
introduces an unnecessary direct dependency upon std::cout. While certainly possible,
and even a reasonable default behavior, our software will grow better if we avoid this
direct connection to std::cout.

The answer to the second question is the same as the first: an object. This second bullet
also suggests an additional requirement; we want this dependency to be injected into our
system.

The final bullet begs a question and demonstrates a problem with depending on concrete
objects. We have three new operations, all of them do things that our system was not
designed to accomplish. Right now, all math operations depend on an RpnCalculator,
which is sent in to the perform method. How can we easily fix this?

The work we did to introduce the state pattern has some of what we need. Instead of
having operations depend on RpnStack, we could instead have them depend on Context.
We can even accomplish this by migrating rather than redoing everything all at once.

Here’s how we’re going to do that:

● Create an automated check that uses a new interface on MathOperation.
● That math operation will be concrete initially.
● We’ll get the three new operations working using the new perform() method.
● We’ll then update individual automated checks to use the new perform() method.
● Once the checks are migrated, we’ll slowly migrate individual math operations to use

the new method and slowly remove the old version of perfom().
● Once we think we’ve fixed everything, we’ll lean on the compiler to tell us what

we’re missing.

7.1.1 The “.” operator

Here’s an automated check to get us started. This is a bit of a leap since we’ve deiced to
inject a dependent object. We end up creating several classes:

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 226 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include "Dot.h""Dot.h""Dot.h""Dot.h"
#include#include#include#include "OutputDestination."OutputDestination."OutputDestination."OutputDestination.h"h"h"h"
#include#include#include#include "RpnCalculator.h""RpnCalculator.h""RpnCalculator.h""RpnCalculator.h"

TEST_GROUP(DotShould) {TEST_GROUP(DotShould) {TEST_GROUP(DotShould) {TEST_GROUP(DotShould) {
};};};};

#include#include#include#include <vector><vector><vector><vector>
structstructstructstruct OutputDestinationSpyOutputDestinationSpyOutputDestinationSpyOutputDestinationSpy : : : : publicpublicpublicpublic OutputDestinationOutputDestinationOutputDestinationOutputDestination {{{{
 std::std::std::std::vectorvectorvectorvector<<<<intintintint> > > > writtenIntswrittenIntswrittenIntswrittenInts;;;;
 voidvoidvoidvoid writeInt(writeInt(writeInt(writeInt(intintintint value) {value) {value) {value) {
 writtenIntswrittenIntswrittenIntswrittenInts.push_back(value);.push_back(value);.push_back(value);.push_back(value);
 }}}}
};};};};

TEST(DotShould, SenTEST(DotShould, SenTEST(DotShould, SenTEST(DotShould, SendTopValueAsNumber) {dTopValueAsNumber) {dTopValueAsNumber) {dTopValueAsNumber) {
 DotDotDotDot op;op;op;op;
 OutputDestinationSpyOutputDestinationSpyOutputDestinationSpyOutputDestinationSpy *spy = *spy = *spy = *spy = newnewnewnew OutputDestinationSpy;OutputDestinationSpy;OutputDestinationSpy;OutputDestinationSpy;
 RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator calculator(spy);calculator(spy);calculator(spy);calculator(spy);
 calculator.enter(42);calculator.enter(42);calculator.enter(42);calculator.enter(42);
 op.perform(&calculator);op.perform(&calculator);op.perform(&calculator);op.perform(&calculator);
 LONGS_EQUAL(42, spyLONGS_EQUAL(42, spyLONGS_EQUAL(42, spyLONGS_EQUAL(42, spy---->>>>writtenIntswrittenIntswrittenIntswrittenInts[0]);[0]);[0]);[0]);
}}}}

OutputDestination.h

 This is an interface that gives us a level of indirection between the console and our
system:

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef OUTPUTDESTINATION_H_OUTPUTDESTINATION_H_OUTPUTDESTINATION_H_OUTPUTDESTINATION_H_
#define#define#define#define OUTPUTDESTINATION_H_OUTPUTDESTINATION_H_OUTPUTDESTINATION_H_OUTPUTDESTINATION_H_

classclassclassclass OutputDestinationOutputDestinationOutputDestinationOutputDestination {{{{
publicpublicpublicpublic::::
 virtualvirtualvirtualvirtual ~OutputDestination() = 0;~OutputDestination() = 0;~OutputDestination() = 0;~OutputDestination() = 0;
 virtualvirtualvirtualvirtual voidvoidvoidvoid writeInt(writeInt(writeInt(writeInt(intintintint value) = 0;value) = 0;value) = 0;value) = 0;
};};};};

#endif#endif#endif#endif

There is an implementation of the destructor in a file called OutputDestination.cpp (not
shown since we’ve done this several times).

Our RpnCalculator is constructed with a spy but how can we make sure that no existing
tests are broken? Overload the constructor:

classclassclassclass OutputDestinationOutputDestinationOutputDestinationOutputDestination;;;;

classclassclassclass RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator : : : : publicpublicpublicpublic ContextContextContextContext {{{{
publicpublicpublicpublic::::
 RpnCalculator();RpnCalculator();RpnCalculator();RpnCalculator();
 RpnCalculator(RpnCalculator(RpnCalculator(RpnCalculator(OutputDestinationOutputDestinationOutputDestinationOutputDestination *out);*out);*out);*out);

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 227 Author: Brett L. Schuchert (schuchert@yahoo.com)

 OutputDestinationOutputDestinationOutputDestinationOutputDestination *getOutput() { *getOutput() { *getOutput() { *getOutput() { returnreturnreturnreturn outoutoutout; }; }; }; }

privateprivateprivateprivate::::

 OutputDestinationOutputDestinationOutputDestinationOutputDestination ****outoutoutout;;;;

We’ve stuck to the forward declaration of OutputDestination and it is stored as a pointer.
What do we do by default in the no-argument constructor versus the new constructor
taking in an output destination?

RpnCalculator.cpp

#include#include#include#include "ConsoleOutputDestination.h""ConsoleOutputDestination.h""ConsoleOutputDestination.h""ConsoleOutputDestination.h"

RpRpRpRpnCalculator::RpnCalculator() :nCalculator::RpnCalculator() :nCalculator::RpnCalculator() :nCalculator::RpnCalculator() :
 factoryfactoryfactoryfactory((((newnewnewnew MathOperationFactory), MathOperationFactory), MathOperationFactory), MathOperationFactory), modemodemodemode((((newnewnewnew Calculation),Calculation),Calculation),Calculation),
 outoutoutout((((newnewnewnew ConsoleOutputDestination) {ConsoleOutputDestination) {ConsoleOutputDestination) {ConsoleOutputDestination) {
}}}}

RpnCalculator::RpnCalculator(RpnCalculator::RpnCalculator(RpnCalculator::RpnCalculator(RpnCalculator::RpnCalculator(OutputDestinationOutputDestinationOutputDestinationOutputDestination *out) :*out) :*out) :*out) :
 factoryfactoryfactoryfactory((((newnewnewnew MathOperationFactory), MathOperationFactory), MathOperationFactory), MathOperationFactory), modemodemodemode((((newnewnewnew Calculation),Calculation),Calculation),Calculation),
 outoutoutout(out) {(out) {(out) {(out) {
}}}}

RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {RpnCalculator::~RpnCalculator() {
 deletedeletedeletedelete outoutoutout;;;;
 deletedeletedeletedelete modemodemodemode;;;;
 deletedeletedeletedelete factoryfactoryfactoryfactory;;;;
}}}}

I’ve created a “real” implementation of ConsoleOutputDestination that simply writes
directly to cout. It is the default type used. This gives backwards-compatibility with
existing automated checks and allows for dependency injection via overloading.

The destructor assumes it owns the memory associated with the out member data. I also
took the time to order deletes such that they are in the reverse order of allocation. This is
unnecessary, but I like to do this because it makes my class behave more like auto-
allocated objects.

ConsoleOutputDestination.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef CONSOLEOUTPUTDESTINATION_H_CONSOLEOUTPUTDESTINATION_H_CONSOLEOUTPUTDESTINATION_H_CONSOLEOUTPUTDESTINATION_H_
#define#define#define#define CONSOLEOUTPUTDESTINATION_H_CONSOLEOUTPUTDESTINATION_H_CONSOLEOUTPUTDESTINATION_H_CONSOLEOUTPUTDESTINATION_H_

#include#include#include#include "OutputDestination.h"OutputDestination.h"OutputDestination.h"OutputDestination.h""""

classclassclassclass ConsoleOutputDestinationConsoleOutputDestinationConsoleOutputDestinationConsoleOutputDestination: : : : publicpublicpublicpublic OutputDestinationOutputDestinationOutputDestinationOutputDestination {{{{
publicpublicpublicpublic::::
 ConsoleOutputDestination();ConsoleOutputDestination();ConsoleOutputDestination();ConsoleOutputDestination();
 ~ConsoleOutputDestination();~ConsoleOutputDestination();~ConsoleOutputDestination();~ConsoleOutputDestination();
 voidvoidvoidvoid writeInt(writeInt(writeInt(writeInt(intintintint value);value);value);value);
};};};};

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 228 Author: Brett L. Schuchert (schuchert@yahoo.com)

#endif#endif#endif#endif

ConsoleOutputDestination.cpp

#include#include#include#include "ConsoleOutputDestination.h""ConsoleOutputDestination.h""ConsoleOutputDestination.h""ConsoleOutputDestination.h"
#include#include#include#include <iostream><iostream><iostream><iostream>

ConsoleOutputDestination::ConsoleOutputDestination() {ConsoleOutputDestination::ConsoleOutputDestination() {ConsoleOutputDestination::ConsoleOutputDestination() {ConsoleOutputDestination::ConsoleOutputDestination() {
}}}}

ConsoleOutputDestination::~ConsoleOutputDestination() {ConsoleOutputDestination::~ConsoleOutputDestination() {ConsoleOutputDestination::~ConsoleOutputDestination() {ConsoleOutputDestination::~ConsoleOutputDestination() {
}}}}

voidvoidvoidvoid ConsoleOutputDestination::writeInt(ConsoleOutputDestination::writeInt(ConsoleOutputDestination::writeInt(ConsoleOutputDestination::writeInt(intintintint value) {value) {value) {value) {
 std::cout << value;std::cout << value;std::cout << value;std::cout << value;
}}}}

7.1.2 It Should Be Registered…

It’s been a little while since we wrote a new Math Operation. It’d be easy to forget to
register it:

Added to DotShould.cpp

#include#include#include#include "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"
CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(DotDotDotDot, , , , ".""."".""."););););

Added to Dot.cpp

#include#include#include#include "MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h"
MathOperationRegistrantMathOperationRegistrantMathOperationRegistrantMathOperationRegistrant register_dot(register_dot(register_dot(register_dot("."".""."".", , , , newnewnewnew Dot);Dot);Dot);Dot);

7.2 Emit and a problem with growing interfaces…

First an automated check:

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Emit.h""Emit.h""Emit.h""Emit.h"
#include#include#include#include "RpnCalculator.h""RpnCalculator.h""RpnCalculator.h""RpnCalculator.h"

TEST_GROUP(EmitShould) {TEST_GROUP(EmitShould) {TEST_GROUP(EmitShould) {TEST_GROUP(EmitShould) {
};};};};

#include#include#include#include "OutputDestinationSpy.h""OutputDestinationSpy.h""OutputDestinationSpy.h""OutputDestinationSpy.h"

TEST(EmitShould, WriteCharacter) {TEST(EmitShould, WriteCharacter) {TEST(EmitShould, WriteCharacter) {TEST(EmitShould, WriteCharacter) {
 EmitEmitEmitEmit op;op;op;op;
 OutputDestinationSpyOutputDestinationSpyOutputDestinationSpyOutputDestinationSpy *spy = *spy = *spy = *spy = newnewnewnew OutputDestinationSpy;OutputDestinationSpy;OutputDestinationSpy;OutputDestinationSpy;
 RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator context(spy);context(spy);context(spy);context(spy);
 context.enter(context.enter(context.enter(context.enter('A''A''A''A'););););
 op.perform(&context);op.perform(&context);op.perform(&context);op.perform(&context);
 CHECK_EQUAL_C_CHAR(CHECK_EQUAL_C_CHAR(CHECK_EQUAL_C_CHAR(CHECK_EQUAL_C_CHAR('A''A''A''A', spy, spy, spy, spy---->>>>writtenCharswrittenCharswrittenCharswrittenChars[0]);[0]);[0]);[0]);
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 229 Author: Brett L. Schuchert (schuchert@yahoo.com)

This check uses a spy. Rather than create a new spy class, I extracted it from the previous
test and the used the same one in both places:

OutputDestinationSpy.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef OUTPUTDESTINATIONSPY_H_OUTPUTDESTINATIONSPY_H_OUTPUTDESTINATIONSPY_H_OUTPUTDESTINATIONSPY_H_
#define#define#define#define OUTPUTDESTINATIONSPY_H_OUTPUTDESTINATIONSPY_H_OUTPUTDESTINATIONSPY_H_OUTPUTDESTINATIONSPY_H_

#include#include#include#include <vector><vector><vector><vector>
#include#include#include#include "OutputDestination.h""OutputDestination.h""OutputDestination.h""OutputDestination.h"

structstructstructstruct OutputDestinationSpyOutputDestinationSpyOutputDestinationSpyOutputDestinationSpy : : : : publicpublicpublicpublic OuOuOuOutputDestinationtputDestinationtputDestinationtputDestination {{{{
 std::std::std::std::vectorvectorvectorvector<<<<intintintint> > > > writtenIntswrittenIntswrittenIntswrittenInts;;;;
 std::std::std::std::vectorvectorvectorvector<<<<charcharcharchar> > > > writtenCharswrittenCharswrittenCharswrittenChars;;;;

 voidvoidvoidvoid writeInt(writeInt(writeInt(writeInt(intintintint value) {value) {value) {value) {
 writtenIntswrittenIntswrittenIntswrittenInts.push_back(value);.push_back(value);.push_back(value);.push_back(value);
 }}}}

 voidvoidvoidvoid writeChar(writeChar(writeChar(writeChar(intintintint value) {value) {value) {value) {
 writtenCharswrittenCharswrittenCharswrittenChars.push_back(value);.push_back(value);.push_back(value);.push_back(value);
 }}}}
};};};};

#endif#endif#endif#endif

This spy class needed to implement a new method on the OutputDestination interface.
Unfortunately, so did the ConsoleOuputDestination.

OutputDestination.h

classclassclassclass OutputDestinationOutputDestinationOutputDestinationOutputDestination {{{{

 virtualvirtualvirtualvirtual voidvoidvoidvoid writeChar(writeChar(writeChar(writeChar(intintintint value) = 0;value) = 0;value) = 0;value) = 0;
};};};};

ConsoleOutputDestination.h

classclassclassclass ConsoleOutputDConsoleOutputDConsoleOutputDConsoleOutputDestinationestinationestinationestination: : : : publicpublicpublicpublic OutputDestinationOutputDestinationOutputDestinationOutputDestination {{{{

 voidvoidvoidvoid writeChar(writeChar(writeChar(writeChar(intintintint value);value);value);value);
};};};};

ConsoledOutputDestination.cpp

voidvoidvoidvoid ConsoleOutputDestination::writeChar(ConsoleOutputDestination::writeChar(ConsoleOutputDestination::writeChar(ConsoleOutputDestination::writeChar(intintintint value) {value) {value) {value) {
 std::cout << (std::cout << (std::cout << (std::cout << (charcharcharchar)value;)value;)value;)value;
}}}}

7.2.1 Emit should be registered

Add the missing check and implementation to EmitShould.cpp and Emit.cpp to make
sure this new math operation is registered as “emit”.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 230 Author: Brett L. Schuchert (schuchert@yahoo.com)

7.3 Finally, cr

The cr operation sends “\n” to the console. We can repeat what we’ve just done:

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Cr.h""Cr.h""Cr.h""Cr.h"
#include#include#include#include "RpnCalcu"RpnCalcu"RpnCalcu"RpnCalculator.h"lator.h"lator.h"lator.h"

TEST_GROUP(CrShould) {TEST_GROUP(CrShould) {TEST_GROUP(CrShould) {TEST_GROUP(CrShould) {
};};};};

#include#include#include#include "OutputDestinationSpy.h""OutputDestinationSpy.h""OutputDestinationSpy.h""OutputDestinationSpy.h"

TEST(CrShould, WriteLine) {TEST(CrShould, WriteLine) {TEST(CrShould, WriteLine) {TEST(CrShould, WriteLine) {
 CrCrCrCr op;op;op;op;
 OutputDestinationSpyOutputDestinationSpyOutputDestinationSpyOutputDestinationSpy *spy = *spy = *spy = *spy = newnewnewnew OutputDestinationSpy;OutputDestinationSpy;OutputDestinationSpy;OutputDestinationSpy;
 RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator context(spy);context(spy);context(spy);context(spy);
 op.perform(&context);op.perform(&context);op.perform(&context);op.perform(&context);
 CHECK_EQUAL(1,spyCHECK_EQUAL(1,spyCHECK_EQUAL(1,spyCHECK_EQUAL(1,spy---->linesWritten);>linesWritten);>linesWritten);>linesWritten);
}}}}

#include#include#include#include "ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h""ShouldBeRegistered.h"
CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CrCrCrCr, , , , """"crcrcrcr""""););););

Cr.h

#pragma#pragma#pragma#pragma onceonceonceonce
#ifndef#ifndef#ifndef#ifndef CR_H_CR_H_CR_H_CR_H_
#define#define#define#define CR_H_CR_H_CR_H_CR_H_

#include#include#include#include "MathOperation.h""MathOperation.h""MathOperation.h""MathOperation.h"

classclassclassclass CrCrCrCr: : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(perform(perform(perform(ContextContextContextContext *context);*context);*context);*context);
 voidvoidvoidvoid perform(perform(perform(perform(RpnStackRpnStackRpnStackRpnStack &values);&values);&values);&values);
};};};};

#end#end#end#endifififif

Cr.cpp

#include#include#include#include "Cr.h""Cr.h""Cr.h""Cr.h"

#include#include#include#include "Context.h""Context.h""Context.h""Context.h"
#include#include#include#include "OutputDestination.h""OutputDestination.h""OutputDestination.h""OutputDestination.h"

voidvoidvoidvoid Cr::perform(Cr::perform(Cr::perform(Cr::perform(ContextContextContextContext *context) {*context) {*context) {*context) {
 contextcontextcontextcontext---->getOutput()>getOutput()>getOutput()>getOutput()---->writeLine();>writeLine();>writeLine();>writeLine();
}}}}

voidvoidvoidvoid Cr::perform(Cr::perform(Cr::perform(Cr::perform(RpnStackRpnStackRpnStackRpnStack &values) {&values) {&values) {&values) {
}}}}

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 231 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include "MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h""MathOperationRegistrant.h"
MathOperationRegistranMathOperationRegistranMathOperationRegistranMathOperationRegistrantttt register_cr(register_cr(register_cr(register_cr(""""crcrcrcr"""", , , , newnewnewnew Cr);Cr);Cr);Cr);

OutputDestination.h

classclassclassclass OutputDestinationOutputDestinationOutputDestinationOutputDestination {{{{

 virtualvirtualvirtualvirtual voidvoidvoidvoid writeLine() = 0;writeLine() = 0;writeLine() = 0;writeLine() = 0;
};};};};

#endif#endif#endif#endif

ConsoleOutputDestination.h

classclassclassclass ConsoleOutputDestinationConsoleOutputDestinationConsoleOutputDestinationConsoleOutputDestination: : : : publicpublicpublicpublic OutputDestinationOutputDestinationOutputDestinationOutputDestination {{{{

 voidvoidvoidvoid writeLine();writeLine();writeLine();writeLine();
};};};};

ConsoleOutputDestination.cpp

voidvoidvoidvoid ConsoleOutputDestination::writeLine() {ConsoleOutputDestination::writeLine() {ConsoleOutputDestination::writeLine() {ConsoleOutputDestination::writeLine() {
 std::cout << std::endl;std::cout << std::endl;std::cout << std::endl;std::cout << std::endl;
}}}}

OutputDestinationSpy.h

structstructstructstruct OutputDestinationSpyOutputDestinationSpyOutputDestinationSpyOutputDestinationSpy : : : : publicpublicpublicpublic OutputDestinationOutputDestinationOutputDestinationOutputDestination {{{{

 intintintint linesWrittenlinesWrittenlinesWrittenlinesWritten;;;;

 OutputDestinationSpy() : OutputDestinationSpy() : OutputDestinationSpy() : OutputDestinationSpy() : linesWrittenlinesWrittenlinesWrittenlinesWritten(0) {}(0) {}(0) {}(0) {}

 voidvoidvoidvoid writwritwritwriteLine() {eLine() {eLine() {eLine() {
 ++++++++linesWrittenlinesWrittenlinesWrittenlinesWritten;;;;
 }}}}
};};};};

#endif#endif#endif#endif

7.4 Migrating to new Perform Interface

We need to find all places where the old perform method is called and, where possible,
upgrade to the new interface that uses Context. This will be a bit of work since many
automated checks use RpnStack.

What follows are a few such examples of the change followed by a list of other places
you’ll need to update. I’m working alphabetically:

7.4.1 BinaryMathOperation

This is the first direct descendant of MathOperation alphabetically so this is where we’ll
start:

Update BinaryMathOperationShould.cpp

First thing we can do is change the setup to use a calculator:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 232 Author: Brett L. Schuchert (schuchert@yahoo.com)

#include#include#include#include "RpnCalculator.h""RpnCalculator.h""RpnCalculator.h""RpnCalculator.h"

TEST_GROUP(BinaryMathOperationShould) {TEST_GROUP(BinaryMathOperationShould) {TEST_GROUP(BinaryMathOperationShould) {TEST_GROUP(BinaryMathOperationShould) {
 RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator ****contextcontextcontextcontext;;;;
 RpnStackRpnStackRpnStackRpnStack ****valuesvaluesvaluesvalues;;;;
 voidvoidvoidvoid setup() setup() setup() setup() {{{{
 contextcontextcontextcontext = = = = newnewnewnew RpnCalculator;RpnCalculator;RpnCalculator;RpnCalculator;
 valuesvaluesvaluesvalues = &= &= &= &contextcontextcontextcontext---->getStack();>getStack();>getStack();>getStack();

 }}}}
 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deletedeletedeletedelete contextcontextcontextcontext;;;;
 }}}}
};};};};

Applying this change maintains all checks. Next, we can change just one of the checks to
use the new method:

TEST(BinaryMathOpeTEST(BinaryMathOpeTEST(BinaryMathOpeTEST(BinaryMathOperationShould, ConsumeTwoValues) {rationShould, ConsumeTwoValues) {rationShould, ConsumeTwoValues) {rationShould, ConsumeTwoValues) {
 BinaryMathOperationSpy spy(*BinaryMathOperationSpy spy(*BinaryMathOperationSpy spy(*BinaryMathOperationSpy spy(*valuesvaluesvaluesvalues););););
 spy.perform(spy.perform(spy.perform(spy.perform(contextcontextcontextcontext););););
 LONGS_EQUAL(0, spy.LONGS_EQUAL(0, spy.LONGS_EQUAL(0, spy.LONGS_EQUAL(0, spy.sizesizesizesize););););
}}}}

This does not work without a change to BinaryMathOperation. When you have multiple
overloaded virtual methods but you only override one, C++ will stop searching up the
hierarchy for overload resolution. To make C++ aware of all overloaded candidates you
need to add a using statement:

classclassclassclass BinaryMathOperationBinaryMathOperationBinaryMathOperationBinaryMathOperation: : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{
publicpublicpublicpublic::::
 usingusingusingusing MathOperationMathOperationMathOperationMathOperation::perform;::perform;::perform;::perform;
 voidvoidvoidvoid perperperperform(form(form(form(RpnStackRpnStackRpnStackRpnStack &values);&values);&values);&values);

Note that this makes the names available for overloaded name resolution. To define one
of the methods, we still need to explicitly specify it as demonstrated by the last line.

Update the next few checks to use the different version of perform. Replace all:

spy.perform(*spy.perform(*spy.perform(*spy.perform(*valuesvaluesvaluesvalues););););

With:

spy.perform(spy.perform(spy.perform(spy.perform(contextcontextcontextcontext););););

Now update the test double in the file as well:

structstructstructstruct BinaryMathOperationSpyBinaryMathOperationSpyBinaryMathOperationSpyBinaryMathOperationSpy : : : : publicpublicpublicpublic BinaryMathOperationBinaryMathOperationBinaryMathOperationBinaryMathOperation {{{{
 BinaryMathOperationSpy(BinaryMathOperationSpy(BinaryMathOperationSpy(BinaryMathOperationSpy(ContextContextContextContext *context)*context)*context)*context)
 : : : : contextcontextcontextcontext(context), (context), (context), (context), sizsizsizsizeeee((((----1), 1), 1), 1), actualLhsactualLhsactualLhsactualLhs(0), (0), (0), (0), actualRhsactualRhsactualRhsactualRhs(0) {}(0) {}(0) {}(0) {}
 intintintint calculate(calculate(calculate(calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs) {rhs) {rhs) {rhs) {
 sizesizesizesize = = = = contextcontextcontextcontext---->getStack().size();>getStack().size();>getStack().size();>getStack().size();

 }}}}
 ContextContextContextContext ****contextcontextcontextcontext;;;;

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 233 Author: Brett L. Schuchert (schuchert@yahoo.com)

};};};};

For this to work we need to update each of the tests. Replace all:

BinaryMathOperationSpyBinaryMathOperationSpyBinaryMathOperationSpyBinaryMathOperationSpy spy(*values);spy(*values);spy(*values);spy(*values);

With:

BinaryMathOperationSpyBinaryMathOperationSpyBinaryMathOperationSpyBinaryMathOperationSpy spy(spy(spy(spy(contextcontextcontextcontext););););

Now the values member data in the TEST_GROUP is no longer needed so we can go
back to the setup and clean it up as well:

TEST_GROUP(BinaryMathOperationShould) {TEST_GROUP(BinaryMathOperationShould) {TEST_GROUP(BinaryMathOperationShould) {TEST_GROUP(BinaryMathOperationShould) {
 RpnCalculator *RpnCalculator *RpnCalculator *RpnCalculator *contextcontextcontextcontext;;;;
 voidvoidvoidvoid setup() {setup() {setup() {setup() {
 contcontcontcontextextextext = = = = newnewnewnew RpnCalculator;RpnCalculator;RpnCalculator;RpnCalculator;
 contextcontextcontextcontext---->enter(4);>enter(4);>enter(4);>enter(4);
 contextcontextcontextcontext---->enter(2);>enter(2);>enter(2);>enter(2);
 }}}}
 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deletedeletedeletedelete contextcontextcontextcontext;;;;
 }}}}
};};};};

This isn’t perfect. The last automated check uses the stack, so it needs one final update:

TEST(BinaryMathOperationShould, StoreCalculTEST(BinaryMathOperationShould, StoreCalculTEST(BinaryMathOperationShould, StoreCalculTEST(BinaryMathOperationShould, StoreCalculatedResult) {atedResult) {atedResult) {atedResult) {
 BinaryMathOperationSpy spy(BinaryMathOperationSpy spy(BinaryMathOperationSpy spy(BinaryMathOperationSpy spy(contextcontextcontextcontext););););
 spy.perform(spy.perform(spy.perform(spy.perform(contextcontextcontextcontext););););
 LONGS_EQUAL(13, LONGS_EQUAL(13, LONGS_EQUAL(13, LONGS_EQUAL(13, contextcontextcontextcontext---->getStack().top());>getStack().top());>getStack().top());>getStack().top());
}}}}

Notice that while we did make changes to several automated checks, we did not
additionally change any production code nor did we get rid of any of the checks. So this
seems like a stable operation.

7.4.2 Update the calculator

We should be able to update the calculator to use the new perform method. Of course,
with the introduction of the state pattern, the actually calling of the operations is in the
Calculation mode class:

Calculation.cpp

voidvoidvoidvoid Calculation::execute(Context *context, Calculation::execute(Context *context, Calculation::execute(Context *context, Calculation::execute(Context *context, constconstconstconst std::string &name) {std::string &name) {std::string &name) {std::string &name) {
 MathOperation &op = MathOperation &op = MathOperation &op = MathOperation &op =
 contextcontextcontextcontext---->getFactory()>getFactory()>getFactory()>getFactory()---->findOperationNamed(name);>findOperationNamed(name);>findOperationNamed(name);>findOperationNamed(name);
 op.perform(context);op.perform(context);op.perform(context);op.perform(context);
}}}}

We would be able to remove the old perform method from BinaryMathOperation if it
were no longer required:

MathOperation (starting to remove old perform)

classclassclassclass MathOperationMathOperationMathOperationMathOperation {{{{

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 234 Author: Brett L. Schuchert (schuchert@yahoo.com)

 virtualvirtualvirtualvirtual voidvoidvoidvoid perform(perform(perform(perform(RpnStackRpnStackRpnStackRpnStack &values) {};&values) {};&values) {};&values) {};
};};};};

Now that this method is no longer required and there’s a default implementation, we
should be able to update BinaryMathOperation to remove the old perform:

classclassclassclass BinaryMathOperationBinaryMathOperationBinaryMathOperationBinaryMathOperation: : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{
publicpublicpublicpublic::::
 virtualvirtualvirtualvirtual voidvoidvoidvoid perform(perform(perform(perform(ContextContextContextContext *context);*context);*context);*context);
 virtualvirtualvirtualvirtual intintintint calculate(calculate(calculate(calculate(intintintint lhs, lhs, lhs, lhs, intintintint rhs) = 0;rhs) = 0;rhs) = 0;rhs) = 0;
};};};};

Updated BinaryMathOperation.cpp

#include#include#include#include "BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h""BinaryMathOperation.h"

#include#include#include#include "Context.h""Context.h""Context.h""Context.h"
#include#include#include#include "RpnStack.h""RpnStack.h""RpnStack.h""RpnStack.h"

voidvoidvoidvoid BinaryMathOperation::perform(BinaryMathOperation::perform(BinaryMathOperation::perform(BinaryMathOperation::perform(ContextContextContextContext *context) {*context) {*context) {*context) {
 intintintint rhs = contextrhs = contextrhs = contextrhs = context---->getStack().top();>getStack().top();>getStack().top();>getStack().top();
 contextcontextcontextcontext---->getStack().pop();>getStack().pop();>getStack().pop();>getStack().pop();
 intintintint lhs = contextlhs = contextlhs = contextlhs = context---->getStack().to>getStack().to>getStack().to>getStack().top();p();p();p();
 contextcontextcontextcontext---->getStack().pop();>getStack().pop();>getStack().pop();>getStack().pop();
 intintintint result = calculate(lhs, rhs);result = calculate(lhs, rhs);result = calculate(lhs, rhs);result = calculate(lhs, rhs);
 contextcontextcontextcontext---->getStack().push(result);>getStack().push(result);>getStack().push(result);>getStack().push(result);
}}}}

7.4.3 The magic of checks

I fully expected this to work, but it failed. Why? Well macros still call the old perform.
How do I know this now? I ran my automated checks and two failed. The ones that failed
are named:

TEST(RpnCalculatorShould, AllowMacrosToReferToOtherMacros)TEST(RpnCalculatorShould, AllowMacrosToReferToOtherMacros)TEST(RpnCalculatorShould, AllowMacrosToReferToOtherMacros)TEST(RpnCalculatorShould, AllowMacrosToReferToOtherMacros)
TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro)TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro)TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro)TEST(RpnCalculatorShould, BeAbleToRecordAndExecuteMacro)

So without running the debugger, I’m pretty sure where I need to target my efforts. A
quick update to Macro.cpp fixes this as well:

Macro.h

classclassclassclass MacroMacroMacroMacro: : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(Context *context);perform(Context *context);perform(Context *context);perform(Context *context);
 voidvoidvoidvoid perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);perform(RpnStack &values);
 voidvoidvoidvoid append(append(append(append(MathOperationMathOperationMathOperationMathOperation &op);&op);&op);&op);

Macro.cpp (new perform added)

voidvoidvoidvoid Macro::perfoMacro::perfoMacro::perfoMacro::perform(Context *context) {rm(Context *context) {rm(Context *context) {rm(Context *context) {
 forforforfor(iterator i = (iterator i = (iterator i = (iterator i = operationsoperationsoperationsoperations.begin(); i != .begin(); i != .begin(); i != .begin(); i != operationsoperationsoperationsoperations.end(); ++i).end(); ++i).end(); ++i).end(); ++i)
 (*i)(*i)(*i)(*i)---->perform(context);>perform(context);>perform(context);>perform(context);
}}}}

Since we’ve just got back to all checks passing by updating macro, let’s update
MacroShould to use the new interface:

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 235 Author: Brett L. Schuchert (schuchert@yahoo.com)

structstructstructstruct MathOperatiMathOperatiMathOperatiMathOperationSpyonSpyonSpyonSpy : : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{

 voidvoidvoidvoid perform(perform(perform(perform(ContextContextContextContext *context) {*context) {*context) {*context) {

};};};};

TEST(MacroShould, HandleMultipleMathOperations) {TEST(MacroShould, HandleMultipleMathOperations) {TEST(MacroShould, HandleMultipleMathOperations) {TEST(MacroShould, HandleMultipleMathOperations) {

 RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator context;context;context;context;

 op.perform(&context);op.perform(&context);op.perform(&context);op.perform(&context);

}}}}

Now you can remove perform(RpnStack &) from the Macro class.

7.4.4 The Newest Math Operations

The Cr, Dot and Emit classes have an unnecessary perform(RpnStack&) method. You
can safely update all three classes by removing that version of perform from both places.

7.4.5 Dup

Dup is next alphabetically in the list. First, we’ll update DupShould.cpp:

#include#include#include#include <CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h><CppUTest/TestHarness.h>

#include#include#include#include "Dup.h""Dup.h""Dup.h""Dup.h"
#include#include#include#include "RpnCalculator.h""RpnCalculator.h""RpnCalculator.h""RpnCalculator.h"

TEST_GROUP(DupShould) {TEST_GROUP(DupShould) {TEST_GROUP(DupShould) {TEST_GROUP(DupShould) {
 RpnCalculatorRpnCalculatorRpnCalculatorRpnCalculator ****contextcontextcontextcontext;;;;
 voidvoidvoidvoid setup() {setup() {setup() {setup() {
 contextcontextcontextcontext = = = = newnewnewnew RpnCalculator;RpnCalculator;RpnCalculator;RpnCalculator;
 contextcontextcontextcontext---->enter(4);>enter(4);>enter(4);>enter(4);
 contextcontextcontextcontext---->enter(3);>enter(3);>enter(3);>enter(3);
 Dup().perform(Dup().perform(Dup().perform(Dup().perform(contextcontextcontextcontext););););
 }}}}
 voidvoidvoidvoid teardown() {teardown() {teardown() {teardown() {
 deletedeletedeletedelete contextcontextcontextcontext;;;;
 }}}}
};};};};

TEST(DupShould, LeaveSameValueInX) {TEST(DupShould, LeaveSameValueInX) {TEST(DupShould, LeaveSameValueInX) {TEST(DupShould, LeaveSameValueInX) {
 LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, contextcontextcontextcontext---->getX());>getX());>getX());>getX());
}}}}

TEST(DupShould, HaveSameValueInY) {TEST(DupShould, HaveSameValueInY) {TEST(DupShould, HaveSameValueInY) {TEST(DupShould, HaveSameValueInY) {
 contextcontextcontextcontext---->execute(>execute(>execute(>execute("drop""drop""drop""drop"););););
 LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, contextcontextcontextcontext---->getX());>getX());>getX());>getX());
}}}}

TESTESTESTEST(DupShould, IncreaseStackSizeBy1) {T(DupShould, IncreaseStackSizeBy1) {T(DupShould, IncreaseStackSizeBy1) {T(DupShould, IncreaseStackSizeBy1) {
 LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, LONGS_EQUAL(3, contextcontextcontextcontext---->getStack().size());>getStack().size());>getStack().size());>getStack().size());

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 236 Author: Brett L. Schuchert (schuchert@yahoo.com)

}}}}

TEST(DupShould, LeaveRemainderOfStackAlone) {TEST(DupShould, LeaveRemainderOfStackAlone) {TEST(DupShould, LeaveRemainderOfStackAlone) {TEST(DupShould, LeaveRemainderOfStackAlone) {
 contextcontextcontextcontext---->execute(>execute(>execute(>execute("drop""drop""drop""drop"););););
 contextcontextcontextcontext---->execute(>execute(>execute(>execute("drop""drop""drop""drop"););););
 LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, LONGS_EQUAL(4, contextcontextcontextcontext---->getX());>getX());>getX());>getX());
}}}}

#include#include#include#include "ShouldBeRegistered.h"ShouldBeRegistered.h"ShouldBeRegistered.h"ShouldBeRegistered.h""""
CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(CHECK_REGISTRATION(DupDupDupDup, , , , """"dupdupdupdup""""););););

Dup.h

classclassclassclass DupDupDupDup: : : : publicpublicpublicpublic MathOperationMathOperationMathOperationMathOperation {{{{
publicpublicpublicpublic::::
 voidvoidvoidvoid perform(perform(perform(perform(ContextContextContextContext *context);*context);*context);*context);
};};};};

Dup.cpp

voidvoidvoidvoid Dup::perform(Context *context) {Dup::perform(Context *context) {Dup::perform(Context *context) {Dup::perform(Context *context) {
 contextcontextcontextcontext---->getStack().push(context>getStack().push(context>getStack().push(context>getStack().push(context---->getStack().top());>getStack().top());>getStack().top());>getStack().top());
}}}}

7.4.6 What Remains

There are several classes left to update. Note, in a large system, it might be OK to have
both methods and do as we did, have one method call the other for backwards
compatibility.

The following automated checks need to be updated along with their classes: Drop,
FactorialShould, NDupShould, PrimFactorsOf, Sum, SwapXy.

Once you’ve updated all of these additional files, you can safely remove the old perform
from the system and make the new perform pure virtual.

7.5 Numeric Constants as Operations

Our next example uses a constant value as part of a macro. Here’s an automated check to
reflect that example:

TEST(RpnCalculatorShould, AllowConstantValuesInMacros) {TEST(RpnCalculatorShould, AllowConstantValuesInMacros) {TEST(RpnCalculatorShould, AllowConstantValuesInMacros) {TEST(RpnCalculatorShould, AllowConstantValuesInMacros) {
 calculatorcalculatorcalculatorcalculator---->start();>start();>start();>start();
 enter(2);enter(2);enter(2);enter(2);
 execute(execute(execute(execute("!""!""!""!"););););
 calculatorcalculatorcalculatorcalculator---->save(>save(>save(>save("times2""times2""times2""times2"););););
 enter(5);enter(5);enter(5);enter(5);
 execute(execute(execute(execute("times2""times2""times2""times2"););););
 topWas(10)topWas(10)topWas(10)topWas(10);;;;
}}}}

This fails, but it shouldn’t be too much to make this work:

Update Programming::enter

#include#include#include#include <sstream><sstream><sstream><sstream>
voidvoidvoidvoid Programming::enterProgramming::enterProgramming::enterProgramming::enter((((ContextContextContextContext *context, *context, *context, *context, intintintint value) {value) {value) {value) {
 std::std::std::std::stringstreamstringstreamstringstreamstringstream name;name;name;name;

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 237 Author: Brett L. Schuchert (schuchert@yahoo.com)

 name << value;name << value;name << value;name << value;
 ifififif(context(context(context(context---->getFactory()>getFactory()>getFactory()>getFactory()---->hasRegistered(name.str()) == >hasRegistered(name.str()) == >hasRegistered(name.str()) == >hasRegistered(name.str()) == falsefalsefalsefalse) {) {) {) {
 MathOperationMathOperationMathOperationMathOperation *op = *op = *op = *op = newnewnewnew PushConstant(value);PushConstant(value);PushConstant(value);PushConstant(value);
 contextcontextcontextcontext---->getFactory()>getFactory()>getFactory()>getFactory()---->add(name.str(), op);>add(name.str(), op);>add(name.str(), op);>add(name.str(), op);
 }}}}
 execute(context, name.str());execute(context, name.str());execute(context, name.str());execute(context, name.str());
}}}}

Add new method to MathOperationFactory (to header and source file of course):

boolboolboolbool MathOperationFactory::hasRegisteredMathOperationFactory::hasRegisteredMathOperationFactory::hasRegisteredMathOperationFactory::hasRegistered((((constconstconstconst std::std::std::std::stringstringstringstring &name) {&name) {&name) {&name) {
 returnreturnreturnreturn operationsByNameoperationsByNameoperationsByNameoperationsByName.find(name) != .find(name) != .find(name) != .find(name) != operationsByNameoperationsByNameoperationsByNameoperationsByName.end();.end();.end();.end();
}}}}

Notice, that this method could have been extracted from the add method:

voidvoidvoidvoid MathOperationFactory::addMathOperationFactory::addMathOperationFactory::addMathOperationFactory::add((((
 constconstconstconst std::std::std::std::stringstringstringstring &name, &name, &name, &name, MathOperationMathOperationMathOperationMathOperation *op) {*op) {*op) {*op) {
 ifififif(hasRegistered(name))(hasRegistered(name))(hasRegistered(name))(hasRegistered(name))
 throwthrowthrowthrow NameInUseException();NameInUseException();NameInUseException();NameInUseException();
 operationsByNameoperationsByNameoperationsByNameoperationsByName[name] = op;[name] = op;[name] = op;[name] = op;
}}}}

7.6 If … then … else

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 238 Author: Brett L. Schuchert (schuchert@yahoo.com)

8 Rpn Calculator – Sprint 5 – FitNesse & CSlim
8.1.1 A spec-driven example

8.1.2 A sequence diagram showing flow

8.2 Adding a basic text ui

8.3 Adding several more operators

8.3.1 ifelse

8.3.2 ntimesdo

8.3.3 ConditionWhileDo

8.4 Programming the Calculator with a string

8.4.1 Example forth program

8.4.2 Breaking it into parts

Tokenization using spaces

Tokenization using regular expressions

8.4.3 Building a Basic Sequence

8.4.4 Building a conditional sequence

8.4.5 Building a complex sequence

8.4.6 Adding the behavior into the calculator

8.4.7 Exercising the new behavior from the text ui

8.4.8 Saving your extensions

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 239 Author: Brett L. Schuchert (schuchert@yahoo.com)

9 Where to go next?
9.1 TDD Is Not Enough

9.1.1 GRASP

9.1.2 SOLID + D

Packaging Metrics

9.1.3 Code Smells

9.1.4 WELC

9.1.5 Test Doubles

9.1.6 Coding Katas

9.1.7 The 4 Actions (should be sooner)

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 240 Author: Brett L. Schuchert (schuchert@yahoo.com)

10 Appendix A: Revealing the Magician
10.1 Arrays versus pointers

10.1.1 Koenig’s i[3] == 3[i] trick

10.2 Methods versus functions

10.3 Operator Overloading

10.4 Overloading <<

10.5 Overloading ++i versus i++

10.6 Virtual Functions

10.7 new & delete versus malloc & free

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 241 Author: Brett L. Schuchert (schuchert@yahoo.com)

11 Appendix B: More Complex Composition with Bind

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 242 Author: Brett L. Schuchert (schuchert@yahoo.com)

12 Appendix C: FitNesse, a quick introduction

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 243 Author: Brett L. Schuchert (schuchert@yahoo.com)

13 To Be Deleted
13.1 My Story Until 2010

My name is Brett L. Schuchert. I pronounce my last name as “shoe – heart” but I’m
happy with many variations on that name. You can review my CV at
http://schuchert.wikispaces.com/MyCv.

I started using computers on a paper terminal playing start trek in 7th grade. During 8th
grade I nearly failed a typing class on manual typewriters and I started learning BASIC
on an Apple II, mostly drawing low-res graphics. I took programming classes in high
school; first BASIC, then COBOL and 6502 Assembly language. Because of the COBOL
class, I took a typing class and learned to touch type (two spaces after each.) because my
COBOL programs were hundreds to thousands of lines long. I learned 6010 Assembly on
a Commodore 64 before taking the 6502 Assembly language course in High School. The
processors were nearly the same but on the 6510 it was possible to view 64K of RAM as
well as the ROM on top of the RAM by disabling interrupts and programming address 0
and 1 with a memory pattern.

I studied both Electrical Engineering and Computer Science at the University of Iowa. I
first learned data structures and algorithms in Pascal. I followed that with a class on
assembly language programming with two simulated assembly languages. The first
assembly language did not have a stack, the second one did. The most important thing I
did in that class was learn about activation records (stack frames) and we wrote recursive
algorithms in assembly. It was quite useful.

Next in line was discrete mathematics. This gave me an appreciation of logic and a hate
of program correctness proofs. At that time I through them to be bunk. The only
difference between then and now is I have a stronger argument that I won’t bore you
with. I took operating systems courses, programming language foundations courses, my
favorite language from that series being SNOBOL and learning about Bacus Naur Form.

In early 1989 I took an operating systems programming class from Mahesh Dodani. This
turns out to be one of the most important classes because of professor Dodani. He
allowed me to take that OO programming class, which allowed me to become a research
assistant and learn C++. I that job, I worked with Jeff Francis, who knew a lot more about
programming than I did. He taught me about revision control, specifically CVS. I’m
amazed still today at places I go that don’t use such tools.

Working as a Research Assistant later allowed me to be an undergraduate teaching
assistant in the College of Engineering, where I helped port an old embedded system
programming class from assembly to C. In doing that, I had to port the cross-compiler. It
was a K&R Style 1 compiler and I had to simply write getc and putc. I started by looking
at the generated assembly. It was 68000, which I knew from an engineering course. I
started with hand-coded assembly, and then I moved to embedded assembly in the C
code. I then realized that all I was doing was reading memory locations, so I just cast the
address in memory from a void* to a char* and did everything with macros. I mention
this because it was at that point that I groked pointers fully. I nearly had them down
before that experience, but that solidified pointers for me. Later, when I had to interact
with an A to D converter, I just read an address. When I realized that function call

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 244 Author: Brett L. Schuchert (schuchert@yahoo.com)

overhead was prohibitive on the platform, I redesigned the API to take an array and
count. That was a valuable lesson about performance, which is really no longer necessary
at that level but still relevant between systems.

While all of this was going on, I was also teaching computer literacy courses at Kirkwood
Community college. By the time I was learning C++ and Smalltalk, I had 4 years of
teaching under my belt to so-called non-traditional students. In one class I had a range of
ages from 17 – 63.

When I started learning C++ I was using CFront 1.1. There were no books and the
internet as we know it really didn’t exist. The first book I bought was “The Annotated
Reference Manual” with two “experimental” chapters, one on templates, and the other on
exceptions. Later, I came across “Advanced C++ Programming Styles and Idioms” by
James Coplien. I tore into that book and then started an email conversation with the
author. That was exceptionally valuable for me because I learned quite a bit form the
book and my conversations, and James introduced me to the world of book reviews. I
stated reviewing books (badly if I’m being honest), and this lead to a book review by a
relative unknown, Robert Martin. He would become my boss about 13 years later and be
better known as Uncle Bob.

I worked 18 months at a startup in Dallas after leaving college. I thought I knew C++ but
I was a typical arrogant college graduate who though he knew everything but really
didn’t know what was important. I did know the language well; I didn’t understand the
domain at all. I ended up using AWK quite a bit for data conversion and I worked as a
technical business analyst.

During this time I managed to teach a few C and C++ classes at The University of Texas
at Arlington. That’s where I wrote my first TCP/IP application and my first client/server
code. I was too stupid to not try to do so in class, live, making heavy use of the man
command along the way. I learned at least as much as my students to be sure.

My next job was with a small company called Object Space. I joined as a trainer working
with Graham Glass. At first it was C++ training and them Smalltalk training. I took the
excellent outlines that Graham had intuitively developed and formalized them so I could
teach them. This is when I started writing too many slides for classes. During this time
we also added other classes on formal Object-Oriented analysis and design. I worked
with Craig Larman on course development. I have a memory of he and I huddled together
around a 13” monitor using Visio in Windows NT to design the flow for our C++ and
Smalltalk classes to keep them in Sync.

We used an interesting design problem in that class, Monopoly. I learned a lot about
analysis, design, programming, design patterns, formal software process and training,
among other things, because of Monopoly

I started consulting at Object Space. I had gotten fully burnt out from training. I got to the
point where (I though) I knew all the questions I might get asked and had overly precise
answers to each of those questions. My first gig out of training was to work on a
Smalltalk project that eventually involved some C programming. I convinced the client to
use C++ and all of a sudden I was training several people C++ on a real project using an
OO database.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 245 Author: Brett L. Schuchert (schuchert@yahoo.com)

In 1994 I came across the STL from Stepanov and Lee. After learning it a bit, I started
using it on this project. I remember having a 10,000 semicolon program that took 7 hours
to compile on an HP because of templates. The same program took 15 minutes on a 400
MHz Pentium using Visual C++ 4.2.

Consulting at Object Space gave accelerated my learning. I got to experience things that
didn’t work without having to commit the error myself. I am certain that given the
opportunity, I would have done many of the things my clients did exactly how they did it
(I often did). So I managed to learn faster because I was seeing what did not work and
then coming up with something that did work.

I worked as the “architect” for a three team distributed development effort starting in
1997 after learning Java. This is where I was introduced to JUnit and I became test-
infected. So I’ve been writing unit tests in one form or another for about 13 years now. I
worked on a Java phone project; I helped port a system from using MS tools to Java 1.02
and we used invisible applets for asynchronous DOM updates (it wasn’t AJAX, but it
was the same idea – everybody was doing it at that point). Later, related to that project, I
was that architect that did the over-design of a project and then got pulled off for later
development. I went back to see the damage my over design had caused, I did help
remove some deadlock issues but that was a failure of over design even if the product did
get used.

Near the end of my time at Object Space I was involved in intensive 8-week internal boot
camps. This was again a great way for me to learn as well as teach and coach. Looking
back I have to assume I was pretty bad in many ways. I know I was so-so handling the
soft-skills side of things.

In 1997, along with switching to Java, I came across a book by Jerry Weinberg. I
recognized his name from Exploring Requirements, which I loved, so I read this book
and that started a journey that is still going. I took Problem Solving Leadership then
Change Shop and later the SEM group, a Satir Yearlong program, SEM writer’s
workshop and the X workshop for developing experiential learning situations.

All of this started to take hold when I left Object Space and joined Valtech. I took classes
that had burnt me out in the past, and redesigned them to make them more student-driven.
While these were early experiments, they’d turn out to lead to something important later
on.

My job at Valtech was similar to the one at Object Space. I taught and consulted. I was at
Enron the day it went down (it wasn’t my fault). As a result I went to England for 6
months and joined the largest project of my career. 343 people, I was #344. I learned
quite a bit about just how bad a government project can go. After coming back from that
job I stared a 6-month project that turning into a 4-year project for me.

I was one of six people helping to port an existing COBOL solution to Java and train the
COBOL programmers at the same time. That was an amazing experience. I learned more
than I could have ever hoped. We put many applications into production, may with very
low defects. The first project was 12 people, 9 – 10 months. In the first 9 months of
production use, we found one defect. We were test infected at the time, which lead to a

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 246 Author: Brett L. Schuchert (schuchert@yahoo.com)

pretty low defect rate. We got lucky, we made a lot of mistakes and those came back to
bite us.

Of the many things I learned on that project, one of them was a confirmation of the
importance of automated testing. Even though we did a poor job on our unit tests, they
were slow, dependent on data we did not own, etc., we were able to make significant
changes without breaking things. On one occasion we need to make an architectural
change across a number of applications (about 7). I warned the then 35ish developers that
I’d be making a change on the weekend and they wanted to be checked in by Friday. I
then changed 1,287 files across around 1.5 million lines of code and didn’t break
anything.

I made many mistakes but unlike many of my previous projects, I had to live with them
and learn from them. I had to eat my own dog food. So it was a great experience with a
lot of just amazing people both from Valtech and the Hertz.

While working on this project, I worked with Aspect Oriented Programming and
introduced a solution to an ongoing problem. It was the right solution given the context
but probably not the right one if we had the option to redo everything. I presented a talk
on AOP to our Java group, at a private conference for Valtech and then I did something
that would have far-reaching effects.

I attempted to write my talk in a self-paced experiential learning exercise. That got me
started writing on Google pages first and then later wikispaces.com. I managed to get
accepted at SD West on another subject but I was prepared to go to SD West because I
was writing about what I was learning. I was doing that because I had read another book
by Jerry Weinberg, “Weinberg on Writing.” Since I started that site, I’ve written around
800 pages of material. From late 2008 to August 2010 I had 700,000 hits to my site. That
doesn’t count the first 2 years. Because I was presenting at SD West, I once again met
Bob Martin. I had applied at Object Mentor in 2001 but did not take the job an instead
joined Valtech. However, in 2007 things were different. Valtech made a similar mistake
to Object Space that had essentially signed the death knell for Object space; they got rid
of the training department.

When I discovered that had happened I was in a tutorial by Bob Martin. I discussed
joining Object Mentor; two weeks later I had an offer. 6 weeks after that I finished up an
internal boot camp I was teaching at Hertz and I joined Object Mentor.

For three years I worked at Object Mentor honing my Agile software development skills,
like Test Driven Development. In those three years I came across many excellent people
and projects, which just accelerated my learning.

Around mid-June 2010 my good friend David Nunn offered me the C++ classes. I had
been teaching C++ at Object Mentor, primarily Test Driven Development in C++. I took
where I was at and wrote a class that was very different from the kind of class I wrote in
the early 1990’s.

That class is the genesis of this book.

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 247 Author: Brett L. Schuchert (schuchert@yahoo.com)

14 Index
#define, 27
#endif, 24, 27
#ifndef, 27
#include, 27

"" versus <>, 27
#pragma, 23, 27

once, 27
<tr1/random>, 47
array, 47
Assignment Operator, 53
Automated Tests

Test Control, 55
Test Granularity, 33
Wisdom, 29

C++ Idioms, 51
C++ Recommendations

prefer initialization over assignment,
49

C++ Standard Library
array, 47
begin, 48
end, 48
mt19937, 49
vector, 17

C++ Terminology, 28
assignment, 47
Assignment Operator, 53
Compilation Unit, 16
const member function, 27
Copy Constructor, 53
declaration, 23
definition, 23
Definition, 28
Destructor, 53
initialization, 48
l-value, 48
Member function, 28
member-wise initialization list, 48
namespace, 49
non-primitive, 49
Object Module, 16
Operator Overloading, 53
operator(), 49
pre-increment, 49
primitive, 50

r-value, 50
static, 50
struct, 17
template class, 17, 50
typedef, 50
virtual, 54

class, 27
class versus struct, 28
CommandLineTestRunner, 16

CommandLineTestRunner.h, 16
RunAllTests, 16

command-query separation, 48
Common Errors

Forgetting ; at the end of class, 26
Forgetting ; at the end of

TEST_GROUP, 26
Getting the signature incorrect, 26

Compilation Unit, 16
const member function, 27
constructor

no-argument constructor, 49
Constructor, 48
Copy Constructor, 53
CppUTest, 28

Auto Test Discovery, 15
Building CppUTest, 8
CHECK, 27
CommandLineTestRunner, 16
Downloading CppUTest, 8
LONGS_EQUAL, 16
Mechanics of CppUTest, 9
Order of Tests, 34
RunAllTests, 16
TEST, 17, 28
Test Fixture, 34
TEST_GROUP, 17, 28, 31
TestHarness.h, 17, 28

Creating a Project, 10
declaration, 23, 24, 27
Declaration, 28
definition, 23, 24, 25, 27
Definition, 28
Dependency Injection, 56
Design Principles

command-query separation, 48

© 2010, 2011 Brett L. Schuchert C++ & OOD, The Least You Need To Know 08/04/11

Version: 0.3a 248 Author: Brett L. Schuchert (schuchert@yahoo.com)

Destructor, 53
Don't Repeat Yourself, 31
Downloading CppUTest, 8
DRY, 31
Ecipse CDT

Library Path, 11
Eclipse CDT

Auto Save and Refresh, 11
C++0x, 11
Creating a Project, 10
Include Path, 10, 11
Included Libraries, 11
Installing Eclipse CDT, 6
Installing the Wascana Plugin, 8
Library Path, 10
Run Last Thing Execute, 12
Starting Eclipse CDT, 6

Eclipse Shortcuts
Ctrl-B, 16
Ctrl-F11, 16

function-object, 48
functor, 48
Include Directory, 16
Include Path, 10
Installing Eclipse CDT, 6
Installing the Wascana Plugin, 8
Library Directory, 16
Library Path, 10
LONGS_EQUAL, 16
Mechanics of CppUTest, 9
Member function, 28

definition, 28
member-wise initialization list, 48
namespace, 49
nested type, 49
nested typedef, 49

no-argument constructor, 49
non-primitive, 49
Object Module, 16
Operator Overloading, 53
operator(), 49
Polymorphism, 57, 59, 61

Moving Parts, 57
prefer initialization over assignment, 49
pre-increment, 49
primitive, 50

initialization, 50
private:, 24, 50
protected:, 24
public:, 24, 28
Refactoring, 21
Refactroing, 44
RunAllTests, 16
r-value, 50
Scope ::, 28
static, 50
struct versus class, 28
template class, 50
TEST, 17, 34
Test Control, 55
Test Fixture, 34
Test Granularity, 33
TEST_GROUP, 17, 31, 32, 34
TestHarness.h, 17
typedef, 49, 50
UML, 20

Class Diagram, 31, 55
Communication Diagram, 56

vector, 17
virtual, 54
Wascana Plugin

Installing the Wascana Plugin, 8

